王博,覃富強(qiáng),鄧?guó)P瑩,羅惠格,陳祥飛,成果,白揚(yáng),黃小云,韓佳宇,曹雄軍,白先進(jìn)
‘陽(yáng)光玫瑰’葡萄一年兩收果實(shí)類(lèi)黃酮組分及含量差異分析
1廣西大學(xué)農(nóng)學(xué)院,南寧 530004;2廣西農(nóng)業(yè)科學(xué)院葡萄與葡萄酒研究所,南寧 530007;3廣西真誠(chéng)農(nóng)業(yè)有限公司,南寧 530007;4廣西農(nóng)業(yè)科學(xué)院,南寧 530007
【目的】以3年生一年兩收栽培‘陽(yáng)光玫瑰’葡萄為試材,探究夏果與冬果基本理化指標(biāo)、類(lèi)黃酮物質(zhì)組分及含量的差異,為‘陽(yáng)光玫瑰’葡萄一年兩收栽培的品質(zhì)調(diào)控提供理論依據(jù)?!痉椒ā坑涗洝?yáng)光玫瑰’葡萄全生育期日照時(shí)數(shù)、光照度、溫度、降雨量等氣候數(shù)據(jù),在夏果與冬果的幼果期、膨大期、軟化期、開(kāi)始成熟期、成熟期測(cè)定果實(shí)基本理化指標(biāo),并利用高效液相色譜質(zhì)譜(LC-MS/MS)聯(lián)用技術(shù)檢測(cè)各時(shí)期果皮中黃酮醇和黃烷醇的組分及含量?!窘Y(jié)果】氣候因子方面,‘陽(yáng)光玫瑰’葡萄夏果生長(zhǎng)前期光照度弱、溫度低,后期光照度強(qiáng)、溫度高,而冬果與之相反;夏果生長(zhǎng)期平均日照時(shí)數(shù)、平均溫度、有效積溫大于冬果,但降雨量低于冬果,開(kāi)始成熟期至成熟期的夏果水熱系數(shù)高于冬果?;酒焚|(zhì)方面,成熟期夏果可溶性固形物含量顯著高于冬果,果皮厚度顯著低于冬果,果實(shí)單粒重、果實(shí)橫縱徑、可滴定酸含量在夏果與冬果中無(wú)顯著差異。黃酮醇的組分及含量方面,夏果與冬果的總黃酮醇含量整體呈下降趨勢(shì),夏果各時(shí)期總黃酮醇含量均顯著高于冬果,夏果中黃酮醇主要成分為槲皮素-3--葡萄糖苷,冬果中黃酮醇以山奈酚-3--半乳糖苷為主。黃烷醇的組分及含量方面,夏果與冬果的總黃烷醇含量也均呈下降趨勢(shì),夏果和冬果果皮中均檢測(cè)到8種相同的黃烷醇物質(zhì),主要成分為兒茶素、表兒茶素和原花青素B1。夏果果實(shí)發(fā)育各時(shí)期果皮中總黃烷醇含量以及兒茶素、表兒茶素、原花青素B1含量均顯著低于冬果,果實(shí)成熟期夏果沒(méi)食子兒茶素、表沒(méi)食子兒茶素、表兒茶素沒(méi)食子酸酯、表沒(méi)食子兒茶素沒(méi)食子酸酯、原花青素B2含量顯著高于冬果。主成分分析表明夏果與冬果的黃酮醇類(lèi)物質(zhì)組分有一定差異?;貧w分析表明,兒茶素、槲皮素-3--葡萄糖苷、原花青素B1是區(qū)分夏果與冬果類(lèi)黃酮物質(zhì)組分的主要物質(zhì)?!窘Y(jié)論】試驗(yàn)?zāi)攴荨?yáng)光玫瑰’葡萄夏果基本品質(zhì)優(yōu)于冬果。各時(shí)期夏果總黃酮醇類(lèi)物質(zhì)含量顯著高于同期冬果,而總黃烷醇含量顯著低于同期冬果?!?yáng)光玫瑰’葡萄夏果與冬果果皮中黃酮醇的主要成分不同,但二者黃烷醇的主要成分相同,均為兒茶素、表兒茶素和原花青素B1。冬果中黃烷醇主要成分的含量顯著高于夏果,因此其口感的澀味更強(qiáng)。生長(zhǎng)期光照和溫度差異可能是引起夏、冬果果皮類(lèi)黃酮物質(zhì)組分差異的重要因素。
‘陽(yáng)光玫瑰’葡萄;一年兩收;氣候;果皮;黃酮醇;黃烷醇
【研究意義】類(lèi)黃酮是植物重要的次生代謝物,參與調(diào)控植物生長(zhǎng)發(fā)育,在植物抗氧化、抗真菌、抗病毒方面發(fā)揮重要作用[1]。大量研究表明類(lèi)黃酮物質(zhì)對(duì)人體具有重要的生理及保健作用,可清除自由基抗氧化,預(yù)防癌癥、肥胖、高血壓,抑制動(dòng)脈粥樣硬化等[2]。葡萄中類(lèi)黃酮類(lèi)物質(zhì)主要有黃酮醇、黃烷醇和花色苷等,大部分存在于果皮、種子和果梗中[3],除了對(duì)釀酒葡萄和葡萄酒感官品質(zhì)具有重要的決定作用[4],對(duì)鮮食葡萄品質(zhì)也具有重要的影響。黃烷醇類(lèi)物質(zhì)在葡萄中形成復(fù)雜的聚合物,其口感苦澀粗糙,在漿果成熟過(guò)程中由于聚合和水解作用,其相對(duì)分子質(zhì)量在500—3 000,對(duì)葡萄口感風(fēng)味的影響也會(huì)發(fā)生變化[5-6]?;ㄉ疹?lèi)物質(zhì)決定著鮮食葡萄的果皮色澤,影響葡萄的外觀品質(zhì),黃酮醇類(lèi)的槲皮素、山奈酚類(lèi)物質(zhì)在抗癌、抗腎臟損傷等方面有較多研究報(bào)道,在鮮食葡萄的營(yíng)養(yǎng)品質(zhì)中有重要作用[7]。類(lèi)黃酮的合成受外界環(huán)境因子如光照、溫度、水分等因素以及栽培措施等的影響[8]。葡萄一年兩收栽培技術(shù)是在充分利用當(dāng)?shù)販毓赓Y源的基礎(chǔ)上,結(jié)合修剪打破冬芽休眠,促進(jìn)葡萄二次開(kāi)花,形成兩季產(chǎn)量,目前在我國(guó)廣西、云南、福建、北京、寧夏、廣東、江蘇等多地推廣應(yīng)用[9]?!?yáng)光玫瑰’葡萄是近年來(lái)廣泛推廣的優(yōu)質(zhì)鮮食葡萄品種,備受消費(fèi)者青睞,也是目前一年兩收栽培應(yīng)用較多的品種之一[10]。一年兩收栽培夏果與冬果生長(zhǎng)期氣候條件有顯著差異,結(jié)合氣候條件的差異探討一年兩收栽培‘陽(yáng)光玫瑰’葡萄夏果與冬果生長(zhǎng)期果實(shí)黃酮醇、黃烷醇組分及含量的變化,對(duì)一年兩收栽培模式下葡萄夏果與冬果類(lèi)黃酮類(lèi)物質(zhì)加工利用、果實(shí)品質(zhì)改善、生產(chǎn)種植具有重要理論指導(dǎo)意義。【前人研究進(jìn)展】葡萄果實(shí)中黃酮醇組分及含量受品種、栽培條件、溫度、光照等影響[11-12]。SEBELA等[13]研究發(fā)現(xiàn)光強(qiáng)與黃酮醇含量顯著正相關(guān)。不同光質(zhì)處理下,紫外光誘導(dǎo)黃酮醇合成酶與黃酮醇糖基轉(zhuǎn)移酶基因顯著表達(dá),果實(shí)中黃酮醇含量顯著增加[14]?!鹌狭?hào)’葡萄果實(shí)中黃烷醇主要以黃烷-3-醇單體和原花青素形式存在,坐果期黃烷醇含量達(dá)到高峰,進(jìn)入軟化期后其含量開(kāi)始下降[15]。FANG等[16]利用高效液相色譜檢測(cè)‘赤霞珠’葡萄果實(shí)發(fā)育期黃酮醇的組分及含量,檢測(cè)到槲皮素、楊梅素、山柰素、異鼠李素和高良姜素等組分,在快速生長(zhǎng)期、轉(zhuǎn)色期和成熟期果實(shí)中黃酮醇含量以槲皮素為主。一年兩收栽培夏果生長(zhǎng)期降雨天氣較多,溫度高,濕度大,而冬果生長(zhǎng)期氣候溫和少雨[17]。前人研究發(fā)現(xiàn)一年兩收栽培‘夏黑’葡萄冬果果皮中花色苷類(lèi)的類(lèi)黃酮物質(zhì)含量在果實(shí)發(fā)育各時(shí)期均顯著高于同期夏果[18]。一年兩收栽培模式下‘赤霞珠’等4個(gè)葡萄品種夏果與冬果黃酮醇和黃烷醇物質(zhì)組成及含量存在差異,夏果采收期槲皮素類(lèi)黃酮醇占總黃酮醇70%左右,顯著高于冬果,冬果中山奈酚類(lèi)黃酮醇所占比例較高[19]?!颈狙芯壳腥朦c(diǎn)】?jī)墒赵耘嗄J较隆?yáng)光玫瑰’葡萄夏果與冬果果實(shí)發(fā)育期類(lèi)黃酮組分及含量差異亟待研究。【擬解決的關(guān)鍵問(wèn)題】本研究以一年兩收栽培‘陽(yáng)光玫瑰’葡萄為試驗(yàn)材料,分析氣象條件差異對(duì)‘陽(yáng)光玫瑰’葡萄夏果、冬果基本理化指標(biāo)和黃酮醇、黃烷醇組成及含量的影響,明確一年兩收栽培‘陽(yáng)光玫瑰’葡萄兩季果果實(shí)發(fā)育過(guò)程中基本品質(zhì)、類(lèi)黃酮組分及含量的變化規(guī)律及差異。
試驗(yàn)于2018年3月至2019年1月進(jìn)行(108°8′33″ E,23°11′48″ N)。以3年生一年兩收栽培‘陽(yáng)光玫瑰’葡萄為試材,果園管理采用當(dāng)?shù)爻R?guī)管理,果實(shí)進(jìn)行無(wú)核化處理,樹(shù)體生長(zhǎng)良好。在樹(shù)體生長(zhǎng)狀況基本一致的葡萄樹(shù)上隨機(jī)選擇100個(gè)生長(zhǎng)狀況一致、掛一串果的新梢標(biāo)記采樣果串。夏季葡萄(夏果)與冬季葡萄(冬果)的物候期觀測(cè)參考COOMBE等[20],并劃分為7個(gè)代表性的物候期(Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ)進(jìn)行氣象數(shù)據(jù)采集,具體如表1所示。分別在果實(shí)發(fā)育的關(guān)鍵物候期第Ⅲ階段的幼果期(E-L31)、第Ⅳ階段的膨大期(E-L33)、第Ⅴ階段的轉(zhuǎn)色期(E-L35)、第Ⅵ階段的開(kāi)始成熟期(E-L36)和第Ⅶ階段的成熟期(E-L38)進(jìn)行果實(shí)采樣,隨機(jī)采集標(biāo)記果串的上、中、下部位果粒各1粒,每時(shí)期采集300粒,混勻,其中150粒果用于果實(shí)單粒重、果實(shí)橫縱徑、可溶性固形物、可滴定酸、果皮厚度的測(cè)定,每個(gè)生物學(xué)重復(fù)50粒;150粒果實(shí)樣品用液氮速凍后于-80℃冰箱保存,用于測(cè)定果實(shí)類(lèi)黃酮組分及含量,每個(gè)生物學(xué)重復(fù)50粒。
色譜級(jí)試劑甲醇、甲酸、乙腈購(gòu)于Fisher(Fairlawn,NJ,USA)公司;黃酮醇標(biāo)準(zhǔn)品槲皮素-3--葡萄糖苷和黃烷醇標(biāo)準(zhǔn)品購(gòu)于Sigma-aldrich(St. Louis,MO,USA)公司;丙酮、Vc、乙酸鈉、鹽酸、氮?dú)?、超純水等?gòu)于索萊寶生物科技有限公司。主要儀器Agilent 1200系列UPLC高效液相色譜儀、ZorbaxEclipseXDB- C18(250 mm×4.6 mm,5 μm)色譜柱(Agilent,美國(guó)),LC-MS/MS高效液相色譜-串聯(lián)四級(jí)桿質(zhì)譜儀、Poroshell120 EC-C18色譜柱(150 mm×2.1 mm,2.7 μm)(Agilent,美國(guó))。
表1 ‘陽(yáng)光玫瑰’葡萄夏果與冬果物候期
Ⅰ:芽頂尖綠色至花帽褪綠期;Ⅱ:開(kāi)始開(kāi)花至花帽完全脫落期;Ⅲ:幼果直徑>2 mm至直徑約7 mm期;Ⅳ:漿果開(kāi)始封穗至封穗期;Ⅴ:漿果開(kāi)始變軟至變色期;Ⅵ:漿果Brix°中等值至未完全成熟期;Ⅶ:漿果成熟至過(guò)熟期。下同
Ⅰ: Green tip-flower cap colour fading from green; Ⅱ: Beginning of flowering-cap-fall complete; Ⅲ: Setting-berries pea-size (7 mm diam.); Ⅳ: Beginning of bunch closure-closured; Ⅴ: Berries begin to soften-berries softening; Ⅵ: Berries with intermediate Brix° values to berries not quite ripe; Ⅶ: Berries harvest-ripe to berries over-ripe. The same as below
1.3.1 葡萄生長(zhǎng)期氣象數(shù)據(jù)采集 利用廣西慧云信息技術(shù)有限公司提供的耘小寶氣象數(shù)據(jù)采集設(shè)備實(shí)時(shí)采集白天>2 000 lx光照度、溫度、降雨量等數(shù)據(jù)。光照度與溫度每小時(shí)記錄一次,降雨量記錄每日累計(jì)降雨量[19]。
1.3.2 葡萄果實(shí)基本理化指標(biāo)測(cè)定方法 利用游標(biāo)卡尺測(cè)果實(shí)橫縱徑,數(shù)顯橫式測(cè)厚規(guī)測(cè)果皮厚度,PAL-1型手持折射計(jì)(Atago,Tokyo,Japan)測(cè)定果實(shí)可溶性固形物含量(TSS);利用酸堿滴定法測(cè)定可滴定酸含量(TA,用酒石酸當(dāng)量表示)。
1.3.3 葡萄果皮黃酮醇的測(cè)定方法 從-80℃冰箱中取出葡萄果實(shí)樣品,迅速將果皮果肉分離。果皮樣品低溫粉碎,放入真空凍干機(jī)中冷凍干燥(-40℃,24 h)后稱(chēng)取0.200 g果皮干粉于5 mL離心管中,利用50%的甲醇溶液低溫超聲提取20 min,之后離心取上清液,重復(fù)2次低溫超聲提取,合并兩次提取的上清液過(guò)0.22 μm水系濾膜,轉(zhuǎn)移至內(nèi)襯管,放進(jìn)裝樣瓶中待測(cè)。利用LC-MS/MS高效液相色譜—串聯(lián)四級(jí)桿質(zhì)譜儀對(duì)黃酮醇進(jìn)行檢測(cè)分析。色譜柱采用ZorbaxEclipseXDB-C18柱。流動(dòng)相A、流動(dòng)相B、洗脫梯度程序、柱溫、檢測(cè)波長(zhǎng)、進(jìn)樣量等參考鄧?guó)P瑩[21]的方法。
1.3.4 葡萄果皮黃烷醇的測(cè)定方法 稱(chēng)取0.100 g葡萄果皮干粉于2 mL離心管中,利用70%丙酮溶液提取,離心取上清液,重復(fù)提取2次,將上清液合并裝于5 mL離心管中。吸取400 μL上清液于2 mL離心管中,避光條件下氮吹干,加入200 μL 1%的鹽酸甲醇溶液溶解后加入200 μL乙酸鈉水溶液中和,將所得溶液過(guò)0.22 μm水系濾膜后轉(zhuǎn)移至內(nèi)襯管中,放進(jìn)裝樣瓶中待測(cè)。使用LC-MS/MS高效液相色譜-串聯(lián)四級(jí)桿質(zhì)譜儀對(duì)黃烷醇進(jìn)行檢測(cè)分析。
1.3.5 葡萄果皮中黃酮醇、黃烷醇定性定量分析 根據(jù)所購(gòu)標(biāo)準(zhǔn)品通過(guò)外標(biāo)法得到標(biāo)準(zhǔn)曲線(xiàn)(表2)進(jìn)行定量。黃酮醇定量以槲皮素-3--葡萄糖苷為外標(biāo)物,檢測(cè)出黃酮醇類(lèi)物質(zhì)以槲皮素-3--葡萄糖苷的含量計(jì)算,以mg·kg-1FW(鮮果重,fresh weight)表示。黃烷醇定量以?xún)翰杷?、表兒茶素、沒(méi)食子兒茶素、表沒(méi)食子兒茶素、表兒茶素沒(méi)食子酸酯、表沒(méi)食子兒茶素沒(méi)食子酸酯、原花青素B1、原花青素B2為外標(biāo)物,計(jì)算葡萄果皮中8種黃烷醇含量,以mg·kg-1FW表示。
折線(xiàn)圖和柱狀圖利用Microsoft Excel 2010制作。差異顯著性分析采用SPSS 20.0軟件處理。主成分分析(PCA)和正交偏最小二乘法分析(OPLS-DA)利用SIMCA14.1處理。
表2 黃酮醇、黃烷醇標(biāo)準(zhǔn)品的線(xiàn)性方程及相關(guān)系數(shù)
:峰面積;:濃度(mg·kg-1FW): Peak area;: Concentration (mg·kg-1FW)
兩收栽培模式下,夏季葡萄(夏果)與冬季葡萄(冬果)在其生長(zhǎng)季的光照、溫度、降雨等氣候因子有很大的差異。表3為2018年夏季葡萄和冬季葡萄生長(zhǎng)發(fā)育全過(guò)程的氣象數(shù)據(jù),包括光平均日照時(shí)數(shù)(h)、平均溫度(℃)、降雨量(mm)、有效積溫(℃)、水熱系數(shù)K。夏果生長(zhǎng)期在E-L4—E-L37平均日照時(shí)數(shù)逐漸增長(zhǎng),在E-L32—E-L37平均日照時(shí)數(shù)均超過(guò)12 h;冬果生長(zhǎng)各時(shí)期平均日照時(shí)數(shù)均小于12 h,在E-L38—E-L39時(shí)期平均日照時(shí)數(shù)僅為8.65 h。
表3 ‘陽(yáng)光玫瑰’葡萄夏果與冬果不同物候期氣象因子
平均日照時(shí)數(shù)指每個(gè)物候期大于2 000 lx的光照時(shí)間;平均溫度指每個(gè)物候期的日平均溫度;有效積溫=∑Ti(Ti≥10℃),Ti指的是日平均溫度;水熱系數(shù)=∑P/(∑Ti*0.1),∑P:降雨量,∑Ti:有效積溫
Average sunshine duration is the sunshine duration greater than 2 000 lx per phenophase; Average temperature means the average temperature of each phenophase; Effective accumulated temperature calculated as T =∑Ti(Ti≥10℃), and Ti was average daily temperature; Hydrothermic coefficient calculated as K=∑P/(∑Ti×0.1), ∑P was total rainfall and ∑Ti was active accumulated temperature
夏果生長(zhǎng)期平均溫度呈逐漸上升的趨勢(shì),在E-L32—E-L37平均溫度均超過(guò)30℃,而冬果呈逐漸下降的趨勢(shì),E-L34—E-L35、E-L36—E-L37和E-L38—E-L39時(shí)期平均溫度分別為17.13℃、15.46℃、14.22℃。夏果生長(zhǎng)期在E-L4—E-L26的平均溫度低于冬果,此后各時(shí)期則高于冬果。
本研究年度夏果生長(zhǎng)期總降雨量比冬果低,夏果生長(zhǎng)期的降雨量主要集中在E-L4—E-L18、E-L27—E-L31、E-L34—E-L35,冬果的降雨則主要集中在E-L4—E-L18和E-L32—E-L35。夏果生長(zhǎng)期在E-L27—E-L31、E-L34—E-L35和E-L38—E-L39時(shí)期的降雨量均顯著高于冬果,夏果全生育期的有效積溫比冬果高580℃,在E-L4—E-L18、E-L27—E-L31、E-L34—E-L35和E-L38—E-L39有效積溫均比冬果相應(yīng)時(shí)期高100℃以上。
夏果全生育期水熱系數(shù)為1.99,高于冬果的1.45。夏果E-L34—E-L35、E-L36—E-L37和E-L38—E-L39的水熱系數(shù)分別為1.58、0.74和1.43,冬果相應(yīng)時(shí)期為0.97、0.91和0.32,可見(jiàn)接近成熟期的冬果水熱系數(shù)較低。
如圖1所示,夏果與冬果不同生長(zhǎng)期的日最高光照度與最低光照度的變化存在差異,夏生長(zhǎng)期E-L4—E-L31即第Ⅰ—Ⅲ階段共持續(xù)67 d,日最高光照度超過(guò)60 000 lx的有29天,而冬果從第Ⅰ—Ⅲ階段共持續(xù)49 d,日最高光照度超過(guò)60 000 lx的有33 d;夏果在E-L32—E-L39即第Ⅳ—Ⅶ階段光照度一直保持較高的態(tài)勢(shì),而冬果在第Ⅳ—Ⅶ階段最高光照度超過(guò)60 000 lx的只有3 d,第Ⅶ階段光照度基本在20 000 lx以下,光照度明顯低于夏果。
圖1 ‘陽(yáng)光玫瑰’夏果(A)與冬果(B)不同發(fā)育期最高光照度與最低度光照度
于一年兩收栽培‘陽(yáng)光玫瑰’葡萄夏果與冬果的幼果期(E-L31)、膨大期(E-L33)、軟化期(E-L35)、開(kāi)始成熟期(E-L36)、成熟期(E-L38)測(cè)定果實(shí)單粒重、橫縱徑、果皮厚度、可溶性固形物和可滴定酸含量(圖2)。夏果與冬果單粒重、果實(shí)橫縱徑、可溶性固形物從幼果期到成熟期呈逐漸上升的趨勢(shì)。成熟期夏果的單粒重與果實(shí)橫縱徑和冬果無(wú)顯著差異,但兩季果可溶性固形物含量差異顯著,夏果可溶性固形物含量為20.20%,顯著高于冬果。成熟期夏果可滴定酸含量與冬果無(wú)顯著差異,但冬果果皮厚度顯著高于夏果。
采用LC-MS/MS測(cè)定不同時(shí)期‘陽(yáng)光玫瑰’冬果和夏果果皮中黃酮醇組成及含量,共檢測(cè)到3種黃酮醇(表4)。在果實(shí)發(fā)育前期,夏果果皮中檢測(cè)到大量的槲皮素-3--葡萄糖苷和少量的山奈酚-3--半乳糖苷,冬果果皮中則檢測(cè)到較多的山奈酚-3--半乳糖苷和少量的槲皮素-3--半乳糖苷。在成熟期,夏果果皮中僅檢測(cè)到槲皮素-3--葡萄糖苷,冬果果皮中僅檢測(cè)到山奈酚-3--半乳糖苷。果實(shí)發(fā)育過(guò)程中,夏果和冬果中總黃酮醇含量及各黃酮醇組分含量均呈下降趨勢(shì),各時(shí)期夏果果皮中總黃酮醇含量均顯著高于同期冬果。成熟期夏果果皮中黃酮醇含量為3.37 mg·kg-1FW,冬果為0.71 mg·kg-1FW。
不同小寫(xiě)字母表示同一季果的不同發(fā)育期差異顯著(P<0.05);*表示同一個(gè)發(fā)育期夏、冬果差異顯著(P<0.05);E-L31、E-L33、E-L35、E-L36、E-L38分別代表果實(shí)幼果期、膨大期、轉(zhuǎn)色期、開(kāi)始成熟期、成熟期。下同
表4 ‘陽(yáng)光玫瑰’葡萄不同時(shí)期夏果與冬果黃酮醇組分及含量變化
不同小寫(xiě)字母表示同一季果的不同發(fā)育期差異顯著(<0.05);*表示同一個(gè)發(fā)育期夏、冬果差異顯著(<0.05)。下同
Different small letters indicate significant differences at<0.05 between different development stages of fruits in the same season; * indicates significant differences at<0.05 between summer and winter fruits in the same development stage. The same as below
利用LC-MS/MS測(cè)定‘陽(yáng)光玫瑰’夏果與冬果不同時(shí)期果皮中黃烷醇組分及含量。由表5可以看出,夏果與冬果果皮中均檢測(cè)出8種相同的黃烷醇類(lèi)物質(zhì),其中兒茶素、表兒茶素、原花青素B1含量較高,其在夏果各發(fā)育期中的含量均顯著低于同期冬果,沒(méi)食子兒茶素、表沒(méi)食子兒茶素、表兒茶素沒(méi)食子酸酯、表沒(méi)食子兒茶素沒(méi)食子酸酯、原花青素B2含量較低,夏果各時(shí)期含量均顯著高于冬果。夏果與冬果果實(shí)發(fā)育期黃烷醇總量呈下降趨勢(shì),成熟期夏果黃烷醇總量為6.40 mg·kg-1FW,顯著低于冬果的11.26 mg·kg-1FW。在成熟期,夏果中黃烷醇類(lèi)物質(zhì)含量最高的是原花青素B1(2.26 mg·kg-1FW),冬果中最高的是兒茶素(5.02 mg·kg-1FW)。在果實(shí)發(fā)育過(guò)程中,夏果與冬果果皮中兒茶素、表兒茶素沒(méi)食子酸酯以及原花青素B1含量均呈下降趨勢(shì),表兒茶素呈上升趨勢(shì),表沒(méi)食子兒茶素和原花青素B2呈先上升后下降的變化趨勢(shì),表沒(méi)食子兒茶素沒(méi)食子酸酯呈先下降后上升再下降的波動(dòng)變化趨勢(shì),沒(méi)食子兒茶素在夏果與冬果果實(shí)發(fā)育期變化趨勢(shì)不一致,夏果中呈先上升后下降的變化趨勢(shì),冬果呈下降的變化趨勢(shì)。
‘陽(yáng)光玫瑰’葡萄夏果與冬果果實(shí)發(fā)育期兒茶素比例總體呈下降的趨勢(shì),而表兒茶素、沒(méi)食子化黃烷醇、原花青素類(lèi)黃烷醇總體呈上升的趨勢(shì)。成熟期夏果兒茶素比例低于冬果,但表兒茶素、沒(méi)食子化類(lèi)黃烷醇、原花青素類(lèi)黃烷醇的比例高于冬果(圖3)。
對(duì)‘陽(yáng)光玫瑰’葡萄夏果、冬果果實(shí)不同發(fā)育時(shí)期3個(gè)重復(fù)檢測(cè)到的黃酮醇和黃烷醇類(lèi)物質(zhì)分別進(jìn)行無(wú)監(jiān)督的主成分分析(PCA)。從圖4-A陽(yáng)光玫瑰葡萄夏果、冬果果實(shí)不同發(fā)育時(shí)期黃酮醇類(lèi)物質(zhì)的PCA得分圖來(lái)看,第一主成分貢獻(xiàn)率為88.2%,PC1可以很好地區(qū)分夏果與冬果。第二主成分貢獻(xiàn)率為11.5%,PC2可區(qū)分不同發(fā)育期?!?yáng)光玫瑰’葡萄夏果、冬果果實(shí)不同發(fā)育時(shí)期黃烷醇的PCA分析結(jié)果中第一主成分貢獻(xiàn)率為94.3%,PC1可區(qū)分夏果與冬果的不同發(fā)育期(圖4-B)。
為了找出導(dǎo)致‘陽(yáng)光玫瑰’葡萄夏果與冬果中黃酮醇和黃烷醇成分的關(guān)鍵差異化合物,對(duì)夏果與冬果各物候期的黃酮醇和黃烷醇單體分別進(jìn)行有監(jiān)督的正交偏最小二乘法分析(OPLS-DA)。黃酮醇和黃烷醇OPLS-DA模型的R2X、R2Y、Q2值分別為0.78、0.96、0.94和0.74、0.97、0.93,模型無(wú)過(guò)擬合現(xiàn)象,具有較好的判別分析能力。夏果與冬果之間黃酮醇中槲皮素-3--葡萄糖苷的VIP得分大于1,黃烷醇中兒茶素和原花青素B1的VIP得分大于1(表6)。說(shuō)明夏果與冬果黃酮醇中槲皮素-3--葡萄糖苷為特征化合物,黃烷醇中兒茶素和原花青素B1為特征化合物。
表5 ‘陽(yáng)光玫瑰’葡萄不同時(shí)期夏果與冬果黃烷醇組分及含量的變化
S、W分別代表夏果、冬果。下同 S: Summer grape, W: Winter grape. The same as below
1、2、3代表每個(gè)時(shí)期生物學(xué)重復(fù) 1, 2, 3 represent three biological replicates of each stage
一年兩收栽培葡萄夏果和冬果生長(zhǎng)發(fā)育期氣候存在差異,本研究中,‘陽(yáng)光玫瑰’夏果生長(zhǎng)期平均日照時(shí)數(shù)逐漸增長(zhǎng)、平均溫度逐漸升高、光照強(qiáng)度逐漸增大,而冬果生長(zhǎng)期呈相反趨勢(shì),夏果開(kāi)始成熟期至成熟期水熱系數(shù)顯著大于冬果,上述研究結(jié)果與前人研究一致[18,22-23]。本研究發(fā)現(xiàn)夏果生長(zhǎng)期有效積溫高于冬果生長(zhǎng)期,夏果生長(zhǎng)期降雨量低于冬果生長(zhǎng)期,這與前人[24]統(tǒng)計(jì)的廣西南寧地區(qū)上半年有效積溫低于下半年的結(jié)果不一致,可能與統(tǒng)計(jì)方式不同有關(guān),也可能是不同年份的氣候差異導(dǎo)致。夏果新梢生長(zhǎng)期、幼果期有效積溫比冬果高,可能與夏果物候期持續(xù)的時(shí)間較長(zhǎng)有關(guān),夏果在軟化期和成熟期有效積溫比冬果高,與夏果該時(shí)期的日均溫度較高有關(guān)。一般認(rèn)為采收前兩個(gè)月水熱系數(shù)K<1.5更有利于葡萄生長(zhǎng)和果實(shí)品質(zhì)形成[17],本研究中‘陽(yáng)光玫瑰’葡萄夏果與冬果接近成熟期時(shí)的水熱系數(shù)均小于1.5。
表6 ‘陽(yáng)光玫瑰’葡萄夏果和冬果關(guān)鍵差異類(lèi)黃酮化合物
一年兩收栽培‘陽(yáng)光玫瑰’葡萄夏果可溶性固形物含量高于冬果,這與前人針對(duì)該品種的研究結(jié)果一致[10],但‘夏黑’‘無(wú)核早’‘溫克’等葡萄品種一年兩收栽培夏果可溶性固形物含量均顯著低于冬果[25-26]。這可能與品種的熟期不同有關(guān),‘陽(yáng)光玫瑰’葡萄為中晚熟品種,生長(zhǎng)期長(zhǎng),冬果軟化期以后日照時(shí)數(shù)、光照度、溫度降低,不利于糖分的積累。冬果生長(zhǎng)期有效積溫顯著低于夏果,可否采取夏果栽培前期保溫促早、采收后提前修剪、冬果生長(zhǎng)后期保溫等措施保證冬果的品質(zhì),有待進(jìn)一步研究。
葡萄果實(shí)中類(lèi)黃酮物質(zhì)組分及含量受品種特性影響外,還與溫度[27]、光照度[12]、光質(zhì)[28]、栽培條件[29]、激素處理[30]等因素有關(guān)[31]。前人研究表明葡萄果實(shí)中黃酮醇主要分布在果皮中,其生物合成始于成花期,在幼果期達(dá)到高峰,幼果期至成熟期含量迅速下降[32],本研究中‘陽(yáng)光玫瑰’葡萄夏果與冬果果實(shí)生長(zhǎng)期黃酮醇含量呈下降趨勢(shì),與其研究結(jié)果一致。光照對(duì)黃酮醇類(lèi)物質(zhì)的合成積累影響較大,光照會(huì)誘導(dǎo)葡萄果皮中等基因表達(dá),從而導(dǎo)致黃酮醇合成量增加[12,32-33],與遮光處理相比,光照處理可顯著增加‘美樂(lè)’葡萄果皮中槲皮素、山奈酚、楊梅酮等黃酮醇含量[34]。而NEUGART等[28]研究指出低溫有利于山奈酚的積累。本研究中夏果果實(shí)生長(zhǎng)期總黃酮醇含量均顯著高于冬果且其黃酮醇成分主要是槲皮素-3--葡萄糖苷類(lèi)物質(zhì),這與夏果生長(zhǎng)后期光照度和溫度均較高有關(guān);而冬果中黃酮醇主要成分山奈酚-3--半乳糖苷類(lèi)物質(zhì)與冬果生長(zhǎng)期的較低溫度有關(guān)。
葡萄果實(shí)中的黃烷醇類(lèi)物質(zhì)以黃烷-3-醇單體和黃烷-3-醇聚合體(原花色素)的形式存在,主要存在于葡萄果皮、種子和果梗中,果皮中黃烷醇類(lèi)物質(zhì)的含量在果實(shí)生長(zhǎng)過(guò)程中呈下降趨勢(shì)[35-36],與本研究中夏果與冬果在果實(shí)生長(zhǎng)期總黃烷酮含量呈下降趨勢(shì)結(jié)果一致。葡萄中黃烷-3-醇單體類(lèi)物質(zhì)主要有兒茶素、表兒茶素、表?xiàng)攦翰杷?、表兒茶素沒(méi)食子酸酯;果皮中黃烷醇以?xún)翰杷亍⒈韮翰杷?、表?xiàng)攦翰杷貫橹?;黃烷醇C3位的羥基基團(tuán)容易被沒(méi)食子酸酯化形成酯化的黃烷醇;黃烷-3-醇聚合體在葡萄中主要以原花青素B1為主[37]。研究發(fā)現(xiàn)‘赤霞珠’等4個(gè)葡萄品種一年兩收栽培夏果和冬果果皮黃烷醇主要成分是表兒茶素,其中‘赤霞珠’‘優(yōu)株玫瑰’‘雷司令’夏果果皮中表兒茶素含量顯著低于冬果,而‘維多利亞’中夏果的兒茶素、表兒茶素、表?xiàng)攦翰杷睾匡@著高于冬果[19]。本研究中‘陽(yáng)光玫瑰’葡萄夏果與冬果果皮中黃烷醇成分以?xún)翰杷?、表兒茶素和原花青素B1為主,夏果中上述黃烷醇類(lèi)物質(zhì)含量均顯著低于冬果。此外,‘陽(yáng)光玫瑰’葡萄夏果與冬果中還檢測(cè)到了沒(méi)食子酸酯化物,包括沒(méi)食子兒茶素、表沒(méi)食子兒茶素、表兒茶素沒(méi)食子酸酯和表沒(méi)食子兒茶素沒(méi)食子酸酯,上述沒(méi)食子酸酯化的黃烷醇類(lèi)物質(zhì)在夏果中的含量顯著高于冬果,推測(cè)夏果生長(zhǎng)期前期光照度弱、溫度低、日照時(shí)數(shù)短和后期光照度強(qiáng)、溫度高、日照時(shí)數(shù)長(zhǎng)的氣候特點(diǎn)有利于沒(méi)食子酯化的黃烷醇物質(zhì)合成。對(duì)葡萄酒的黃烷醇類(lèi)物質(zhì)相關(guān)研究表明沒(méi)食子化黃烷醇會(huì)使葡萄酒變得粗硬,而兒茶素、表兒茶素能夠使葡萄酒產(chǎn)生圓潤(rùn)、豐滿(mǎn)的口感[38]。本研究中,成熟期夏果中原花青素類(lèi)黃烷醇和沒(méi)食子化類(lèi)黃烷醇的比例高于冬果,而兒茶素比例低于冬果,這會(huì)引起夏果與冬果澀味口感上的差異。LAR和ANR是黃烷-3-醇和原花青素合成途徑的關(guān)鍵酶[39]。與低溫處理相比,高溫下和表達(dá)水平較低,同時(shí)轉(zhuǎn)錄因子、、表達(dá)也較低,葡萄漿果果皮和種子的原花青素含量也較低[40]。另有研究表明光照能夠誘導(dǎo)、、和轉(zhuǎn)錄因子表達(dá)上調(diào),促進(jìn)漿果果皮總酚類(lèi)物質(zhì)、總黃酮醇類(lèi)化合物以及原花青素的積累[41]。陳為凱[19]研究發(fā)現(xiàn)一年兩收栽培模式下夏果果實(shí)發(fā)育后期溫度較高、光輻射強(qiáng)度較強(qiáng);而冬果果實(shí)發(fā)育后期溫度較低、光輻射強(qiáng)度也較夏果弱,‘雷司令’葡萄冬果的和表達(dá)量在開(kāi)始成熟期(E-L36)顯著高于夏果,成熟期其總黃烷醇含量顯著高于夏果,與本研究中‘陽(yáng)光玫瑰’葡萄冬果發(fā)育期氣候特點(diǎn)、成熟期果皮中黃烷醇總含量及主要黃烷醇類(lèi)物質(zhì)成分的研究結(jié)果一致。這與POUDEL等[40]高光強(qiáng)處理促進(jìn)葡萄漿果果皮總酚類(lèi)物質(zhì)、原花青素積累的結(jié)果有所差異,表明溫度和光照協(xié)同作用對(duì)黃烷醇類(lèi)物質(zhì)合成調(diào)控的機(jī)理有待進(jìn)一步深入研究。
一年兩收栽培‘陽(yáng)光玫瑰’葡萄夏果整個(gè)生長(zhǎng)期平均日照時(shí)數(shù)、平均溫度、有效積溫和水熱系數(shù)K高于冬果,但降雨量低于冬果;夏果生長(zhǎng)期前期光照度低、后期高,冬果生長(zhǎng)期前期光照度高、后期低。夏果與冬果生長(zhǎng)期果實(shí)單粒重、可溶性固形物含量、果粒橫縱徑逐漸上升,果皮厚度、可滴定酸含量呈先上升后降低的趨勢(shì);成熟期夏果的可溶性固形物顯著高于冬果,夏果的果皮厚度顯著低于冬果?!?yáng)光玫瑰’葡萄夏果與冬果果實(shí)生長(zhǎng)期總黃酮醇含量和總黃烷醇含量均呈下降趨勢(shì),成熟期夏果總黃酮醇含量顯著高于冬果,而總黃烷醇含量顯著低于冬果。夏果果皮中黃酮醇類(lèi)物質(zhì)的主要成分是槲皮素-3--葡萄糖苷,其含量始終顯著高于冬果,冬果果皮中黃酮醇類(lèi)物質(zhì)的主要成分是山奈酚-3--半乳糖苷,在生長(zhǎng)期其含量顯著高于夏果。夏果和冬果果皮中黃烷醇的主要成分均為兒茶素、表兒茶素和原花青素B1,其在夏果各發(fā)育期中的含量均顯著低于同期冬果。成熟期夏果沒(méi)食子酸酯化形成的酯化類(lèi)黃烷醇及原花青素B2含量顯著高于冬果。
致謝:感謝中國(guó)農(nóng)業(yè)大學(xué)段長(zhǎng)青教授及團(tuán)隊(duì)為本研究提供類(lèi)黃酮類(lèi)物質(zhì)檢測(cè)分析平臺(tái)以及對(duì)本試驗(yàn)的支持和指導(dǎo)。
[1] 劉美迎, 遲明, 張振文. 不同整形方式對(duì)‘赤霞珠’葡萄果皮非花色苷酚的影響. 食品科學(xué), 2021, 42(3): 30-37.
LIU M Y, CHI M, ZHANG Z W. Analysis of non-anthocyanin phenolics in‘cabernet sauvignon’ (L.) under different training systems. Food Science, 2021, 42(3): 30-37. (in Chinese)
[2] BAYAT P, FARSHCHI M, YOUSEFIAN M, MAHMOUDI M, YAZDIAN-ROBATI R. Flavonoids, the compounds with anti- inflammatory and immunomodulatory properties, as promising tools in multiple sclerosis (MS) therapy: A systematic review of preclinical evidence. International Immunopharmacology, 2021, 95: 107562. doi: 10.1016/j.intimp.2021.107562.
[3] 趙一凡, 彭文婷, 李惠清, 郭玉婷, 王軍. 五個(gè)歐亞種釀酒葡萄果實(shí)類(lèi)黃酮及香氣物質(zhì)差異分析. 中外葡萄與葡萄酒, 2021(6): 1-12.
ZHAO Y F, PENG W T, LI H Q, GUO Y T, WANG J. Difference analysis of flavonoids and aroma compounds of fivewine grape varieties. Sino-Overseas Grapevine & Wine, 2021(6): 1-12. (in Chinese)
[4] 劉笑宏, 宋一超, 劉兆宇, 杜遠(yuǎn)鵬, 翟衡. 直立/水平兩種葉幕對(duì)‘摩爾多瓦’葡萄次生代謝產(chǎn)物含量的影響. 果樹(shù)學(xué)報(bào), 2019, 36(3): 308-317.
LIU X H, SONG Y C, LIU Z Y, DU Y P, ZHAI H. Effect of vertical and horizontal canopy on the secondary metabolites in ‘Moldova’ grape. Journal of Fruit Science, 2019, 36(3): 308-317. (in Chinese)
[5] 李華. 葡萄栽培學(xué). 北京: 中國(guó)農(nóng)業(yè)出版社, 2008.
LI H. Viticulture. Beijing: Chinese Agriculture Press, 2008. (in Chinese)
[6] 潘照. 鮮食型葡萄品質(zhì)評(píng)價(jià)體系及關(guān)鍵數(shù)據(jù)庫(kù)建立[D]. 長(zhǎng)沙: 中南林業(yè)科技大學(xué), 2019.
PAN Z. Establishment of quality evaluation system and key database of table grape [D]. Changsha: Central South University of Forestry and Technology, 2019. (in Chinese)
[7] 胡粉青, 李翠柏, 黨菱婧, 鄒澄, 趙慶, 邵曰鳳. 槲皮素體外抗肺癌作用研究進(jìn)展. 食品工業(yè)科技, 2022, 43(18): 416-424.
HU F Q, LI C B, DANG L J, ZOU C, ZHAO Q, SHAO Y F. Research progress of anti-lung cancer effect of quercetinScience and Technology of Food Industry, 2022, 43(18): 416-424. (in Chinese)
[8] 夏濤, 高麗萍. 類(lèi)黃酮及茶兒茶素生物合成途徑及其調(diào)控研究進(jìn)展. 中國(guó)農(nóng)業(yè)科學(xué), 2009, 42(8): 2899-2908.
XIA T, GAO L P. Advances in biosynthesis pathways and regulation of flavonoids and catechins. Scientia Agricultura Sinica, 2009, 42(8): 2899-2908. (in Chinese)
[9] 劉鑫銘, 陳婷, 雷龑, 王建超, 蔡盛華. 葡萄一年兩收栽培技術(shù)研究進(jìn)展. 中外葡萄與葡萄酒, 2016(5): 131-134.
LIU X M, CHEN T, LEI Y, WANG J C, CAI S H. Research progress on one-year-double-harvest cultivation technology of grape. Sino-Overseas Grapevine & Wine, 2016(5): 131-134. (in Chinese)
[10] 王博, 白揚(yáng), 白先進(jìn), 張瑛, 謝太理, 劉金標(biāo), 陳愛(ài)軍, 婁兵海, 何建軍, 林玲, 周詠梅, 曹雄軍. 陽(yáng)光玫瑰葡萄在廣西南寧的引種表現(xiàn)及其一年兩收栽培技術(shù). 南方農(nóng)業(yè)學(xué)報(bào), 2016, 47(6): 975-979.
WANG B, BAI Y, BAI X J, ZHANG Y, XIE T L, LIU J B, CHEN A J, LOU B H, HE J J, LIN L, ZHOU Y M, CAO X J. Introduction performance and double-harvest-a-year cultivation technique of‘Shine Muscat'grape in Nanning, Guangxi. Journal of Southern Agriculture, 2016, 47(6): 975-979. (in Chinese)
[11] AZUMA A, YAKUSHIJI H, KOSHITA Y, KOBAYASHI S. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta, 2012, 236(4): 1067-1080. doi: 10.1007/s00425-012-1650-x.
[12] KOYAMA K, IKEDA H, POUDEL P R, GOTO-YAMAMOTO N. Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry, 2012, 78: 54-64. doi: 10.1016/j.phytochem.2012.02.026.
[13] SEBELA D, TUROCZY Z, OLEJNICKOVA J, KUMSTA M, SOTOLAR R. Effect of ambient sunlight intensity on the temporal phenolic profiles ofL. Chardonnay during the ripening season-A field study. South African Journal of Enology and Viticulture, 2017, 38(1): 94-102.
[14] 方芳, 王鳳忠. 植物黃酮醇生物合成關(guān)鍵基因研究進(jìn)展. 食品工業(yè)科技, 2018, 39(14): 335-340.
FANG F, WANG F Z. Research progress on key genes of flavonol biosynthesis in plants. Science and Technology of Food Industry, 2018, 39(14): 335-340. (in Chinese)
[15] 成果, 張勁, 黃小云, 張瑛, 謝太理, 謝林君, 余歡, 周詠梅, 周思泓. 廣西2個(gè)特色釀酒葡萄品種黃烷-3-醇組分解析. 西南農(nóng)業(yè)學(xué)報(bào), 2018, 31(9): 1891-1897.
CHENG G, ZHANG J, HUANG X Y, ZHANG Y, XIE T L, XIE L J, YU H, ZHOU Y M, ZHOU S H. Analysis of flavan-3-ol compositional characteristics of two wine grapes in Guangxi. Southwest China Journal of Agricultural Sciences, 2018, 31(9): 1891-1897. (in Chinese)
[16] FANG F, TANG K, HUANG W D. Changes of flavonol synthase and flavonol contents during grape berry development. European Food Research and Technology, 2013, 237(4): 529-540. doi: 10.1007/ s00217-013-2020-z.
[17] 白先進(jìn), 李楊瑞, 謝太理, 黃江流, 曹慕明, 梁聲記. 廣西一年兩熟葡萄栽培的氣候基礎(chǔ). 廣西農(nóng)學(xué)報(bào), 2008(1): 1-4.
BAI X J, LI Y R, XIE T L, HUANG J L, CAO M M, LIANG S J. The climate elements for two-harvest-yearly grape cultivation in Guangxi. Journal of Guangxi Agriculture, 2008(1): 1-4. (in Chinese)
[18] 陸媚. 根域限制對(duì)一年兩收栽培‘夏黑’葡萄果實(shí)發(fā)育過(guò)程中酚類(lèi)和香氣物質(zhì)的影響研究[D]. 南寧:廣西大學(xué), 2019.
LU M. Effects of root restriction on the composition of phenolic and aroma substances in Summer Black grape during berry development under two-crop-a-year cultivation [D]. Nanning: Guangxi University, 2019. (in Chinese)
[19] 陳為凱. 一年兩收栽培模式下葡萄果實(shí)靶向代謝組和轉(zhuǎn)錄組研究[D]. 北京: 中國(guó)農(nóng)業(yè)大學(xué), 2018.
CHEN W K. Study of targeted metabolome and transcriptome in grape berries grown under double cropping viticulture system [D]. Beijing: China Agricultural University, 2018. (in Chinese)
[20] Coombe B G. Adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1995, 1(2): 100-110.
[21] 鄧?guó)P瑩. 一年兩收栽培‘陽(yáng)光玫瑰’葡萄夏、冬果品質(zhì)組分差異研究[D]. 南寧: 廣西大學(xué), 2020.
DENG F Y. Study on the difference of quality components in summer and winter fruits of ‘Shine Muscat’ in two-crop-a-year cultivation [D]. Nanning: Guangxi University, 2020. (in Chinese)
[22] 白先進(jìn), 王舉兵, 陳愛(ài)軍. 廣西葡萄產(chǎn)業(yè)發(fā)展的思考. 廣西農(nóng)學(xué)報(bào), 2010, 25(1): 29-32.
BAI X J, WANG J B, CHEN A J. Considerations on the grape industry development in Guangxi. Journal of Guangxi Agriculture, 2010, 25(1): 29-32. (in Chinese)
[23] CHOU M Y, LI K T. Rootstock and seasonal variations affect anthocyanin accumulation and quality traits of ‘Kyoho’ grape berries in subtropical double cropping system. Vitis, 2014, 53: 193-199.
[24] 成果, 張勁, 周思泓, 謝林君, 張瑛, 楊瑩, 管敬喜, 謝太理. 一年兩收栽培‘赤霞珠’葡萄冬果與夏果花色苷組分差異解析. 果樹(shù)學(xué)報(bào), 2017, 34(9): 1125-1133.
CHENG G, ZHANG J, ZHOU S H, XIE L J, ZHANG Y, YANG Y, GUAN J X, XIE T L. Difference in anthocyanin composition between winter and summer grape berries of ‘Cabernet Sauvignon’ under two-crop-a-year cultivation. Journal of Fruit Science, 2017, 34(9): 1125-1133. (in Chinese)
[25] 郭澤西, 尹玲, 盧江, 韋榮福, 曲俊杰, 盤(pán)豐平, 黃羽. 6個(gè)葡萄品種一年兩收技術(shù)的研究. 中國(guó)南方果樹(shù), 2018, 47(1): 128-131, 135.
GUO Z X, YIN L, LU J, WEI R F, QU J J, PAN F P, HUANG Y. Study on the technology of two harvests a year for six grape varieties. South China Fruits, 2018, 47(1): 128-131, 135. (in Chinese)
[26] 陳彥蓓, 羅惠格, 陸媚, 農(nóng)慧蘭, 白揚(yáng), 林玲, 白先進(jìn), 曹雄軍, 陳愛(ài)軍, 王博. 一年兩收栽培夏黑葡萄香氣成分分析. 南方農(nóng)業(yè)學(xué)報(bào), 2021, 52(5): 1343-1352.
CHEN Y B, LUO H G, LU M, NONG H L, BAI Y, LIN L, BAI X J, CAO X J, CHEN A J, WANG B. Aroma components analysis of Summer Black grape under two-crops-a-year cultivation. Journal of Southern Agriculture, 2021, 52(5): 1343-1352. (in Chinese)
[27] NEUGART S, KLARING H P, ZIETZ M, SCHREINER M, ROHN S, KROH L W, KRUMBEIN A. The effect of temperature and radiation on flavonol aglycones and flavonol glycosides of kale (var. sabellica). Food Chemistry, 2012, 133(4): 1456-1465.
[28] LIU L L, GREGAN S, WINEFIELD C, JORDAN B. From UVR8 to flavonol synthase: UV-B-induced gene expression in Sauvignon Blanc grape berry. Plant, Cell & Environment, 2015, 38(5): 905-919. doi: 10.1111/pce.12349.
[29] DOWNEY M O, DOKOOZLIAN N K, KRSTIC M P. Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: A review of recent research. American Journal of Enology and Viticulture, 2006, 57(3): 257-268.
[30] 方芳, 王鳳忠. 葡萄果實(shí)黃酮醇生物合成影響因素研究進(jìn)展. 核農(nóng)學(xué)報(bào), 2016, 30(9): 1798-1804.
FANG F, WANG F Z. Research progress on factors affecting the biosynthesis of flavonols in grape fruit. Journal of Nuclear Agricultural Sciences, 2016, 30(9): 1798-1804. (in Chinese)
[31] 曹運(yùn)琳, 邢夢(mèng)云, 徐昌杰, 李鮮. 植物黃酮醇生物合成及其調(diào)控研究進(jìn)展. 園藝學(xué)報(bào), 2018, 45(1): 177-192.
CAO Y L, XING M Y, XU C J, LI X. Biosynthesis of flavonol and its regulation in plants. Acta Horticulturae Sinica, 2018, 45(1): 177-192. (in Chinese)
[32] FLAMINI R, MATTIVI F, DE ROSSO M, ARAPITSAS P, BAVARESCO L. Advanced knowledge of three important classes of grape phenolics: Anthocyanins, stilbenes and flavonols. International Journal of Molecular Sciences, 2013, 14(10): 19651-19669. doi: 10.3390/ijms141019651.
[33] CORTELL J M, KENNEDY J A. Effect of shading on accumulation of flavonoid compounds in (L.) pinot noir fruit and extraction in a model system. Journal of Agricultural and Food Chemistry, 2006, 54 (22): 8510-8520.
[34] SPAYD S E, TARARA J M, MEE D L, FERGUSON J C. Seperation of sunlight and temperature effects on the composition ofcv. Merlot berries. American Journal of Enology and Viticulture, 2002, 53(3): 171182.
[35] DOWNEY M O, HARVRY J S, ROBINSON S P. The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Australian Journal of Grape and Wine Research, 2004, 10(1): 55-73.
[36] BORDIGA M, TRAVAGLIA F, LOCATELLI M, COISSON J D, ARLORIO M. Characterisation of polymeric skin and seed proanthocyanidins during ripening in sixL. Food Chemistry, 2011, 127(1): 180-187.
[37] 李強(qiáng). 中國(guó)東、西部產(chǎn)區(qū)‘赤霞珠’葡萄類(lèi)黃酮代謝差異以及葉幕調(diào)控對(duì)黃烷醇代謝的影響[D]. 北京: 中國(guó)農(nóng)業(yè)大學(xué), 2015.
LI Q. The differences of flavonoids metabolism in Cabernet ‘Sauvignon’ grapes from east and west China and the effect of canopy management on flavan-3-ol metabolism [D]. Beijing: China Agricultural University, 2015. (in Chinese)
[38] 嚴(yán)靜, 江雨, 樊秀彩, 姜建福, 張穎, 孫海生, 劉崇懷. 中國(guó)11種野生葡萄果皮中黃烷-3-醇類(lèi)物質(zhì)的組成及含量. 中國(guó)農(nóng)業(yè)科學(xué), 2017, 50(5): 890-905.
YAN J, JIANG Y, FAN X C, JIANG J F, ZHANG Y, SUN H S, LIU C H. Composition and concentration of flavan-3-ols in berry peel of 11 Chinese wild grape species. Scientia Agricultura Sinica, 2017, 50(5): 890-905. (in Chinese)
[39] BOGS J, DOWNEY M O, HARVEY J S, ASHTON A R, TANNER G J, ROBINSON S P. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiology, 2005, 139(2): 652-663. doi: 10.1104/pp.105.064238.
[40] POUDEL P R, KOYAMA K, GOTO-YAMAMOTO N. Evaluating the influence of temperature on proanthocyanidin biosynthesis in developing grape berries (L.). Molecular Biology Reports, 2020, 47(5): 3501-3510. doi: 10.1007/s11033-020-05440-4.
[41] LIU M Y, SONG C Z, CHI M, WANG T M, ZUO L L, LI X L, ZHANG Z W, XI Z M. The effects of light and ethylene and their interaction on the regulation of proanthocyanidin and anthocyanin synthesis in the skins ofberries. Plant Growth Regulation, 2016, 79(3): 377-390. doi: 10.1007/s10725-015-0141-z.
Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation
1College of Agriculture, Guangxi University, Nanning 530004;2Grape and Wine Research Institute, Guangxi Academy of Agriculture Science, Nanning 530007;3Guangxi Zhencheng Agricultural Co., Ltd., Nanning 530007;4Guangxi Academy of Agriculture Science, Nanning 530007
【Objective】3-year-old Shine Muscat grape under two-crop-a-year cultivation was used as the material to investigate the differences of physical and chemical indexes of basic quality, flavonoid components and contents between summer grape and winter grape, which would provide the theoretical basis for the quality control of Shine Muscat grape under two-crop-a-year cultivation.【Method】The climatic data, such as the sunshine duration, light intensity, temperature and rainfall during the whole growth period of Shine Muscat grape, were recorded. The physical and chemical indexes of basic quality in berries of summer and winter grapes of Shine Muscat were determined at the young fruit stage, expansion stage, softening stage, beginning maturity stage, and maturity stage, respectively. Meanwhile, the components and contents of flavonols and flavanols in the peel of summer and winter grapes of Shine Muscat grape were detected by LC-MS/MS.【Result】In terms of the climate factors, the summer grape of Shine Muscat displayed weak illumination and low temperature at early growth stage but strong illumination and high temperature at late growth stage of the whole developing period, while the winter grape was opposite. The average sunshine duration, average temperature and effective accumulated temperature in the growth period of summer grape were higher than those of winter grape, but the rainfall was lower than that of winter grape. The hydrothermal coefficient of summer grape was higher than that of winter grape from the beginning of maturity stage to maturity stage. In terms of the basic quality, the content of soluble solid of summer grape was significantly higher than that of winter grape at maturity stage, and the peel thickness of summer grape was significantly lower than that of winter grape. There was no significant difference in the single berry weight, fruit equatorial and longitudinal diameter and titratable acid content between summer and winter grape. In terms of the components and contents of flavonols, the content of total flavonols in peels of summer and winter grape showed a downward trend during the fruit developing stage. The content of total flavonols in different periods of summer grape was significantly higher than that of winter grape. The main flavonol in summer grape was quercetin-3--glucoside, while the main flavonol in winter grape was kaempferol-3--galactoside. In terms of the components and contents of flavanols, the content of total flavanols in summer and winter grape also showed a downward trend. The eight identical flavanols were detected in the peels of both summer and winter grape, and the main flavanols were catechin, epicatechin and procyanidin B1. The contents of total flavanols, catechin, epicatechin and procyanidin B1in summer grape were significantly lower than those in winter grape during fruit development. The contents of gallic catechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate, and procyanidin B2at fruit maturation stage of summer grape were significantly higher than those of winter grape. The principal component analysis showed that there were differences in flavonols between summer and winter fruits. The regression analysis showed that catechin, quercetin-3--Glucoside and procyanidin B1were the main components for distinguishing the flavonoids from summer and winter grapes.【Conclusion】 In the study conducting year, the quality of summer grape of Shine Muscat was better than that of winter grape. During the whole grape developing stage, the content of total flavonols in summer grape was significantly higher than that in winter grape, while the content of total flavanols in summer grape was significantly lower than that in winter grape. The main components of flavonols were different between summer and winter grape of Shine Muscat, while the main components of flavanols were the same, namely catechin, epicatechin and procyanidin B1. The content of the main components of flavanols in winter grapes was significantly higher than that in summer grape, which might probably explained why the astringency taste of winter grape was stronger than that of summer grape. The differences in light and temperature during the growth period may be an important factor that caused the difference in the components and contents of summer and winter grapes of Shine Muscat.
Shine Muscat grape; two-crop-a-year; climate; skin; flavonols; flavanols
10.3864/j.issn.0578-1752.2022.22.012
2022-02-21;
2022-07-08
國(guó)家自然科學(xué)基金(31960572)、廣西重點(diǎn)研發(fā)計(jì)劃(桂科AB21196042)、廣西農(nóng)業(yè)科學(xué)院基本科研業(yè)務(wù)專(zhuān)項(xiàng)資助項(xiàng)目(2021YT126)
王博,Tel:15877190685;E-mail:wangbo0127@163.com。通信作者白先進(jìn),Tel:13878868383;E-mail:b5629@126.com
(責(zé)任編輯 趙伶俐)