• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Non-Hermitian Weyl semimetals: Non-Hermitian skin effect and non-Bloch bulk–boundary correspondence

    2022-01-23 06:37:38XiaosenYang楊孝森YangCao曹陽andYunjiaZhai翟云佳
    Chinese Physics B 2022年1期
    關(guān)鍵詞:曹陽

    Xiaosen Yang(楊孝森), Yang Cao(曹陽), and Yunjia Zhai(翟云佳)

    Department of physics,Jiangsu University,Zhenjiang 212013,China

    Keywords: non-Hermitian skin effect,Weyl semimental,bulk-boundary correspondence

    1. Introduction

    Topological phases are characterized by bulk topological invariant. Examples include topological insulators,[1-10]topological superconductors/superfluids,[11-18]and Weyl semimetal.[19-31]For equilibrium closed systems, described by Hermitian Hamiltonian, the topological invariants are defined in terms of the Bloch Hamiltonian.[3-5]The Hermitian Hamiltonian has real eigenenergies and a set of orthogonal eigenstates. The bulk topological invariants dictate the existence of robust edge states at the boundary. This bulkboundary correspondence is a ubiquitous guiding principle to the topological phases. The bulk-boundary correspondence is also applicable when the bulk is gapless,by virtue of point touching of nondegenerate conduction and valence bands.[19]The gapless bulk band structure has paired Weyl points with opposite chirality and topological charge. The massless Weyl fermions near the Weyl points are stable against perturbations.

    Recently, considerable efforts have been devoted to explore the properties of nonequilibrium open systems, especially non-Hermitian systems.[32-60]The non-Hermitian systems include optical and mechanical systems with gain and loss,[61-70]solid state systems with finite quasiparticle lifetimes for non-Hermitian self energy.[71-76]The non-Hermitian systems exhibit many impressive features, such as non-Hermitian skin effect,[77-87]bulk Fermi arcs connecting exceptional points[71,72,88,89]and biorthogonality.[90-93]Specifically, the non-Hermitian skin effect[77-82]means that all energy eigenstates can be localized at the boundary of non-Hermitian systems.[94-106]The interplay between the topology and non-Hermiticity can lead to the breakdown of the Bloch bulk-boundary correspondence.[77,78,81,82,105-109]The topological properties of the non-Hermitian systems can not be precisely predicted by the Bloch eigenstates under open boundary conditions. Furthermore, the real topological invariant is defined in non-Bloch Hamiltonian instead of Bloch Hamiltonian. The non-Bloch winding (Chern) number, defined in the generalized Brillouin zone (GBZ), has been introduced to characterize the topological properties of onedimensional(two-dimensional)systems.[77,78,80,106]The non-Bloch topological invariants strictly characterize the chiral edge modes and provide the non-Bloch bulk-boundary correspondence.

    For three-dimensional non-Hermitian systems, the Weyl points can be spread into exceptional lines and even exceptional surfaces. Examples of non-Hermitian Weyl semimetals have been considered in Refs. [40,48,110-117], however,their novel bulk-boundary correspondence has not been uncovered and clarified yet, which is the focus of the present paper. In this work, we investigate the topological properties of the non-Hermitian Weyl semimetal in the presence of gains and losses. We analyze the shape of the exceptional rings by Bloch band theory under periodic boundary condition and give the topological phase diagram. Furthermore,the Weyl semimetal can be regarded as a stack of layers of twodimensional Chern insulator inkzmomentum space in the absence of gains and losses. Thus,we can bring insight into the topological properties of the non-Hermitian Weyl semimetal by the non-Bloch Chern number. We extend the Bloch momentum spaceT3(k) into complex momentum space ?T3(?k)to derive the three-dimensional non-Bloch Hamiltonian. For a fixed momentumkz, the three-dimensional complex momentum space ?T3(?k) is reduced to two-dimensional ?T2(?k⊥) in which the non-Bloch Chern number can be defined. We find a new non-Bloch bulk-boundary correspondence for the non-Hermitian Weyl semimetal. The non-Bloch Chern number can predict the topological edge modes. As such, the Bloch band theory and the conventional bulk-boundary correspondence break down for the non-Hermitian skin effect, which fundamentally affects the topological phase diagram. The validity of non-Bloch Chern number is confirmed by comparing its prediction to numerical results of real space energy spectra and edge-states transport.

    2. Non-Hermitian Bloch Hamiltonian

    We consider a non-Hermitian Bloch Hamiltonian of a semimetal on a cubic lattice

    whereσx,y,zare the Pauli matrices. The real parametersΛ=(λ,λ,0) are the non-Hermitian strengths.[77,118]In the absence of non-Hermitian parts (Λ=0), the eigenvalues of the system areE±(k)=±h(k) withh(k)=|h(k)| andh(k)=(sinkx,sinky,m-coskx-cosky-coskz). A pair of Weyl points withZ2topological charge are stable when|m|< 3.The topological nontrivial phase is Weyl semimetal. When|m|>3, the two Weyl points will annihilate with each other and the phase is gapped insulator. There is a topological phase transition between Weyl semimetal and insulator at|m|=3.Therefore,we will focus onmbeing close to 3.that of any other bands in the complex-energy plane,while it is called gapless(or inseparable)if the complex-energy is degenerate with other bands.[96]For our non-Hermitian system,the Bloch bands are gapless whenmm+.Figure 2 shows the evolution of the exceptional rings with increasingmatλ=0.2.

    Fig. 1. Topological phase diagram for Λ = (λ,λ,0). The blue-dotted curve,determined by the real space energy spectra of cubic open boundary,is the topological phase boundary between non-Hermitian Weyl semimetal and insulator. The left non-Hermitain Weyl semimetal has gapless bulk and gapless topological edge modes. The right insulator has gapped bulk and gapped edges. The open-boundary spectra for the three marked points are given in Fig. 3. The topological phase boundary closely approximates to the boundary based on non-Bloch Chern number (red-solid curve with m=3+λ2). This non-Bloch phase boundary is fundamentally different from the phase boundaries based on the Bloch theory (black-dashed lines with m± =3±√2λ). According to the Bloch band theory, the phase is non-Hermitian Weyl semimetal when m < m- and trivial semimetal for m-m+. The Bloch spectra have a pair of Weyl exceptional rings for non-Hermitian Weyl semimetal and a merged exceptional ring for trivial semimetal.

    Fig.2. Illustration of the exceptional rings in Bloch Brillouin zone with λ =0.2 for(a)m=2.6,(b)m=2.7172,and(c)m=3.05. In the presence of the non-Hermitian part, the paired Weyl points are spread into a pair of Weyl exceptional rings with opposite charge. As m increases, the two Weyl exceptional rings will merge into one uncharged exceptional ring at m=m-. The uncharged exceptional ring will disappear when m>m+.

    3. Phase diagram based on non-Bloch Chern number

    In Hermitian systems,Weyl semimetals are characterized by topologically protected Fermi-arcs. The chiral/helical gapless edge states exist in a finite region in momentum space and should be determined by the properties of Bloch Hamiltonian.The Bloch bulk-boundary correspondence is a key property of Weyl semimetals. However, the Bloch bulk-boundary correspondence is not applicable to the topological properties of the non-Hermitian system for non-Hermitian skin-effect. Therefore, the topological phase diagram based on the Bloch band theory will generate pronounced deviation to the real phase diagram. Thus,we draw the phase boundaries by the non-Bloch Chern number and the real space energy spectra.

    The non-Bloch Chern number is defined in a complex momentum space instead of Bloch momentum space.[78]To determine the topological phase boundary, we consider the low-energy continuum case inx-yplane of our non-Hermitian Bloch Hamiltonian Eq.(1), which can be rewritten as following:

    which is shown in Fig.1. The non-Hermitain Weyl semimetal phase on the left of the topological boundary has gapless bulk and gapless topological edge modes. The insulator phase on the right has gapped bulk and gapped edge modes. There is a dichotomy between the two topological phase diagrams based on the non-Bloch Chern number and the Bloch band theory.The exact topological phase boundary is only a single curve and the phase diagram has no topological trivial semimetal.Interesting, in sharp contrast to the Hermitian systems, the conventional bulk-boundary correspondence is broken down in the non-Hermitian Weyl semimetal phase. The topological edge modes of the non-Hermitian Weyl semimetal are determined by the non-Bloch Chern number of the bulk bands. The breakdown of the Bloch band theory is caused by the non-Hermitian skin effect.

    To check the valid of the topological phase diagram based on non-Bloch Chern number, we calculate the real space energy spectra under cubic open-boundary condition(lattice sites sizeL×L×L). Figures 3(a)-3(c)show the spectra for(a)m=2.7172,(b)m=3.05,and(c)m=3.2828 withλ=0.2(three indicated points in Fig. 1). Considering the size effects, we make the lattice size scaling of the gap in Figs. 3(d)-3(f) for Figs.3(a)-3(c),respectively. The gap is given by the intercept ofΔ-1/Lline. In Bloch theory, the three spectra are gapless and have exceptional rings/point in the spectra. As shown in Figs. 3(a) and 3(b), the gap vanishes form=2.7172 andm=3.05 whenL →∞. Remarkably, there is a clear gap at the spectra ofm=3.2828. According to the spectra of cubic open-boundary condition, there is a topological phase transition between the gapless non-Hermitian Weyl semimetal and gapped insulator phase atm=3.05 forλ=0.2. We draw the gapless-gaped phase boundary under cubic open-boundary condition as the blue-dotted curve in Fig. 1. The two curves base on the open-boundary energy spectra and the non-Bloch Chern number are very close. Therefore,the non-Bloch Chern number is valid to our three-dimensional non-Hermitian Weyl semimetal.

    Fig. 3. Real space energy spectra under cubic open-boundary condition: (a) m=2.7172, (b) m=3.05, and (c) m=3.2828 (three values of parameters indicated in Fig.1)with λ =0.2 and lattice site size L=20. Panels(d)-(f)show the magnitude of the gap Δ as functions of 1/L for(a)-(c),respectively. L is the lattice site size in x,y,z direction. The intercept of Δ-1/L line gives the gap in large scale limit(L →∞). The gap is zero for(d),(e)and nonzero for(f).

    4. Non-Hermitian skin effect and unidirectional edge motion

    Different from the Hermitian Hamiltonian, the eigenstates are non-orthogonal for the non-Hermitian cases. Therefore, all the eigenstates can be exponentially localized at the boundary for our non-Hermitian system. To illustrate the non-Hermitian skin effect, Fig. 4 shows the bulk states inx-yplane by adding upz-direction for (a)m= 3.2828 and(b)m= 2.7172 withλ= 0.2. The bulk states are localized at the boundary for both the non-Hermitian Weyl semimental and topological trivial gapped insulator phases. The usual bulk-boundary correspondence is invalid for our non-Hermitian systems.

    For topological nontrivial phase,the localized eigenstates have Fermi-arc edge modes and gapless bulk states. However,there is no Fermi-arc edge mode in the topologically trivial regime. The chirality of the Fermi-arc edge modes will affect the wave pocket time evolution in topological nontrivial phases. To reveal the topological properties and the Fermiarc edge modes, we investigate the wave pocket time evolution. The time dependent wave satisfies the non-Hermitian Schr¨odinger equation

    Fig.4. Non-Hermitian skin effects. Left panel: total normalized eigenstates N0 ∑n|uRn〉under cubic open-boundary condition for(a)m=3.2828 and(b)m=2.7172 with λ =0.2 and lattice sites size L=20.Right panels:wave pocket evolutions.The initial wave pocket takes the Gaussian form ψ(t =0)=N exp[-(ix-10)/20-(iy-1)/10-(iz-10)/20](1,1)T, normalized by N. The modulus squared intensity of|ψ(t)〉is normalized and shown for t =0,5,15 in x-y plane by adding up in z-direction. The wave packet fades into the bulk in up row. There has unidirectional edge motion in down row.

    For an initial wave|ψ(t=0)〉, the time dependent wave function is|ψ(t)〉=∑nexp(-iEnt)|uRn〉〈uLn|ψ(t=0)〉.For simplicity, the initial wave takes Gaussian wave pocket withψ(t=0)=Nexp[-(ix-10)/20-(iy-1)/10-(iz-10)/20](1,1)T, normalized byN. As shown in Fig. 4, the wave pocket quickly spreads into the bulk for topological trivial insulator phase withm=3.2828. However, there is clear chiral edge motion for the topological non-Hermitian Weyl semimetal withm=2.7172. This can be explained as following. Despite the eigenstates are localized at the boundary for topological trivial phase,there is no robust chiral edge mode. Thus, the wave pocket evolves to the bulk states by quickly entering into the bulk without any topological constrain. For topological nontrivial phase,there are robust chiral edge modes with zero energy. The chirality of the edge modes will constrain the wave pocket evolution along the edges. The existence/absence of the unidirectional edge motion can be used to determine the non-Hermitian topological nontrivial phases in theory and future experiment.

    5. Conclusion

    We investigated the novel features of three-dimensional non-Hermitian Weyl semimetals by non-Bloch Chern number,Bloch band theory,open-boundary energy spectra and dynamics. We showed that the non-Hermitain Weyl semimetals have gapless bulk and gapless Fermi-arc edge modes. We uncovered the non-Bloch bulk-boundary correspondence for the non-Hermitian Weyl semimetal. The topological edge modes of the non-Hermitian Weyl semimetal are strictly determined by the non-Bloch Chern number of the bulk bands. Thus,the conventional bulk-boundary correspondence breaks down for the non-Hermitian skin effect. The non-Hermitian skin effect also generates pronounced deviation of the phase diagram from the Bloch band theory. The topological phase transition between nontrivial and trivial phases does not occur at the two Bloch phase boundaries. The topological phase boundary is only a single curve in the phase diagram.The valid of the non-Bloch Chern number is confirmed by the cubic open-boundary energy spectra. Furthermore, we showed that the topological edge modes can manifest as the unidirectional edge motion.

    Acknowledgments

    We would like to thank Zhong Wang for fruitful discussion. Project supported by the National Natural Science Foundation of China(Grants No.11504143).

    猜你喜歡
    曹陽
    蜀南竹海竹韻天下
    道是無圓卻有圓
    五月如歌
    ——深入采訪實(shí)用小技巧
    有一種信仰叫曹陽
    足球周刊(2016年10期)2016-10-08 18:30:01
    Happy May Day
    A Clever Idea
    How to Spend Money
    河下,河下
    虞美人
    新楚商(2013年1期)2013-03-27 11:14:38
    xxxhd国产人妻xxx| 亚洲精品中文字幕在线视频| 免费看不卡的av| 日韩熟女老妇一区二区性免费视频| 久久99精品国语久久久| 亚洲成国产人片在线观看| 高清不卡的av网站| 欧美成人午夜免费资源| 久久久久国产网址| 亚洲欧美成人综合另类久久久| 久久午夜综合久久蜜桃| 亚洲三区欧美一区| 99国产精品免费福利视频| 亚洲激情五月婷婷啪啪| 久久久久人妻精品一区果冻| 天堂俺去俺来也www色官网| 秋霞伦理黄片| 亚洲一区二区三区欧美精品| 日本色播在线视频| 亚洲欧美成人综合另类久久久| 精品亚洲乱码少妇综合久久| 国产精品蜜桃在线观看| 国产精品嫩草影院av在线观看| 精品卡一卡二卡四卡免费| 91精品伊人久久大香线蕉| videossex国产| 亚洲精品中文字幕在线视频| 国产精品.久久久| av免费观看日本| 青青草视频在线视频观看| 一边摸一边做爽爽视频免费| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人黄色视频免费在线看| 久久午夜综合久久蜜桃| 如何舔出高潮| 久久女婷五月综合色啪小说| 欧美日韩一级在线毛片| 精品卡一卡二卡四卡免费| 伊人久久大香线蕉亚洲五| www.av在线官网国产| 日本色播在线视频| 久久精品国产综合久久久| 男人舔女人的私密视频| 国产av码专区亚洲av| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦视频在线资源免费观看| 黄色 视频免费看| 国产伦理片在线播放av一区| 欧美日韩一级在线毛片| 久久精品国产综合久久久| 日日啪夜夜爽| 在线看a的网站| xxx大片免费视频| 高清欧美精品videossex| 国产亚洲精品第一综合不卡| 99精国产麻豆久久婷婷| 亚洲国产欧美在线一区| 国产精品免费视频内射| 久久久欧美国产精品| 亚洲精品自拍成人| 日本爱情动作片www.在线观看| 国产精品久久久久久精品古装| 国产成人一区二区在线| 成人黄色视频免费在线看| 免费观看性生交大片5| 国产一级毛片在线| 女人久久www免费人成看片| 又大又黄又爽视频免费| 亚洲精品国产av成人精品| 国产野战对白在线观看| 边亲边吃奶的免费视频| 在线观看国产h片| 一区二区三区激情视频| 99re6热这里在线精品视频| 日韩av不卡免费在线播放| 国产一区二区在线观看av| 在线天堂中文资源库| 精品久久久久久电影网| 久久久久视频综合| 观看美女的网站| 在线 av 中文字幕| 精品国产超薄肉色丝袜足j| 婷婷色av中文字幕| 国产深夜福利视频在线观看| tube8黄色片| 久久精品熟女亚洲av麻豆精品| 熟女av电影| 亚洲第一区二区三区不卡| 国产精品国产三级专区第一集| 一级毛片 在线播放| 国产高清国产精品国产三级| www.熟女人妻精品国产| 校园人妻丝袜中文字幕| 91在线精品国自产拍蜜月| 综合色丁香网| 久久久久久久精品精品| 久久97久久精品| 亚洲欧美一区二区三区国产| 新久久久久国产一级毛片| 成人午夜精彩视频在线观看| 不卡视频在线观看欧美| 欧美xxⅹ黑人| 精品国产乱码久久久久久小说| 成人影院久久| 欧美国产精品va在线观看不卡| 在线亚洲精品国产二区图片欧美| 亚洲视频免费观看视频| 久久99一区二区三区| 亚洲美女视频黄频| 久久人人爽av亚洲精品天堂| 亚洲一区中文字幕在线| 久久久久久久国产电影| 青春草视频在线免费观看| 亚洲精品美女久久av网站| 中文字幕人妻丝袜制服| 91aial.com中文字幕在线观看| 在线观看三级黄色| 国产免费一区二区三区四区乱码| 日韩中文字幕欧美一区二区 | 久久久精品国产亚洲av高清涩受| 精品一区在线观看国产| 最近手机中文字幕大全| 亚洲av综合色区一区| 考比视频在线观看| 免费女性裸体啪啪无遮挡网站| 男人操女人黄网站| 91久久精品国产一区二区三区| 久久国内精品自在自线图片| 久久人人97超碰香蕉20202| 欧美黄色片欧美黄色片| 日韩伦理黄色片| 午夜福利影视在线免费观看| 秋霞伦理黄片| 亚洲美女视频黄频| 精品少妇一区二区三区视频日本电影 | 水蜜桃什么品种好| 午夜福利,免费看| 最新中文字幕久久久久| 中文乱码字字幕精品一区二区三区| 少妇的逼水好多| 日本av免费视频播放| 国产av国产精品国产| 国产乱人偷精品视频| 国产熟女欧美一区二区| 亚洲精品,欧美精品| 久久婷婷青草| 亚洲国产精品一区二区三区在线| 亚洲av福利一区| 一本大道久久a久久精品| 999久久久国产精品视频| 精品人妻在线不人妻| 国产成人一区二区在线| 狠狠婷婷综合久久久久久88av| 汤姆久久久久久久影院中文字幕| 国产熟女午夜一区二区三区| 大片电影免费在线观看免费| 国产成人a∨麻豆精品| 三级国产精品片| 日韩电影二区| 一级毛片黄色毛片免费观看视频| 欧美bdsm另类| 国产成人av激情在线播放| 97人妻天天添夜夜摸| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人精品福利久久| 一区二区三区精品91| 一边亲一边摸免费视频| 热99国产精品久久久久久7| 十八禁高潮呻吟视频| 九草在线视频观看| 一区在线观看完整版| 777米奇影视久久| 在线观看人妻少妇| 国产成人午夜福利电影在线观看| 亚洲人成电影观看| 9色porny在线观看| 丝袜在线中文字幕| 国产成人精品在线电影| 欧美bdsm另类| 午夜福利视频精品| 久久久久久久大尺度免费视频| 精品少妇黑人巨大在线播放| 又大又黄又爽视频免费| 婷婷色综合www| 欧美在线黄色| 天天躁夜夜躁狠狠久久av| 亚洲情色 制服丝袜| 女人被躁到高潮嗷嗷叫费观| 九草在线视频观看| 视频在线观看一区二区三区| 色吧在线观看| 国产av国产精品国产| 日韩一区二区三区影片| 国产淫语在线视频| 午夜日韩欧美国产| 午夜精品国产一区二区电影| 亚洲成av片中文字幕在线观看 | 国产成人91sexporn| 777久久人妻少妇嫩草av网站| 老汉色av国产亚洲站长工具| 国产精品三级大全| 波多野结衣av一区二区av| 欧美精品人与动牲交sv欧美| 精品国产国语对白av| 另类亚洲欧美激情| 最近最新中文字幕免费大全7| 建设人人有责人人尽责人人享有的| 国产高清不卡午夜福利| 天堂8中文在线网| 一个人免费看片子| 26uuu在线亚洲综合色| 丝袜脚勾引网站| 岛国毛片在线播放| 成人漫画全彩无遮挡| 十八禁高潮呻吟视频| 亚洲av中文av极速乱| 毛片一级片免费看久久久久| 亚洲在久久综合| 精品久久蜜臀av无| 国产深夜福利视频在线观看| 国产精品一国产av| 九色亚洲精品在线播放| 日本免费在线观看一区| 少妇猛男粗大的猛烈进出视频| 精品一区二区三卡| 桃花免费在线播放| 精品99又大又爽又粗少妇毛片| 电影成人av| 国产免费一区二区三区四区乱码| 捣出白浆h1v1| 亚洲内射少妇av| 韩国精品一区二区三区| 麻豆av在线久日| 精品国产国语对白av| 宅男免费午夜| 熟女少妇亚洲综合色aaa.| 男人舔女人的私密视频| 1024视频免费在线观看| 美女国产高潮福利片在线看| av.在线天堂| 久久精品久久精品一区二区三区| 18+在线观看网站| 亚洲一级一片aⅴ在线观看| 另类精品久久| 日韩av在线免费看完整版不卡| av国产久精品久网站免费入址| kizo精华| 亚洲精品国产一区二区精华液| 久久人人97超碰香蕉20202| 国产黄色免费在线视频| 美女国产高潮福利片在线看| 中文字幕人妻丝袜制服| 99九九在线精品视频| 深夜精品福利| 丰满乱子伦码专区| 男人添女人高潮全过程视频| 少妇人妻久久综合中文| 伊人久久大香线蕉亚洲五| 国产精品国产三级专区第一集| 免费在线观看视频国产中文字幕亚洲 | 爱豆传媒免费全集在线观看| 亚洲图色成人| 观看av在线不卡| 黄色视频在线播放观看不卡| 永久网站在线| 日韩免费高清中文字幕av| 高清视频免费观看一区二区| 男女国产视频网站| 久久精品熟女亚洲av麻豆精品| 菩萨蛮人人尽说江南好唐韦庄| 国产乱来视频区| 国产有黄有色有爽视频| 精品卡一卡二卡四卡免费| 欧美+日韩+精品| 欧美日韩亚洲国产一区二区在线观看 | 熟女少妇亚洲综合色aaa.| 亚洲av在线观看美女高潮| 欧美精品一区二区免费开放| 日韩中文字幕欧美一区二区 | 国产精品av久久久久免费| 精品少妇久久久久久888优播| 久热这里只有精品99| 99久久中文字幕三级久久日本| 国产精品久久久久久精品古装| 日韩人妻精品一区2区三区| 春色校园在线视频观看| 90打野战视频偷拍视频| 中文字幕av电影在线播放| 宅男免费午夜| 国产高清国产精品国产三级| 国产午夜精品一二区理论片| 国产激情久久老熟女| 精品亚洲成a人片在线观看| 国产 一区精品| 狂野欧美激情性bbbbbb| 国产女主播在线喷水免费视频网站| 国产黄色视频一区二区在线观看| 亚洲国产日韩一区二区| 日本av手机在线免费观看| 久久毛片免费看一区二区三区| 18禁裸乳无遮挡动漫免费视频| 久久久久久人妻| 青草久久国产| 啦啦啦啦在线视频资源| 街头女战士在线观看网站| 国产成人aa在线观看| 欧美xxⅹ黑人| 五月天丁香电影| 熟女电影av网| av国产久精品久网站免费入址| 国产欧美亚洲国产| 高清不卡的av网站| 黄色一级大片看看| 久久综合国产亚洲精品| 欧美+日韩+精品| 国产人伦9x9x在线观看 | 免费观看性生交大片5| 亚洲第一青青草原| 成人18禁高潮啪啪吃奶动态图| 一区二区日韩欧美中文字幕| 夫妻午夜视频| 午夜免费观看性视频| 爱豆传媒免费全集在线观看| 国产精品麻豆人妻色哟哟久久| 久久久精品国产亚洲av高清涩受| 乱人伦中国视频| 婷婷色麻豆天堂久久| 亚洲国产最新在线播放| 精品国产超薄肉色丝袜足j| 欧美成人午夜精品| 成人免费观看视频高清| 18禁裸乳无遮挡动漫免费视频| 最近手机中文字幕大全| 午夜免费男女啪啪视频观看| 男人操女人黄网站| 亚洲成人手机| 欧美变态另类bdsm刘玥| 欧美亚洲 丝袜 人妻 在线| 午夜日韩欧美国产| 精品视频人人做人人爽| 国产精品无大码| 好男人视频免费观看在线| 欧美变态另类bdsm刘玥| 日韩制服骚丝袜av| 久久久久国产精品人妻一区二区| 国产一区二区激情短视频 | 9191精品国产免费久久| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲美女黄色视频免费看| 人妻人人澡人人爽人人| 欧美激情 高清一区二区三区| 久久这里只有精品19| 五月天丁香电影| 十八禁网站网址无遮挡| 中文字幕av电影在线播放| 久久久国产欧美日韩av| av在线观看视频网站免费| 日韩欧美精品免费久久| 热99久久久久精品小说推荐| 亚洲欧美成人综合另类久久久| a 毛片基地| 美女高潮到喷水免费观看| 大片电影免费在线观看免费| 女人被躁到高潮嗷嗷叫费观| 午夜福利网站1000一区二区三区| 久久ye,这里只有精品| 极品少妇高潮喷水抽搐| 一级,二级,三级黄色视频| av卡一久久| 日韩一区二区视频免费看| 少妇人妻 视频| 亚洲精品成人av观看孕妇| 国产白丝娇喘喷水9色精品| 中国三级夫妇交换| 99热全是精品| 美女脱内裤让男人舔精品视频| 中文字幕最新亚洲高清| 精品99又大又爽又粗少妇毛片| 麻豆av在线久日| 久久精品国产综合久久久| 久久久欧美国产精品| 少妇人妻久久综合中文| 精品少妇一区二区三区视频日本电影 | 女人精品久久久久毛片| 丰满饥渴人妻一区二区三| 美女脱内裤让男人舔精品视频| 久久久精品94久久精品| 亚洲图色成人| 最新的欧美精品一区二区| 精品国产国语对白av| 欧美人与善性xxx| 可以免费在线观看a视频的电影网站 | 成人18禁高潮啪啪吃奶动态图| av线在线观看网站| 视频在线观看一区二区三区| 9191精品国产免费久久| 亚洲第一青青草原| 欧美另类一区| 丝瓜视频免费看黄片| 最新的欧美精品一区二区| 亚洲精品国产av成人精品| 精品少妇黑人巨大在线播放| 欧美精品国产亚洲| 伊人久久国产一区二区| 欧美日韩成人在线一区二区| 欧美国产精品va在线观看不卡| www.av在线官网国产| 成人18禁高潮啪啪吃奶动态图| 亚洲少妇的诱惑av| 国产精品偷伦视频观看了| 不卡av一区二区三区| 亚洲视频免费观看视频| 国产精品亚洲av一区麻豆 | 777久久人妻少妇嫩草av网站| 国产高清不卡午夜福利| 青青草视频在线视频观看| h视频一区二区三区| av片东京热男人的天堂| 亚洲国产成人一精品久久久| 91午夜精品亚洲一区二区三区| 国产在视频线精品| 岛国毛片在线播放| 成人漫画全彩无遮挡| 久久精品熟女亚洲av麻豆精品| 99久久中文字幕三级久久日本| 亚洲精品国产av蜜桃| 亚洲一区二区三区欧美精品| 国产精品熟女久久久久浪| 女性生殖器流出的白浆| 综合色丁香网| 亚洲欧美成人精品一区二区| 99热国产这里只有精品6| 狠狠精品人妻久久久久久综合| 极品人妻少妇av视频| 亚洲欧美色中文字幕在线| 色哟哟·www| 欧美激情 高清一区二区三区| 最近中文字幕高清免费大全6| 久久精品人人爽人人爽视色| 一本大道久久a久久精品| av网站免费在线观看视频| 三级国产精品片| av福利片在线| 国产一区有黄有色的免费视频| 午夜久久久在线观看| 黄片小视频在线播放| 黄色毛片三级朝国网站| 日本-黄色视频高清免费观看| 久久久久精品性色| 大香蕉久久成人网| 老熟女久久久| 一级片'在线观看视频| 蜜桃在线观看..| 亚洲精品久久午夜乱码| 性高湖久久久久久久久免费观看| 老司机亚洲免费影院| 亚洲av国产av综合av卡| 久久久久久久国产电影| xxx大片免费视频| 亚洲视频免费观看视频| 国产免费视频播放在线视频| 永久网站在线| 国产亚洲一区二区精品| 国产一区二区在线观看av| 国产色婷婷99| 亚洲av电影在线观看一区二区三区| www.av在线官网国产| 亚洲欧美清纯卡通| 一级,二级,三级黄色视频| 国产成人欧美| 日日撸夜夜添| 亚洲视频免费观看视频| av卡一久久| 高清黄色对白视频在线免费看| 欧美日韩精品网址| 美女主播在线视频| 一个人免费看片子| 久久午夜综合久久蜜桃| 色94色欧美一区二区| 在线 av 中文字幕| 亚洲熟女精品中文字幕| 在线观看人妻少妇| 久久影院123| 90打野战视频偷拍视频| 下体分泌物呈黄色| 观看av在线不卡| 少妇精品久久久久久久| 亚洲国产精品一区三区| 90打野战视频偷拍视频| 国产 精品1| 五月伊人婷婷丁香| 国产免费又黄又爽又色| av一本久久久久| 国产一区二区激情短视频 | 一区二区三区精品91| 国产深夜福利视频在线观看| 男女边吃奶边做爰视频| 国产一区二区激情短视频 | 哪个播放器可以免费观看大片| 日日啪夜夜爽| 搡老乐熟女国产| 国产精品一区二区在线观看99| 国产老妇伦熟女老妇高清| 欧美精品一区二区免费开放| 久久久a久久爽久久v久久| 国产高清国产精品国产三级| 国产日韩欧美在线精品| 日韩三级伦理在线观看| 老女人水多毛片| 日本vs欧美在线观看视频| 老熟女久久久| 亚洲国产av新网站| 精品亚洲乱码少妇综合久久| av片东京热男人的天堂| 男女午夜视频在线观看| 女人精品久久久久毛片| 久久久a久久爽久久v久久| 女人精品久久久久毛片| 亚洲精品一区蜜桃| 人人妻人人澡人人看| 18禁动态无遮挡网站| 免费观看a级毛片全部| 亚洲精品成人av观看孕妇| 日产精品乱码卡一卡2卡三| 久久人人爽人人片av| 亚洲激情五月婷婷啪啪| 亚洲欧美日韩另类电影网站| 1024视频免费在线观看| 麻豆精品久久久久久蜜桃| 亚洲精品,欧美精品| 国产无遮挡羞羞视频在线观看| 两性夫妻黄色片| 国产精品久久久久久久久免| 男人操女人黄网站| 女人被躁到高潮嗷嗷叫费观| 精品国产乱码久久久久久小说| 黑人巨大精品欧美一区二区蜜桃| 日韩一卡2卡3卡4卡2021年| 十八禁高潮呻吟视频| 亚洲成国产人片在线观看| 国产日韩欧美在线精品| 又粗又硬又长又爽又黄的视频| 赤兔流量卡办理| 日韩成人av中文字幕在线观看| 国产白丝娇喘喷水9色精品| 国语对白做爰xxxⅹ性视频网站| 你懂的网址亚洲精品在线观看| 9热在线视频观看99| 亚洲av中文av极速乱| 十分钟在线观看高清视频www| 国产黄色视频一区二区在线观看| 亚洲精品日韩在线中文字幕| 下体分泌物呈黄色| 日韩人妻精品一区2区三区| 最近2019中文字幕mv第一页| freevideosex欧美| 啦啦啦啦在线视频资源| 少妇被粗大猛烈的视频| 美女视频免费永久观看网站| 少妇被粗大猛烈的视频| 男人舔女人的私密视频| 国产成人免费观看mmmm| 久久精品aⅴ一区二区三区四区 | 亚洲欧美中文字幕日韩二区| 久久99蜜桃精品久久| 国产一级毛片在线| 日韩制服骚丝袜av| 精品亚洲成a人片在线观看| 亚洲国产欧美在线一区| 精品人妻在线不人妻| 搡老乐熟女国产| 日本黄色日本黄色录像| 热re99久久国产66热| 中文字幕人妻丝袜制服| a 毛片基地| 黄片无遮挡物在线观看| 男人舔女人的私密视频| av又黄又爽大尺度在线免费看| 国产成人午夜福利电影在线观看| 校园人妻丝袜中文字幕| 国产白丝娇喘喷水9色精品| 中文字幕精品免费在线观看视频| 男的添女的下面高潮视频| 韩国av在线不卡| 免费在线观看黄色视频的| 波多野结衣av一区二区av| 男女国产视频网站| 黄色一级大片看看| 久久国内精品自在自线图片| 日韩av不卡免费在线播放| 如何舔出高潮| 免费不卡的大黄色大毛片视频在线观看| 在线观看免费视频网站a站| 久久影院123| 国产精品一区二区在线观看99| 国产精品嫩草影院av在线观看| 日韩一本色道免费dvd| 飞空精品影院首页| 日韩大片免费观看网站| 一区二区日韩欧美中文字幕| 色视频在线一区二区三区| 99精国产麻豆久久婷婷| 一二三四在线观看免费中文在| 日本色播在线视频| 亚洲av欧美aⅴ国产| 亚洲美女搞黄在线观看| 国产精品女同一区二区软件| 亚洲精品aⅴ在线观看| 国产乱人偷精品视频| xxxhd国产人妻xxx| 男的添女的下面高潮视频| videos熟女内射| xxxhd国产人妻xxx| 麻豆av在线久日| 日本欧美视频一区|