• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characteristics of temperature fluctuation in two-dimensional turbulent Rayleigh–B′enard convection

    2022-01-23 06:36:46MingWeiFang方明衛(wèi)JianChaoHe何建超ZhanChaoHu胡戰(zhàn)超andYunBao包蕓
    Chinese Physics B 2022年1期
    關(guān)鍵詞:方明

    Ming-Wei Fang(方明衛(wèi)), Jian-Chao He(何建超), Zhan-Chao Hu(胡戰(zhàn)超), and Yun Bao(包蕓)

    School of Aeronautics and Astronautics,Sun Yat-sen University,Guangzhou 510275,China

    Keywords: Rayleigh-B′enard,temperature fluctuation,distribution patterns,critical value

    1. Introduction

    Turbulent thermal convection occurs ubiquitously in both nature and engineering applications. Turbulent Rayleigh-B′enard convection(RBC),a closed fluid layer thermostatically heated from the bottom and cooled from the top, has chronically been used to study thermally-driven turbulence.[1-4]The enclosed working fluid forms convective motion through the buoyancy force produced by the temperature difference between the bottom and the top plates of a convection cell of heightH.

    Turbulent RBC is controlled primarily by two dimensionless parameters, namely the Rayleigh number and the Prandtl number, defined asRa=αgΔθH3/(κυ) andPr=υ/κ, respectively, where Δθis the temperature difference,g=9.81 m/s2is the gravitational acceleration,andα,υ,andκare, respectively, the thermal expansion coefficient, the kinematic viscosity, and the thermal diffusivity. Apart fromH,the geometry of the convection cell also influences turbulent RBC. Therefore, in classical cubic and cylindrical cells, the aspect ratio also becomes a crucial parameter.

    A core task in the study of turbulent RBC is to understand the heat transport in turbulent flows. In general, the Nusselt number,defined as

    where〈···〉V,trepresents the average over space and time. It is usually calculated to reflect the strength of heat transport.In 2000, Grossmann and Lohse put forward the so-called GL theory[5-7]to predictNuaccording toRaandPrby decomposing the energy dissipation. There are two kinds of characteristic structures that are related to heat transport. One is the large-scale circulation, also known as ‘wind’ of the bulk fluid,[8-10]and the other kind of structure is a cluster of thermal plumes[11-13]that erupts intermittently from the thermal boundary layer. Previous researches have revealed that the heat transport is governed primarily by thermal plumes.[14-18]Moreover, the intensity of thermal plumes can be measured by the amplitude of local temperature fluctuations. In other words, the local temperature fluctuations and heat transport are closely linked to each other. According to the definition,the amplitude of local temperature fluctuations is measured at each specific point. To simplify the study, fortunately, it is convenient to examine the profile of the local temperature fluctuations,defined as

    where〈···〉xrepresents the average over horizontal direction and the subscripttof time average is omitted. One can extract the information about flow state,plume distribution,and heat transport fromθrms(z). Therefore,θrms(z) has been studied frequently in previous work.

    According to the Castainget al.’s theory,[19]Adrian identified two new profiles, termed asλ-I andλ-II models.[20]Recently,looking into the so-called mixing zone,the similarities inθrms(z)between the thin disk and the cylinder cells have been revealed.[21,22]He and Xia[23]investigatedθrms(z)in the shear-dominated zone and the plume-dominated mixing zone in a elongated cubic cell. They that the reportedθrms(z) is a power-law function ofzin the former region, and a logarithmic function in the latter region. Afterward,such a power-law has also been identified in non-elongated cells with different geometries.[24,25]There are also some experimental researches only focusing onθrmsin the cell center. TheRa-dependentθrmsshows the diverse traits in different geometries.[26-31]For example,Huang and Xia[32]discovered thatRa-scaling ofθrmsincreases with the aspect ratio.

    In this paper, we present a direct numerical study on the characteristics ofθrms(z)in a two-dimensional(2D)turbulent RBC.Two different values ofPrare considered,i.e.,0.7 and 4.3. For both of them, the same range ofRais assigned:1×108≤Ra ≤1×1013. The rest of this paper is arranged as follows. In Section 2, we elaborate the governing equations and numerical methods. In Sections 3 and 4,characteristics of local temperature fluctuations and global temperature field forPr=4.3 andPr=0.7 are presented and discussed, respectively. TheRa-dependence of the mean temperature fluctuation is discussed in in Section 5. Our findings are summarized and also some conclusions are drawn in Section 6 finally.

    2. Model and numerical methods

    We perform direct numerical simulations (DNS) of 2D turbulent RBC in a square cavity. The non-dimensional governing equations under the Oberbeck-Boussinesq approximation are given by

    whereu,θ,andpare respectively the non-dimensional velocity,temperature,and pressure,kis the vertical unit vector.RaandPrare the control parameters of the system as mentioned previously. Impermeable and no-slip boundary conditions are imposed on all walls. For temperature, the two vertical sidewalls are adiabatic, while the top and bottom plates are fixed atθt=-0.5 andθb=0.5,respectively. Thus,the dimensionless temperature difference between the two horizontal plates isΔ=θb-θt=1.Governing equations are solved by the parallel direct method(PDM)of DNS(or PDM-DNS)[33,34]with using staggered grids.

    All simulations are carried out on the Tianhe-2 supercomputer.The parameters of all cases are summarized in Fig.1(a).Figure 1(b)presents a sketch of the time-averaged temperature fluctuation field, in which the thick black solid line (the central line)is the sampling region analyzed in this paper. In view of its symmetry, we choose the zone from the bottom to the center of the sampling region.

    Fig. 1. (a) Simulated cases scattered in (Ra, Pr) plane. (b) Contour plot of time-averaged temperature fluctuation field,with solid line denoting sampling region.

    Table 1. Parameters of conducted DNS of 2D RBC.

    Table 1 shows the detailed parameters of the simulation of RBC.The number of nodes in each direction of the computational mesh isNx×Ny·Ntavgis the number of dimensionless time (τ) units used for the statistical averaging.NuandRenumbers are the statistical non-dimensional heat transferNunumber and the small scale Reynolds number,respectively.

    3. Results and discussion for Pr=4.3

    3.1. Mean temperature proflie and probability density distribution of temperature

    Fig.2. (a)Profiles of normalized mean temperature Θ at two different values of Ra for Pr=4.3. (b)Corresponding temperature fluctuation θrms profiles.

    The thermal plumes,emitted intermittently from the conducting plates,play an important role in heat transfer of turbulent thermal convection. The plume is the only thermal structure in the system,and its temperature characteristics are analyzed through temperature statistics. We present the statistical results of temperature at different values ofRa.thermal BL. Whenz/δ>1, the mean temperature gradually approaches to the central temperature. AtRa=1×1011, it tends to the central temperature more slowly. After three thermal BLs,the temperature profiles overlap again and reach the core temperature. Note also from Fig. 2(b) that the temperature fluctuation profiles show significantly different characteristics. The temperature fluctuation rises fast and reaches a maximum value, then always decays forRa= 1×1011.While forRa=1×109, the temperature fluctuation change is relatively small. The overall temperature fluctuation first increases, then decreases, and finally rises slowly. The temperature fluctuation profiles of twoRanumbers reach their corresponding maximum values near the thermal boundary layers.

    Fig.3. PDF of local temperature and normalized temperature fluctuations for several values of Ra.

    Figure 2 shows the calculated mean temperature profileΘ(open circles) and temperature fluctuation profileθrms(solid circles) each as a function of normalized distancez/δfrom the lower plate along central axis region of flow space for two typicalRavalues, withPr= 4.3 fixed. Hereδis the thickness of the thermal boundary layer(BL)defined by the slope method.[35]The mean temperatureΘis normalized and defined asΘ=[θbot-〈θ(x,z)〉x]/θbot,whereθbotand〈···〉xare respectively the temperature of the bottom plate and the average over horizontal direction. In Fig. 2(a), the mean temperature profiles overlap each other and rise rapidly inside the

    Temperature probability density distribution (PDF) represents the proportion of the temperature distribution in the region,where PDF stands for probability density distribution.Figure 3(a) shows PDF of the temperature in the central axis region (from the bottom to the center) for different values ofRa. It is seen that the PDFs from five different values ofRaare very similar,and can be well described as exponential functions. The bulk temperature s skews significantly towards higher temperature. It is seen that asRaincreases, the probability of occurrence of lower temperature at the left tail decreases,while the phenomenon does not exist for higher temperature at the right tail. By measuring the temperatures of six different positions on the central axis,Zhou and Xia[35]found that the PDF of temperature in the boundary layer presents a nearly Gaussian shape, and the PDFs of other positions are different from each other.

    Figure 3(b)shows the plots of the corresponding PDFs of the normalized temperature fluctuations obtained at different values ofRa. It is seen that all the PDFs exhibit almost an exponential shape of symmetry. While,in previous experiments it was found that the normalized temperature fluctuation in the center of the cell can be well described by a stretched exponential function.[31,32,36,37]The right tail shifts slightly downward highRa, indicating that the probability of larger temperature fluctuation decreases. The PDF form of temperature fluctuation has apparent distinctions for different flowing states.

    3.2. Local temperature fluctuations

    Plume, as the most prominent thermal structure in RB system,is closely related to the temperature fluctuation of the system, and it possesses its own characteristics and motion mode. The local temperature fluctuation is an important indication for plume spatial distribution. Figure 4 shows a loglog plot of temperature fluctuationθrmsas a function of the normalized distancez/δfor various values ofRa.

    Fig. 4. Profiles of measured temperature fluctuation θrms corresponding to half the black solid line region in Fig.1(b)(from bottom plate to center),and at various values of Ra from 1.0×108 to 1.0×1013.

    Figure 2 shows that the temperature fluctuation profile increases linearly in the boundary layer, and then decays away from the plate. It can be seen from Fig. 4 that there are two distribution patterns. Under 1×108≤Ra ≤5×109, the temperature fluctuation profiles have two peaks at aboutz/δ=1 andz/δ= 10 respectively. The two peaks of the temperature fluctuation profiles decrease withRaincreasing. It is seen from this figure that forRagreater than 5×109, the temperature fluctuation profiles all collapse into a single curve. Theθrmsprofiles rise first and then decrease when leaving from the bottom plate,reaching a peak at aboutz/δ=1.

    The comparison between the two types ofθrmsprofiles ofRa ≤5×109andRa ≥1×1010shows that theθrmsprofiles are overall significantly larger forRa ≥1×1010. This means that system flow status and plume distribution are obviously different.

    Figure 5 shows the plots of the normalized temperature fluctuationθrms/θrms,maxversus z/δand in these figures the values ofθrmswere measured in the thin disk from Wanget al.[21,22]and in the cylinder from Wanget al.,[22]respectively,whereθrms,maxrepresents the maximum value ofθrms.It shows clearly that all profiles of the normalized temperature fluctuationθrms/θrms,maxfor different values ofRacollapse into a single curve quite well inside the thermal BL, which implies that in theθrms/θrms,maxprofiles there exists a self-similarity or independence ofRa. Beyond the boundary layer,for different values ofRa,θrms/θrms,maxprofiles take on different distribution characteristics. In the range ofRa<1×1010, when moving away from the BL, temperature fluctuation profilesθrms/θrms,maxdecrease withz/δincreasing, then moderately increase in the region 1≤z/δ ≤10,and finally drop dramatically. Withz/δvarying from 1 to 10, the ascending slope gradually decreases withRaincreasing. The appearance may be caused by corner rolls’ motion. ForRa ≥1×1010, theθrms/θrms,maxprofiles always decrease with increasing the distance from the BL.As shown in Fig.5,our DNS results accord well with the experimental data measured by Wang (red and blue open circles)in the range ofz/δfrom 1 to 8 and the DNS results obtained by Wang(green solid circles)for 1≤z/δ ≤2.

    Fig. 5. Here data the same as in Fig. 4 but normalized by maximal value θrms,max of temperature fluctuations θrms where green solid circles and blue empty circles are for thin disk and cylinder, taken from Ref. [21] and red open circles for thin disk taken from Refs.[21,22].

    Note that outside 10 BLs,the profiles of theθrms/θrms,maxpresented expose some different features from the results acquired Wang, where the temperature fluctuation is found to decrease continuously,probably due to the fact that the effect of corner rolls for their experiments conducted in the thin disk is neglected.However,inside the thermal BL,our data slightly deviate from the experiment data,which may be because there are too few data measured in the boundary layer.

    Fig.6. Here data the same as those in Fig.5,but divided into two plots: (a)from 1.0×108 to 5.0×109, (b) from 1.0×1010 to 5.0×1012, where solid lines show the power-law fits.

    To show the temperature fluctuation profiles more clearly,in the following Fig.6,we plot the same data as those in Fig.5 but two forms drawn separately corresponding to different values ofRa.

    Figure 6(a) presents the normalized temperature fluctuation profilesθrms/θrms,maxin the range ofRafrom 1×108to 5×109. It is seen that the temperature fluctuationθrms/θrms,maxremains unchanged withRavarying and scales withz/δin boundary layer, which is in excellent agreement with the previous experimental results.[22,26]The temperature fluctuationθrms/θrms,maxcan be well described by the power law,θrms/θrms,max~(z/δ)0.99withz/δ ≤1, andθrms/θrms,max~(z/δ)-1.27in the region 1≤z/δ ≤2.

    It is seen from Fig. 6(b) that in a wide range ofRa,i.e.,Ra ≥1×1010and these profiles collapse into a single curve irrespective ofRa, but there is slight fluctuation in the mixing zone 6≤z/δ ≤50. In the boundary layer, the solid line represents a best fit to the data:θrms/θrms,max~(z/δ)0.99,this scaling law is the same as the one in Fig. 5(a). In the region 1≤z/δ ≤5, the data can be well described by a power law,i.e.,θrms/θrms,max~(z/δ)-0.978that are consistent with the DNS result[22]for the thin disk.

    3.3. Global flow features

    Regarding the two different characteristics of the temperature fluctuation profiles discussed above,to find the real variation characteristic for the temperature fluctuation, now we come to discuss the temperature and flow characteristics of the system in detail by visualizing the instantaneous temperature fields.

    Figure 7 shows the typical example of instantaneous temperature fields atPr=4.3 with five different values ofRa,in which the colormap limit for all temperature snapshots in our study is set between-0.1≤θ ≤0.1,so that the flow structure can be shown clearly. As shown in Figs. 7(a) and 7(b), the overall flow pattern consists of a large clockwise titled-ellipse motion (large-scale circulation) and two corner rolls diagonally opposite to each other. This flow pattern is the same as those observed in previous studies.[38,39]WhenRaincreases toRa=1×1010(Fig.7(c)),surprisingly,the LSC and two secondary rolls vanish,and the whole flow becomes chaotic. AsRafurther increases,it is clearly seen from Figs.7(d)and 7(e)that the flow becomes more chaotic and there are a lot of free cold and hot small vortices. We note that the instantaneous temperature fields before and afterRa=1×1010show completely different flow states, suggesting that the mechanism of temperature fluctuation distribution showing two different characteristics may be due to the convective flow change.

    Fig.7. Typical evolution of the instantaneous temperature field with Ra at Pr=4.3: (a)Ra=1×108,(b)Ra=1×109,(c)Ra=1×1010,(d)Ra=1×1011,(e)Ra=1×1012.

    4. Results and discussion for Pr=0.7

    The temperature fluctuation and flow structure are discussed in detail forPr=4.3 above. Next, we will study the temperature fluctuation and flow characteristics withPr=0.7.

    Figure 8(a) shows the variations of temperature fluctuationθrmswith distancez/δfrom the bottom plate for different values ofRaand fixedPr=0.7. It is seen that the temperature fluctuationθrmsprofiles also present two different morphologies. To compare withPr=4.3,we note that the turning point of theRaof the two morphologies becomesRa=1×109and the temperature fluctuationθrmsdoes not rise outside the BL.We plot, in Fig. 8(b), the same data as in Fig. 8(a) butθrmsnormalized by maximal valueθrms,max. Inside the BL,all data profiles for different values ofRaalways collapse on the top of each other. The solid line represents a power-law fit to the data,θrms/θrms,max~(z/δ)0.98. For 230 forRa ≥1×109.

    Figure 9 shows snapshots of the typical temperature field at five different values ofRaforPr=0.7. It is seen from Fig. 9(a) that the flow consists of large-scale circulation of an ellipse in the bulk and two corner rolls in the upper left and lower right corners. WhenRaincreases toRa=1×109,the flow structure becomes unexpectedly different, the largescale circulation of ellipse and two corner rolls disappearing,the convection flows disorderly. Comparing with diverse characteristic of the temperature fluctuation profiles observed in Fig.8,we find the flow status transitionRais consistent with the turning point of fluctuation profiles morphology.

    Fig.8. (a)Profiles of temperature fluctuation θrms for different values of Ra,and(b)normalized θrms/θrms,max profiles.

    Fig.9. Typical evolution of instantaneous temperature field with Ra at Pr=0.7: (a)Ra=1×108, (b)Ra=1×109, (c)Ra=1×1010, (d)Ra=1×1011,(e)Ra=1×1012.

    The different distribution characteristics of the temperature fluctuation correspond to various flow statuses and plumes’ morphologies, and the physical mechanism of the phenomenon correlation will be further discussed.

    5. The Ra dependence of temperature fluctuation properties

    Finally,we discuss theRadependence of〈θrms〉Vfor the temperature fluctuation atPr=0.7 and 4.3,respectively. Here〈···〉Vrepresents a time average and a spatial average in the black shaded region in Fig.1(b)(from the bottom plate to the center). Figure 10 show a log-log plot of the temperature fluctuation〈θrms〉Vas a function ofRa.

    It is seen from Fig. 10(a) that the〈θrms〉V versus Rahas an apparent transition atRa=1×109. WhenRais below this transition point,there is no obvious characteristic law that describes the relation of〈θrms〉VwithRa. At the transition point,〈θrms〉Vsuddenly increases, then decreases asRaincreases and the change relation between the two quantities is described as〈θrms〉V~Ra-0.15±0.01. Note that the scaling exponent reported here accords well with the previous measurement conducted by Zhou and Xia[35]in a rectangular cell.

    Figure 10(b) shows the〈θrms〉Vas a function ofRaatPr=4.3. It can be seen that a similar transition point also exists, which is obviously larger than that atPr=0.7, i.e.,Ra= 1×1010. Below the transition point,〈θrms〉Vexhibits reduction along with obvious fluctuations. WhenRais beyond this transition point,〈θrms〉Valso decreases withRaincreasing and the data can be well described by the power law,〈θrms〉V~(-0.68±0.01)Ra-0.14±0.01. Interestingly, the exponent of the power law is the same as the results obtained from experiments.[19,26,31,37]

    Fig. 10. Variations of 〈θrms〉V versus Ra in central axis range of cell: (a)Pr=0.7,(b)Pr=4.3. The solid lines are power-law fits.

    6. Conclusions

    In this work,we systematically study the statistical properties of the local temperature fluctuation in 2D RBC of aspect ratio unity with the Prandtl number fixed at 0.7 and 4.3 and the Rayleigh number varying from 1×108to 1×1013. For the study of temperature fluctuation in the central axis region,we summarize the major findings as follows.

    (i)The PDF of the temperature and the temperature fluctuation generally presents a consistent form and can be well described by an exponential function at fixed Prandtl number 4.3 for different values ofRa. Integrally,the temperature PDF skews significantly towards higher temperature. The PDF of the temperature fluctuation takes on a symmetrical exponential shape,nevertheless,on the whole it slightly inclines to the right atRa=1×1013. It is found that the PDF of the temperature and the temperature fluctuation have similar characteristics under eachRa.

    (ii) With the variation ofRa, the profile of temperature fluctuation exhibits two different distribution characteristics atPr= 0.7 andPr= 4.3. WhenPr= 4.3, in the BL region, all the temperature fluctuation profilesθrmscollapse into a single master curve. Beyond the boundary layer,theθrmsprofiles decrease withz/δincreasing, then increase gradually and finally drop dramatically forRa< 1×1010.WhenRa>1×1010, theθrmsprofiles continuously decrease and overlap with each other. Normalized fluctuation profilesθrms/θrms,maxalso have similar features. Inside the BL,there is a power law,θrms/θrms,max~(z/δ)0.99. Outside the boundary layer, underRa ≤5×109, theθrms/θrms,maxcan be described by a power law,θrms/θrms,max~(z/δ)-1.27withz/δ ≤2. ForRa ≥1×1010,θrms/θrms,max~(z/δ)-0.978withz/δ ≤5. In particular,whenPr=0.7,the temperature fluctuationθrms/θrms,maxprofile distribution is similar to that whenPr=4.3. Especially,beyond the temperature boundary layer,the profile always drops and does not upraise. The two different distribution characteristics of temperature fluctuations are closely related to whether there are stable large-scale circulations and corner rolls in the instantaneous flow.

    (iii) The〈θrms〉V, the spatiotemporal averages of local temperature fluctuation, have similar dependence onRafor two differentPrnumbers.ForPr=0.7,whenRais above this transition point,i.e.,Ra=1×109,〈θrms〉Vas a function ofRais well described by the power law〈θrms〉V~Ra-0.15±0.01.WhilePr= 4.3, the transition point is given byRa= 1×1010. Beyond this transition point, there is also a power law〈θrms〉V~Ra-0.14±0.01.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 11772362),the Shenzhen Fundamental Research Program (Grant No. JCYJ20190807160413162), and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University,China(Grant No.19lgzd15).

    猜你喜歡
    方明
    新疆園林施工管理及后期養(yǎng)護(hù)技術(shù)的要點(diǎn)分析
    Application of the edge of chaos in combinatorial optimization?
    Effects of Prandtl number in two-dimensional turbulent convection?
    著名旅法詩(shī)人 方明
    鴨綠江(2020年23期)2020-10-13 13:29:04
    左右為難
    距離(小小說(shuō))
    Interface microstructure and properties of submerged arc brazing tin-based babbit
    China Welding(2019年2期)2019-10-22 07:13:18
    曾方明:超越血緣的20年贍養(yǎng)之路
    晚晴(2017年6期)2017-06-27 13:41:14
    解三角方程題的常用方法
    Detection of promoter methylation of p27 gene in gastric carcinoma by methylation-specific PCR technique
    制服人妻中文乱码| 国产日本99.免费观看| 一级片免费观看大全| 嫩草影院精品99| 日韩三级视频一区二区三区| 久久国产精品男人的天堂亚洲| 欧美一区二区精品小视频在线| 又紧又爽又黄一区二区| 激情在线观看视频在线高清| 人人妻人人看人人澡| 夜夜躁狠狠躁天天躁| 亚洲第一电影网av| 99久久综合精品五月天人人| 午夜老司机福利片| 黄色片一级片一级黄色片| 久久香蕉激情| 久久久精品国产亚洲av高清涩受| 精品无人区乱码1区二区| 中国美女看黄片| 亚洲精华国产精华精| 91av网站免费观看| 国产一区二区在线av高清观看| 亚洲男人天堂网一区| 日韩欧美 国产精品| 不卡一级毛片| 999久久久国产精品视频| 天天躁夜夜躁狠狠躁躁| ponron亚洲| 亚洲熟女毛片儿| 侵犯人妻中文字幕一二三四区| 好看av亚洲va欧美ⅴa在| 99国产精品99久久久久| 国产1区2区3区精品| 日韩大尺度精品在线看网址| 伦理电影免费视频| 国产精品 欧美亚洲| 18禁黄网站禁片午夜丰满| 在线观看免费午夜福利视频| 欧美+亚洲+日韩+国产| 又黄又粗又硬又大视频| 9191精品国产免费久久| 国产成人av激情在线播放| 中文字幕最新亚洲高清| 观看免费一级毛片| 成人18禁高潮啪啪吃奶动态图| 日韩欧美国产在线观看| xxx96com| 制服人妻中文乱码| 最新美女视频免费是黄的| 国产精品永久免费网站| 欧美国产日韩亚洲一区| 精品日产1卡2卡| 成人亚洲精品av一区二区| 99热这里只有精品一区 | 男女视频在线观看网站免费 | 一夜夜www| 欧美日韩乱码在线| 精品国产乱码久久久久久男人| 亚洲性夜色夜夜综合| 免费高清在线观看日韩| 国产一区二区三区在线臀色熟女| 丝袜美腿诱惑在线| 亚洲无线在线观看| 男女床上黄色一级片免费看| 亚洲无线在线观看| 嫩草影院精品99| 亚洲av第一区精品v没综合| 一个人观看的视频www高清免费观看 | 神马国产精品三级电影在线观看 | 嫩草影视91久久| 国产精品久久久久久亚洲av鲁大| 精品久久久久久,| www日本黄色视频网| 国内揄拍国产精品人妻在线 | 日本免费a在线| 日韩欧美免费精品| 亚洲九九香蕉| 人成视频在线观看免费观看| 午夜福利视频1000在线观看| 久久午夜亚洲精品久久| 国产极品粉嫩免费观看在线| 非洲黑人性xxxx精品又粗又长| 久久草成人影院| 国产高清videossex| 我的亚洲天堂| 可以在线观看毛片的网站| 国产激情偷乱视频一区二区| 国产亚洲精品一区二区www| 欧美乱色亚洲激情| 女同久久另类99精品国产91| 每晚都被弄得嗷嗷叫到高潮| 日韩精品青青久久久久久| 国产亚洲精品第一综合不卡| 午夜福利在线在线| av在线播放免费不卡| 两个人免费观看高清视频| 一二三四社区在线视频社区8| 国产亚洲欧美在线一区二区| 91av网站免费观看| 99riav亚洲国产免费| 青草久久国产| 美女 人体艺术 gogo| 中出人妻视频一区二区| 精品久久久久久久久久久久久 | 国产伦一二天堂av在线观看| 天天一区二区日本电影三级| 国产黄片美女视频| 成人特级黄色片久久久久久久| 一区二区三区高清视频在线| 色在线成人网| 国产私拍福利视频在线观看| 琪琪午夜伦伦电影理论片6080| 制服丝袜大香蕉在线| 色精品久久人妻99蜜桃| 欧美色视频一区免费| 欧美黄色淫秽网站| 国产又黄又爽又无遮挡在线| 日韩大尺度精品在线看网址| 亚洲一区二区三区不卡视频| 777久久人妻少妇嫩草av网站| 亚洲精品国产区一区二| 在线视频色国产色| 午夜福利一区二区在线看| 美女高潮喷水抽搐中文字幕| 俄罗斯特黄特色一大片| www.www免费av| 中文字幕人妻熟女乱码| 久久精品国产99精品国产亚洲性色| 欧美国产日韩亚洲一区| netflix在线观看网站| 亚洲午夜精品一区,二区,三区| 精品国产超薄肉色丝袜足j| 午夜福利高清视频| 97人妻精品一区二区三区麻豆 | 国产成人精品久久二区二区91| 大型av网站在线播放| 欧美日韩一级在线毛片| 色av中文字幕| 一区二区三区国产精品乱码| 在线十欧美十亚洲十日本专区| 亚洲成人免费电影在线观看| 女人高潮潮喷娇喘18禁视频| 男女做爰动态图高潮gif福利片| 长腿黑丝高跟| 国产伦人伦偷精品视频| av视频在线观看入口| 禁无遮挡网站| 久久久久久亚洲精品国产蜜桃av| 黄色丝袜av网址大全| 夜夜躁狠狠躁天天躁| 99国产精品一区二区三区| 不卡一级毛片| 99re在线观看精品视频| 国产亚洲欧美在线一区二区| 一级片免费观看大全| 99热6这里只有精品| 成人亚洲精品av一区二区| 久久国产亚洲av麻豆专区| 欧美激情久久久久久爽电影| 国产一级毛片七仙女欲春2 | 亚洲人成伊人成综合网2020| 欧美大码av| 色播在线永久视频| 婷婷精品国产亚洲av| 欧美+亚洲+日韩+国产| 亚洲激情在线av| 叶爱在线成人免费视频播放| 给我免费播放毛片高清在线观看| 日韩欧美在线二视频| 亚洲av五月六月丁香网| 巨乳人妻的诱惑在线观看| 少妇裸体淫交视频免费看高清 | 啦啦啦免费观看视频1| 国产又色又爽无遮挡免费看| 国产伦人伦偷精品视频| 最新在线观看一区二区三区| 在线国产一区二区在线| 欧美+亚洲+日韩+国产| 亚洲熟妇中文字幕五十中出| 大香蕉久久成人网| 正在播放国产对白刺激| 超碰成人久久| 侵犯人妻中文字幕一二三四区| 亚洲中文字幕一区二区三区有码在线看 | 欧美又色又爽又黄视频| 欧美黑人精品巨大| 久久久久久大精品| 午夜免费激情av| 免费看日本二区| 日日摸夜夜添夜夜添小说| 国产精品免费视频内射| 精品人妻1区二区| 亚洲成av片中文字幕在线观看| 亚洲七黄色美女视频| 人人妻人人澡人人看| 最近最新中文字幕大全电影3 | 嫩草影视91久久| 日本精品一区二区三区蜜桃| 成人午夜高清在线视频 | 亚洲色图av天堂| 日本免费一区二区三区高清不卡| 国产精品久久久久久精品电影 | 怎么达到女性高潮| 国产精品亚洲一级av第二区| 精品久久久久久,| videosex国产| 精品久久久久久久末码| 免费看日本二区| 亚洲av片天天在线观看| 色哟哟哟哟哟哟| 91麻豆精品激情在线观看国产| 国产一区二区三区在线臀色熟女| 欧美色视频一区免费| 国产又黄又爽又无遮挡在线| 色婷婷久久久亚洲欧美| 欧美一区二区精品小视频在线| 黄色女人牲交| av在线天堂中文字幕| 在线观看免费午夜福利视频| 国产又黄又爽又无遮挡在线| 女性被躁到高潮视频| 午夜影院日韩av| 久久久久久久午夜电影| 亚洲五月婷婷丁香| 欧洲精品卡2卡3卡4卡5卡区| 9191精品国产免费久久| 黄色 视频免费看| 国产精品,欧美在线| 性色av乱码一区二区三区2| 亚洲人成电影免费在线| 国产成人av激情在线播放| 在线观看免费视频日本深夜| 巨乳人妻的诱惑在线观看| 淫秽高清视频在线观看| 在线观看免费午夜福利视频| 亚洲人成网站高清观看| 国产亚洲av高清不卡| 亚洲国产看品久久| 亚洲性夜色夜夜综合| 无人区码免费观看不卡| 黑人欧美特级aaaaaa片| 亚洲三区欧美一区| 午夜福利18| 国产精品爽爽va在线观看网站 | 亚洲第一电影网av| 精品国产乱子伦一区二区三区| 亚洲专区国产一区二区| 国产不卡一卡二| 亚洲aⅴ乱码一区二区在线播放 | 中出人妻视频一区二区| 成人永久免费在线观看视频| 久久欧美精品欧美久久欧美| 亚洲成av片中文字幕在线观看| 国产精华一区二区三区| 最近最新中文字幕大全电影3 | 国产精品,欧美在线| 久久精品91无色码中文字幕| 日本撒尿小便嘘嘘汇集6| 久久青草综合色| 免费在线观看影片大全网站| 日韩欧美一区视频在线观看| 国产高清有码在线观看视频 | 午夜免费激情av| 一本精品99久久精品77| 亚洲欧美精品综合一区二区三区| 久久久国产欧美日韩av| 久久香蕉国产精品| 一本一本综合久久| svipshipincom国产片| 99国产精品一区二区三区| 国产野战对白在线观看| 淫秽高清视频在线观看| 久久香蕉激情| 淫妇啪啪啪对白视频| 亚洲电影在线观看av| 国产精品二区激情视频| 欧美成狂野欧美在线观看| 黄片播放在线免费| 国产一区二区三区视频了| 哪里可以看免费的av片| 禁无遮挡网站| 欧美久久黑人一区二区| 亚洲专区国产一区二区| 久久精品aⅴ一区二区三区四区| 夜夜爽天天搞| 亚洲欧洲精品一区二区精品久久久| 国产精品1区2区在线观看.| av欧美777| 黄片大片在线免费观看| 国产精品 欧美亚洲| 午夜激情av网站| 国产精品香港三级国产av潘金莲| 亚洲黑人精品在线| 精品欧美一区二区三区在线| 亚洲国产精品合色在线| 亚洲精品久久成人aⅴ小说| 在线观看午夜福利视频| 日本在线视频免费播放| 麻豆成人av在线观看| 十八禁网站免费在线| 国产麻豆成人av免费视频| 色播在线永久视频| 日韩欧美国产一区二区入口| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成国产人片在线观看| 日韩精品中文字幕看吧| 国产主播在线观看一区二区| 亚洲精华国产精华精| 一本精品99久久精品77| 国产视频一区二区在线看| 国产精品,欧美在线| 久9热在线精品视频| 久久精品国产综合久久久| 人人妻人人澡欧美一区二区| 免费观看人在逋| 成熟少妇高潮喷水视频| 老司机在亚洲福利影院| 在线永久观看黄色视频| 又大又爽又粗| 午夜免费鲁丝| 嫩草影视91久久| 日韩欧美免费精品| 亚洲男人的天堂狠狠| 侵犯人妻中文字幕一二三四区| 久久婷婷成人综合色麻豆| 久久中文看片网| 可以在线观看的亚洲视频| 国产精品电影一区二区三区| 99国产极品粉嫩在线观看| 51午夜福利影视在线观看| 日韩欧美在线二视频| 久久精品91蜜桃| 中文字幕人妻丝袜一区二区| 美女 人体艺术 gogo| 亚洲午夜理论影院| 国产精品久久久av美女十八| 欧美zozozo另类| 中文字幕最新亚洲高清| 国产一区二区三区视频了| 琪琪午夜伦伦电影理论片6080| 国内精品久久久久久久电影| 在线观看舔阴道视频| 欧美在线黄色| av超薄肉色丝袜交足视频| 人人澡人人妻人| 亚洲专区中文字幕在线| 国产精品九九99| 女人被狂操c到高潮| 成人国产综合亚洲| 精品乱码久久久久久99久播| 热99re8久久精品国产| 国产精品野战在线观看| 91成人精品电影| 久久久久久久精品吃奶| 国产av一区在线观看免费| 国产视频一区二区在线看| 久久香蕉国产精品| 99久久精品国产亚洲精品| 日日摸夜夜添夜夜添小说| 欧美+亚洲+日韩+国产| 国产黄色小视频在线观看| 国产精品 欧美亚洲| 又紧又爽又黄一区二区| 99在线人妻在线中文字幕| 十分钟在线观看高清视频www| 亚洲专区字幕在线| 他把我摸到了高潮在线观看| 午夜激情福利司机影院| 国产激情欧美一区二区| 男女午夜视频在线观看| 亚洲av日韩精品久久久久久密| 老司机午夜十八禁免费视频| 老司机深夜福利视频在线观看| www日本黄色视频网| 午夜福利在线观看吧| 黄片播放在线免费| 伊人久久大香线蕉亚洲五| 亚洲人成77777在线视频| 成年免费大片在线观看| 757午夜福利合集在线观看| 黄片小视频在线播放| 女警被强在线播放| 亚洲va日本ⅴa欧美va伊人久久| 久久天堂一区二区三区四区| 国产欧美日韩一区二区精品| 欧美乱码精品一区二区三区| 婷婷六月久久综合丁香| 精品欧美国产一区二区三| 国产亚洲精品一区二区www| 91成人精品电影| 一本久久中文字幕| 色综合婷婷激情| 欧美午夜高清在线| 欧美色视频一区免费| 精品久久久久久久人妻蜜臀av| 午夜福利18| 99久久无色码亚洲精品果冻| 观看免费一级毛片| 亚洲精品在线观看二区| 母亲3免费完整高清在线观看| 国产精品野战在线观看| 国产高清激情床上av| 欧美成狂野欧美在线观看| 国产成人精品久久二区二区免费| 亚洲成人精品中文字幕电影| 亚洲五月天丁香| 最近最新中文字幕大全电影3 | 日韩欧美三级三区| e午夜精品久久久久久久| 曰老女人黄片| 久久99热这里只有精品18| 久久久国产精品麻豆| 日本精品一区二区三区蜜桃| 国产av在哪里看| 色哟哟哟哟哟哟| 精品国产亚洲在线| 国产精品亚洲美女久久久| 白带黄色成豆腐渣| 久久精品国产清高在天天线| 欧美日韩福利视频一区二区| 成年版毛片免费区| or卡值多少钱| 久久热在线av| 久久久国产欧美日韩av| 男人操女人黄网站| 美女国产高潮福利片在线看| 女性生殖器流出的白浆| 丰满人妻熟妇乱又伦精品不卡| 日本五十路高清| 嫁个100分男人电影在线观看| 窝窝影院91人妻| 一区福利在线观看| 非洲黑人性xxxx精品又粗又长| 一边摸一边做爽爽视频免费| 免费高清在线观看日韩| 人人妻,人人澡人人爽秒播| 久久国产精品男人的天堂亚洲| 欧美人与性动交α欧美精品济南到| 曰老女人黄片| 国产精品自产拍在线观看55亚洲| 观看免费一级毛片| 99re在线观看精品视频| bbb黄色大片| 亚洲中文字幕日韩| 日本a在线网址| 色综合婷婷激情| 深夜精品福利| 亚洲avbb在线观看| 男人舔奶头视频| 亚洲成av人片免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩国内少妇激情av| 亚洲精品色激情综合| 中出人妻视频一区二区| 大型黄色视频在线免费观看| av超薄肉色丝袜交足视频| 搡老熟女国产l中国老女人| 天堂动漫精品| 午夜久久久在线观看| 男人舔女人的私密视频| 18禁裸乳无遮挡免费网站照片 | 成人三级黄色视频| 久久香蕉激情| 欧美精品亚洲一区二区| 欧美性猛交黑人性爽| 人人澡人人妻人| 国产蜜桃级精品一区二区三区| 性欧美人与动物交配| 精品电影一区二区在线| 日本 欧美在线| 99国产精品一区二区三区| 亚洲精品国产精品久久久不卡| 国内久久婷婷六月综合欲色啪| 国产av在哪里看| 日韩有码中文字幕| 亚洲人成网站在线播放欧美日韩| 日本免费a在线| 看黄色毛片网站| 一二三四社区在线视频社区8| 正在播放国产对白刺激| 搡老岳熟女国产| 精品一区二区三区四区五区乱码| 中文亚洲av片在线观看爽| 日日干狠狠操夜夜爽| 久久精品国产综合久久久| 久久久久久久午夜电影| 最近最新中文字幕大全电影3 | 满18在线观看网站| 99国产精品99久久久久| 老汉色av国产亚洲站长工具| 91大片在线观看| 日韩欧美一区视频在线观看| 亚洲一区高清亚洲精品| 国产爱豆传媒在线观看 | 99精品久久久久人妻精品| 国产精品亚洲一级av第二区| 啪啪无遮挡十八禁网站| 白带黄色成豆腐渣| 欧美性猛交╳xxx乱大交人| 可以在线观看毛片的网站| 久久精品国产清高在天天线| 国产v大片淫在线免费观看| 午夜影院日韩av| 午夜老司机福利片| 国产97色在线日韩免费| 999精品在线视频| 视频在线观看一区二区三区| 色老头精品视频在线观看| 日本免费a在线| 中文资源天堂在线| or卡值多少钱| 窝窝影院91人妻| 天堂√8在线中文| 黑人欧美特级aaaaaa片| 1024香蕉在线观看| 国产人伦9x9x在线观看| 午夜福利欧美成人| 欧美成人免费av一区二区三区| 亚洲欧美日韩无卡精品| 桃色一区二区三区在线观看| 好男人电影高清在线观看| 国产熟女午夜一区二区三区| 亚洲人成网站在线播放欧美日韩| 一个人观看的视频www高清免费观看 | 欧美日韩瑟瑟在线播放| 免费看美女性在线毛片视频| 成人精品一区二区免费| 日本精品一区二区三区蜜桃| 精品第一国产精品| 亚洲第一青青草原| 国产高清videossex| 在线观看一区二区三区| 精品欧美一区二区三区在线| 欧美在线黄色| 91麻豆av在线| 国产又色又爽无遮挡免费看| 亚洲欧美精品综合久久99| 午夜福利18| 久久久国产成人精品二区| 午夜影院日韩av| 日本撒尿小便嘘嘘汇集6| 婷婷精品国产亚洲av在线| 久久久精品国产亚洲av高清涩受| 欧美+亚洲+日韩+国产| 午夜老司机福利片| av天堂在线播放| 亚洲成a人片在线一区二区| 男女午夜视频在线观看| 女人被狂操c到高潮| 日韩成人在线观看一区二区三区| xxxwww97欧美| 女人高潮潮喷娇喘18禁视频| 夜夜夜夜夜久久久久| 无遮挡黄片免费观看| av片东京热男人的天堂| 国产男靠女视频免费网站| e午夜精品久久久久久久| 亚洲国产毛片av蜜桃av| 亚洲一区高清亚洲精品| 天天躁狠狠躁夜夜躁狠狠躁| 女人被狂操c到高潮| 欧美在线黄色| 国产激情久久老熟女| 一区二区日韩欧美中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 国产精品香港三级国产av潘金莲| 法律面前人人平等表现在哪些方面| 两个人免费观看高清视频| 精品久久久久久久久久久久久 | 日韩av在线大香蕉| 黄色成人免费大全| 这个男人来自地球电影免费观看| 亚洲熟女毛片儿| 成年人黄色毛片网站| 日本免费一区二区三区高清不卡| 久久这里只有精品19| 最好的美女福利视频网| 成年女人毛片免费观看观看9| av在线播放免费不卡| 在线播放国产精品三级| 天堂动漫精品| 热re99久久国产66热| 亚洲性夜色夜夜综合| 国产免费男女视频| 欧美在线一区亚洲| 国产亚洲精品久久久久久毛片| 国产亚洲av嫩草精品影院| 老熟妇仑乱视频hdxx| 国内精品久久久久久久电影| 欧美日本亚洲视频在线播放| 久久久久国产一级毛片高清牌| 久久精品国产亚洲av香蕉五月| 午夜久久久久精精品| 欧美黑人欧美精品刺激| 99精品在免费线老司机午夜| 亚洲性夜色夜夜综合| 美女国产高潮福利片在线看| 精品久久久久久久末码| 不卡一级毛片| 很黄的视频免费| 亚洲真实伦在线观看| 老司机午夜福利在线观看视频| 两个人免费观看高清视频| 国产aⅴ精品一区二区三区波| www.999成人在线观看| 精品国产国语对白av| 亚洲一码二码三码区别大吗| 国产亚洲精品一区二区www| 露出奶头的视频| 国产精品亚洲美女久久久| 欧美日韩亚洲综合一区二区三区_| 亚洲 欧美一区二区三区| 成在线人永久免费视频| 日本熟妇午夜| 嫁个100分男人电影在线观看|