• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement

    2022-01-23 06:34:16RunrunHao郝潤潤KunZhang張昆YinggangLi李迎港QiangCao曹強(qiáng)XueyingZhang張學(xué)瑩DapengZhu朱大鵬andWeishengZhao趙巍勝
    Chinese Physics B 2022年1期
    關(guān)鍵詞:大鵬

    Runrun Hao(郝潤潤) Kun Zhang(張昆) Yinggang Li(李迎港) Qiang Cao(曹強(qiáng))Xueying Zhang(張學(xué)瑩) Dapeng Zhu(朱大鵬) and Weisheng Zhao(趙巍勝)

    1Fert Beijing Institute,MIIT Key Laboratory of Spintronics,School of Integrated Circuit Science and Engineering,

    Beihang University,Beijing 100191,China

    2Beihang-Goertek Joint Microelectronics Institute,Qingdao Research Institute,Beihang University,Qingdao 266000,China

    3Spintronics Institute,University of Jinan,Jinan 250022,China

    4Truth Instruments Co. Ltd.,Qingdao 266000,China

    Keywords: magnetoresistance,in-plane magnetization switching,electrical detection

    1. Introduction

    In recent years, intensive attention has been paid to the 3-terminal spintronic device with information written by the spin-orbit torque (SOT) effect, which allows a high writing speed without incubation delay and has an enhanced endurance benefiting from the separated read/write routes.[1-3]One typical SOT device employs a heavy metal/ferromagnet(HM/FM) heterostructure as the basic function structure for the information writing,where the spin current induced by an in-plane charge current via the spin-orbit interactions(SOI)of the HM layer will exert spin torques on the magnetization and drive magnetization switching of the adjacent FM layer.[4-9]In terms of the easy-axis direction of the FM layer,the SOT devices mainly take one of the two configuration types:the easyaxis perpendicular to the film plane,[6,10,11]or, the easy-axis lying in the film plane and orthogonal to the charge current.[4]A lot of experimental techniques, such as spin torque ferromagnetic resonance(ST-FMR)or harmonic Hall experiments,have been developed to characterize the SOT efficiency in these devices.[12-17]

    On the other hand, the SOT-induced magnetization switching is technologically more relevant to the device applications,thus the efficient probing of the SOT-induced magnetization switching is also of great significance. For the FM with perpendicular magnetic anisotropy(PMA),the magnetization switching can be easily probed by measuring the anomalous Hall effect (AHE).[5,6,18]However, for the FM with in-plane magnetic anisotropy (IMA), the Hall voltage or magnetoresistance (MR) measurements can not evidence the magnetization switching due to their equal resistance values for opposite magnetization orientations. The SOTinduced magnetization switching in the HM/FM heterostructure with IMA are typically probed by giant magnetoresistance (GMR)/tunneling magnetoresistance (TMR) in a spin valve structure.[19,20]The complicated device fabrication process hinders this technique being developed into a widely used approach to detect SOT switching. The magneto-optic Kerr effect (MOKE) imaging technique can also probe in-plane magnetization switching,[21,22]but suffers drawbacks of being applicable only to the devices with thin capping and having bad capability with low temperature and strong magnetic field.A convenient access to probe the SOT-induced magnetization switching of an FM with IMA is still highly desired.

    For FM with IMA,there is no difference in resistance for the magnetization oriented to opposite directions, as shown in Fig. 1(a). If a magnetic field (H) is applied to break the symmetry of the MR signal,the difference in resistance arises,i.e.,high-resistance-state(high-Rstate)or low-resistance-state(low-Rstate)occurs for the magnetization antiparallel or parallel toH, respectively,[23]as shown in Fig. 1(b). Inspired by this principle, we provide a convenient electrical strategy to probe the SOT-induced magnetization switching with IMA.For the material system with strong field-like SOT,[24]the resulting effective field when current flowing through HM would break the symmetry and result in resistance difference for opposite magnetization orientations, thus allowing the electrically probing of the magnetic state. Furthermore, an appropriate external magnetic field can replace the field-like effective field to modify the MR signal, which is suitable for more extensive material systems,not only the one with strong field-like torque. We observe clear SOT switching loops and demonstrate the feasibility of these methods in probing the SOT driven magnetization switching in various systems of Pt/NiFe,W/CoFeB and Bi2Se3/NiFe Hall bars with IMA.The method with MR modified by an external magnetic field enables a small reading current, which can avoid thermal noise and possible even damage on microstructure device due to the persistent Joule heating. This work provides an effective and reliable method to electrically characterize the in-plane magnetization switching in a simple Hall bar,which can facilitate the study of SOT-related effect.

    Fig.1. Schematic diagrams of resistance states of FM layer for magnetization oriented to opposite directions(a)without or(b)with a modifying field.

    2. Experimental details

    The Pt(6)/Ni20Fe80(8)and W(5)/Co20Fe60B20(1.9)bilayers(the thicknesses in the parentheses are in nanometers)are prepared on thermally oxidized Si substrates with a magnetron sputtering system at room temperature, and the base pressure is better than 5×10-6Pa. As for the Bi2Se3(8)/Ni80Fe20(3.5)bilayers, the high-quality Bi2Se3films are grown on Al2O3(0001) substrates in a molecular beam epitaxy (MBE) system with a base pressure better than 2×10-7Pa, by using the two-step deposition procedure,and then the Ni80Fe20film is subsequently sputtered on the Bi2Se3film at room temperature. For MR and SOT switching measurements, the as-deposited films are patterned into Hall bars with channel sizes of 10μm×80μm through photolithography and Ar ion milling processes. All measurements are performed at room temperature using a home-made magneto-electrical transport measurement system. A current source of Keithley 6221 and a nano-voltmeter of Keithley 2182 are used to supply dc read currents (Iread) and detect dc voltages (V), respectively.The longitudinal resistanceRxx=V/Iread. The pulse currents(Ipulse)with pulse duration of 10μs for switching the magnetization are supplied by Keithley 4200.

    3. Results and discussion

    The MR measurement with a four-point probe method for Pt/Ni20Fe80is schematically shown in Fig. 2(a). We inject the charge current(includingIreadandIpulse)and measure the voltage alongxaxis with external magnetic fieldsHextsweeping alongyaxis. As shown in Fig. 2(b), the magnetization of the Pt/Ni80Fe20is characterized by MR measurement withIread=-0.1 mA,and the coercive field of about 5.2 Oe is obtained. The normalized MR loops withIread=±4 mA are shown in Fig. 2(c). ForIread=±4 mA, obvious horizontal shifts of the MR peaks are observed, indicating the existence of a current-induced effective fieldHCEF.[25-27]The critical magnetization switching fieldsHSWfor differentIreadare shown in Fig. 2(d), whereH+SWorH-SWare the critical magnetization switching fields for external fields sweeping from-yto +yor from +yto-y, respectively. We find thatH+SWandH-SWare both proportional to the value ofIread, andHCEF=(H+SW+H-SW)/2 is reversed when the sign ofIreadis changed. For|Iread|=4 mA,the Oster fieldHOeinduced acting on the Ni80Fe20layer is calculated to be much smaller thanHCEF≈2.5 Oe. Hence, the horizontal shift in the MR loop mainly origins from the field-like effective field induced by the SOT effect.

    The magnetization switching measurements of the Pt/Ni80Fe20Hall bar with the modification ofHCEFare performed. Figures 3(a)and 3(b)illustrate the process diagrams of these measurements. The pulse currentIpulsesweeps from negative to positive values and back to negative values. After each of pulse currents,read currents ofIread=±3 mA are injected to modify MR signals and detect the corresponding voltages.The longitudinal resistanceRxxversus pulse currentIpulseis shown in Figs.3(c)and 3(d). It is found thatRxxswitches to the high-Rstate or low-Rstate at critical switching pulse currents ofIpulse≈?5.5 mA,respectively. The measured critical switching current is well reproducible after several switching cycles. And the polarities of the pulse current-induced switching loops are opposite forIread=±3 mA.The origin of variation inRxxwhen the magnetization switching takes place is schematically shown in Figs.3(e)and 3(f). Under the modification of largeHCEF, the states with magnetization along±ydirections have differentRxxvalues. When the damping-like torque induced by theIpulseis large enough to overcome the intrinsic damping and switches the magnetization,a variation inRxxoccurs with the modification ofHCEF.

    Fig.2. (a)Schematic illustration of the Pt/Ni80Fe20 Hall bar device with channel size of 10μm×80μm and MR measurement. The positive direction of current is defined along the-x direction,and the positive direction of the external magnetic field is defined along the+y direction.(b)The MR loop for Pt/Ni80Fe20 Hall bar with Iread =-0.1 mA.(c)The shifted MR loops for Pt/Ni80Fe20 Hall bar with Iread =±4 mA.(d)The critical switching field HSW versus read current Iread for Pt/Ni80Fe20 Hall bar. The HCEF =(H+SW+H-SW)/2, where H+SW or H-SW are the critical switching fields for external field Hext sweeping from-y to+y or from+y to-y,respectively.

    As can be seen from the above results, the MR modified byHCEFcan be used to probe SOT-induced switching in the heterostructure with IMA.Note that the requirement for a sizeableHCEFmay be an important limitation for this method. For the stacks with smallHCEF,[12,28]there is no significant difference inRxxfor opposite magnetization orientations. This limitation can be eliminated by introducing an appropriate external assisting fieldHassist. Next,we demonstrate the probing of SOT-induced magnetization switching of the Pt/Ni80Fe20heterostructure under the modification ofHassist. The process diagrams of the switching measurements with the assisting fields ofHassist=?1.2 Oe are illustrated in Figs. 4(a) and 4(b), respectively. The pulse currentsIpulsesweep from negative to positive values and back to negative values. After each ofIpluse,a small read current ofIread=+0.1 mA and anHassistare applied simultaneously to detect the corresponding resistance.As shown in Fig.4(c),withHassist=-1.2 Oe,theRxxswitches to low-Rstate at aroundIpluse=+5.5 mA,and it switches back to high-Rstate at aroundIpluse=-5.5 mA.And the polarities of switching loops change with the sign reversal ofHassist, as shown in Fig.4(d).The origin of difference inRxxbetween the opposite magnetization orientations is schematically shown in Figs.4(e)and 4(f).For|Iread|=0.1 mA,theHCEFis negligibly small as shown in Fig.2(b).TheHassistplays the similar role in modifyingRxxto that ofHCEF,where theRxxvalue depends on the relative orientation between the magnetization andHassist.Comparing the above two methods,the former one that modified byHCEFrequires a relatively simple equipment, but is infeasible for the systems with small field-like torque. In addition,the required giant reading current and subsequent persistent Joule heating may introduce remarkable thermal noise and even damage the microstructure device. In contrast, the latter one that modified byHassistallows a small read current and caters for more extensive material systems,which is a universal,reliable and effective method.

    Based on the measured results,we can estimate the SOT efficiency of the Pt/Ni80Fe20heterostructure. The field-like SOT efficiency(ξFL)can be written as[29,30]

    whereMS,tNiFe,μ0Mk, andJPtare the saturation magnetization, thickness of the Ni80Fe20layer, demagnetization field,and current density flowing in the Pt layer,respectively.TheHFL=HCEF-HOeis the field-like effective field acting on the Ni80Fe20layer, which is proportional toJPt. With pulse current duration ranging from 5 μs to 0.5 s, the critical switching current almost keeps a constant. Therefore,the zero-thermal-fluctuation critical switching current densityJc0should be approximately equal to the critical switching current densityJcfor our sample.[33]The damping constantα0≈0.015 andμ0Mk≈0.92 T are determined by ferromagnetic resonance (FMR) measurements. With Eqs. (1)and (2), the field-like SOT efficiencyξFL= 0.01 and the damping-like SOT efficiencyξDL=0.23 are obtained for the Pt/Ni80Fe20heterostructure, respectively. The calculatedξFLandξDLare comparable to the values reported in previous works.[25,30,34,35]

    Fig. 3. The magnetization switching measurement with MR modified by the current-induced effective field HCEF for Pt/Ni80Fe20 Hall bar.(a),(b)The measurement processes for the switching experiments with read currents of Iread=±3 mA,respectively. (c),(d)The variation in resistance versus pulse current with Iread =±3 mA,respectively. (e), (f)The difference in resistance for opposite magnetization orientations with positive and negative read currents,respectively.

    Fig. 4. The magnetization switching measurement with MR modified by the external magnetic field for Pt/Ni80Fe20 Hall bar. (a), (b) The measurement processes for switching experiments with read current of Iread=+0.1 mA.During the measurements of Rxx,the assisting fields of Hassist=?1.2 Oe are applied,respectively. (c),(d)The variation in resistance versus pulse current with assisted fields of Hassist=?1.2 Oe,respectively. (e),(f)Schematic diagrams of difference in resistance for opposite magnetization orientations under the modification of negative and positive assisting fields,respectively.

    Fig.5.(a),(b)The variation in resistance versus pulse current for W/Co20Fe60B20 Hall bar with assisted fields of Hassist=?1.7 Oe,respectively.(c),(d)The variation in resistance versus pulse current for Bi2Se3/Ni80Fe20 Hall bar with assisted fields of Hassist=?1 Oe,respectively.

    To further verify the feasibility and application range of our method, the magnetization switching measurements withRxxmodified by theHassistare also performed in different material systems. TheRxxversus the magnetic field of a W/Co20Fe60B20Hall bar withHassist=?1.7 Oe is shown in Figs. 5(a) and 5(b), respectively. The switching ofRxxbetween high-Rstate and low-Rstate takes place atIpluse=±6.8 mA. The polarities of the switching loops are reversed when the HM layer is changed from Pt to W forHassistwith the same sign since Pt and W possess opposite signs of the spin Hall angle. It is worth noting that the measured signal of W/Co20Fe60B20in our experiments is comparable to that of Pt/Ni80Fe20.[36]Meanwhile,the anisotropy MR(AMR)ratio of Co20Fe60B20single layer is about one order smaller than that of Ni80Fe20.[37,38]These results mean that the spin MR(SMR),proportional to the square of the HM layer’s spin Hall angle,[23]plays a dominant role in the electrical measurement of magnetization switching in the W/Co20Fe60B20sample. Therefore, our method is suitable for various FM materials,even those with weak common AMR.Furthermore,our method is extended to the emerging topological insulator of Bi2Se3with large charge-to-spin conversion efficiency and the magnetization switching measurements of Bi2Se3/Ni80Fe20Hall bar are performed.[39]The clear switching ofRxxat|Ipluse|=3.4 mA withHassist=?1 Oe is observed in Figs.5(c)and 5(d),respectively. With Eq.(2),the damping-like SOT efficiencyξDLof Bi2Se3/Ni80Fe20is estimated to be 0.91 which is roughly consistent with the previous report.[22]The above results strongly demonstrate that our method can be used to effectively determine the SOT efficiency for various material systems with IMA.

    4. Conclusion

    In summary, with the modification of a current-induced effective field or an external assisting field,the switching symmetry of MR is broken and the difference in resistance is induced for opposite magnetization orientations, allowing the electrical probing of in-plane magnetization switching in a simple Hall bar device. The method by utilizing an assisting field can be employed for various material systems, even for that without current-induced field-like SOT field. Our results extend the approaches to determine the SOT switching in the heterostructures with IMA,and will contribute to the research about SOT-based memory and computation.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.11904017,11974145,51901008,and 12004024),Shandong Provincial Natural Science Foundation,China(Grant No.ZR2020ZD28),platform from Qingdao Science and Technology Commission, and the Fundamental Research Funds for the Central Universities of China.

    猜你喜歡
    大鵬
    周鵬飛:大鵬展翅 跨界高飛
    華人時刊(2022年7期)2022-06-05 07:33:46
    Beating standard quantum limit via two-axis magnetic susceptibility measurement
    看圖紙
    三棱錐中的一個不等式
    Vorticity vector-potential method based on time-dependent curvilinear coordinates for two-dimensional rotating flows in closed configurations *
    Proton Beam Generated by Multi-Lasers Interaction with Rear-Holed Target
    李大鵬:打造縱向、橫向全域發(fā)展的蘇交科
    中國公路(2017年14期)2017-09-26 11:51:42
    劉業(yè)偉、王大鵬設(shè)計作品
    非誠勿擾
    AComparingandContrastingAnalysisofCooperationandPoliteness
    国产v大片淫在线免费观看| 人人妻,人人澡人人爽秒播| 国产蜜桃级精品一区二区三区| 十八禁网站免费在线| 午夜影院日韩av| 91字幕亚洲| 在线观看66精品国产| 香蕉久久夜色| 99热精品在线国产| 久久国产精品人妻蜜桃| 亚洲不卡免费看| 狂野欧美激情性xxxx| 国产亚洲欧美98| 亚洲欧美激情综合另类| 国产成人aa在线观看| 熟女人妻精品中文字幕| 国产成人aa在线观看| 免费在线观看成人毛片| aaaaa片日本免费| 国内精品久久久久久久电影| 精品无人区乱码1区二区| 色视频www国产| 亚洲av电影不卡..在线观看| 99热这里只有是精品50| 婷婷亚洲欧美| 欧美av亚洲av综合av国产av| 国产伦人伦偷精品视频| 亚洲第一欧美日韩一区二区三区| 国产亚洲精品综合一区在线观看| 亚洲精品一区av在线观看| 久久精品影院6| 久久久久国内视频| 亚洲国产中文字幕在线视频| 老熟妇乱子伦视频在线观看| 91av网一区二区| 亚洲狠狠婷婷综合久久图片| 18禁黄网站禁片午夜丰满| 国产高清三级在线| 欧美日韩黄片免| 久久久成人免费电影| 日本免费a在线| 中文字幕精品亚洲无线码一区| 国产成人a区在线观看| 免费av不卡在线播放| 18禁黄网站禁片免费观看直播| 国产一区二区三区在线臀色熟女| 中文字幕精品亚洲无线码一区| 脱女人内裤的视频| 亚洲 国产 在线| 亚洲av成人av| 午夜福利在线观看吧| 久久草成人影院| 亚洲成av人片在线播放无| 日韩人妻高清精品专区| 免费av毛片视频| 日韩av在线大香蕉| 成人18禁在线播放| 国产伦在线观看视频一区| 一个人看的www免费观看视频| 香蕉久久夜色| 午夜免费男女啪啪视频观看 | 欧美zozozo另类| 欧美日韩乱码在线| 久久天躁狠狠躁夜夜2o2o| 午夜免费激情av| 男插女下体视频免费在线播放| 黄色视频,在线免费观看| 岛国在线免费视频观看| 午夜精品在线福利| 久久精品国产99精品国产亚洲性色| 在线播放国产精品三级| 国产精品野战在线观看| 亚洲欧美日韩东京热| 国产精品久久久久久久电影 | 首页视频小说图片口味搜索| 欧美激情久久久久久爽电影| 国产欧美日韩一区二区三| 天天躁日日操中文字幕| 亚洲天堂国产精品一区在线| 不卡一级毛片| www.999成人在线观看| 黄片大片在线免费观看| 看免费av毛片| 91久久精品电影网| a级毛片a级免费在线| 一进一出抽搐动态| 国产伦在线观看视频一区| 久久人人精品亚洲av| 国产精品自产拍在线观看55亚洲| 99久久综合精品五月天人人| 婷婷精品国产亚洲av| 婷婷六月久久综合丁香| 午夜精品在线福利| 亚洲午夜理论影院| 国产不卡一卡二| 亚洲aⅴ乱码一区二区在线播放| 国产v大片淫在线免费观看| 日本熟妇午夜| 国产精品香港三级国产av潘金莲| 黄片大片在线免费观看| 小蜜桃在线观看免费完整版高清| 搡老岳熟女国产| 欧美成人性av电影在线观看| 欧美国产日韩亚洲一区| 亚洲一区二区三区色噜噜| 欧美黑人欧美精品刺激| 国产成人av教育| 午夜免费男女啪啪视频观看 | 亚洲精品456在线播放app | 成人欧美大片| 大型黄色视频在线免费观看| 国产伦人伦偷精品视频| 中文字幕人妻熟人妻熟丝袜美 | 成人性生交大片免费视频hd| 欧美另类亚洲清纯唯美| 日韩欧美在线二视频| 内地一区二区视频在线| 黄色丝袜av网址大全| 日本三级黄在线观看| 国产精品久久电影中文字幕| 午夜精品一区二区三区免费看| 国产欧美日韩精品一区二区| 亚洲va日本ⅴa欧美va伊人久久| 两个人的视频大全免费| 在线观看一区二区三区| 亚洲av日韩精品久久久久久密| 夜夜爽天天搞| 99久久精品国产亚洲精品| 久久人妻av系列| 好看av亚洲va欧美ⅴa在| 999久久久精品免费观看国产| 美女免费视频网站| АⅤ资源中文在线天堂| 成人无遮挡网站| 日本黄色片子视频| 中文字幕高清在线视频| 亚洲 欧美 日韩 在线 免费| 国产精品日韩av在线免费观看| 狂野欧美白嫩少妇大欣赏| 成人一区二区视频在线观看| 此物有八面人人有两片| 啪啪无遮挡十八禁网站| 日日摸夜夜添夜夜添小说| 男人舔奶头视频| 免费大片18禁| 欧美另类亚洲清纯唯美| 夜夜看夜夜爽夜夜摸| 亚洲精品美女久久久久99蜜臀| 国产真实乱freesex| 中文字幕av在线有码专区| 国产午夜精品久久久久久一区二区三区 | 深夜精品福利| 一级作爱视频免费观看| 99久久99久久久精品蜜桃| 中文资源天堂在线| 久久天躁狠狠躁夜夜2o2o| 亚洲成人久久爱视频| 中文字幕人妻熟人妻熟丝袜美 | 国产高潮美女av| 日本 av在线| 变态另类丝袜制服| 男女床上黄色一级片免费看| a级毛片a级免费在线| 看免费av毛片| 亚洲av五月六月丁香网| 不卡一级毛片| 久久精品国产亚洲av香蕉五月| 国产伦人伦偷精品视频| av女优亚洲男人天堂| 亚洲av成人精品一区久久| 免费av观看视频| 国产亚洲精品久久久久久毛片| 人人妻人人澡欧美一区二区| 长腿黑丝高跟| 在线观看午夜福利视频| 少妇的丰满在线观看| 久久久精品大字幕| 老司机深夜福利视频在线观看| 免费av观看视频| 国产亚洲精品一区二区www| 国产亚洲精品av在线| 伊人久久精品亚洲午夜| 成人国产一区最新在线观看| 亚洲国产欧洲综合997久久,| 啪啪无遮挡十八禁网站| 日本黄色片子视频| 日韩欧美在线乱码| 一进一出抽搐gif免费好疼| 91麻豆精品激情在线观看国产| 69av精品久久久久久| 亚洲精品456在线播放app | av视频在线观看入口| 夜夜夜夜夜久久久久| 日韩大尺度精品在线看网址| 在线视频色国产色| 久久久色成人| 内射极品少妇av片p| 九九久久精品国产亚洲av麻豆| 亚洲欧美日韩高清专用| 亚洲av五月六月丁香网| 久久久精品欧美日韩精品| 国产精品久久电影中文字幕| 日韩免费av在线播放| 国产高清有码在线观看视频| 99久久精品一区二区三区| 亚洲欧美日韩无卡精品| tocl精华| 成人永久免费在线观看视频| 天堂动漫精品| 中出人妻视频一区二区| 91久久精品电影网| 51午夜福利影视在线观看| 中文在线观看免费www的网站| 日本免费一区二区三区高清不卡| 国产精品 国内视频| 脱女人内裤的视频| av国产免费在线观看| 国产精华一区二区三区| 国产精品乱码一区二三区的特点| 99热只有精品国产| 欧美极品一区二区三区四区| 国内少妇人妻偷人精品xxx网站| 性色av乱码一区二区三区2| 最近最新中文字幕大全电影3| 日本五十路高清| 国产精品久久视频播放| 久久精品国产亚洲av涩爱 | 亚洲精品久久国产高清桃花| 少妇的逼水好多| 少妇丰满av| 别揉我奶头~嗯~啊~动态视频| 天天一区二区日本电影三级| a级毛片a级免费在线| 亚洲精品乱码久久久v下载方式 | 亚洲精品乱码久久久v下载方式 | 国产在视频线在精品| 91字幕亚洲| 母亲3免费完整高清在线观看| a级一级毛片免费在线观看| 一区福利在线观看| xxxwww97欧美| 一区二区三区激情视频| 亚洲aⅴ乱码一区二区在线播放| 精品国内亚洲2022精品成人| 午夜福利欧美成人| 老司机午夜十八禁免费视频| 成人av一区二区三区在线看| 欧美xxxx黑人xx丫x性爽| 一区二区三区国产精品乱码| 国产高清视频在线观看网站| 欧洲精品卡2卡3卡4卡5卡区| av天堂在线播放| 午夜免费激情av| 国产免费男女视频| 国产精品一区二区三区四区久久| 国产av一区在线观看免费| av中文乱码字幕在线| 久久久久九九精品影院| 激情在线观看视频在线高清| 偷拍熟女少妇极品色| 国产又黄又爽又无遮挡在线| 免费看a级黄色片| 免费观看的影片在线观看| 国产精品亚洲美女久久久| 国产高清视频在线观看网站| 精品人妻一区二区三区麻豆 | 久久性视频一级片| 欧美精品啪啪一区二区三区| 久久久久久久午夜电影| 黄色丝袜av网址大全| 最好的美女福利视频网| 久99久视频精品免费| av天堂中文字幕网| 最近视频中文字幕2019在线8| 国产在视频线在精品| 精品久久久久久,| 毛片女人毛片| 成年版毛片免费区| 日本a在线网址| 国产精品野战在线观看| 深夜精品福利| 国产精品 欧美亚洲| 精品人妻1区二区| 久久性视频一级片| 欧美区成人在线视频| 观看美女的网站| 欧美最黄视频在线播放免费| 国产成年人精品一区二区| 特大巨黑吊av在线直播| 久久人人精品亚洲av| 麻豆成人午夜福利视频| 久久精品91蜜桃| 69av精品久久久久久| 亚洲成av人片在线播放无| 99精品欧美一区二区三区四区| 亚洲男人的天堂狠狠| 2021天堂中文幕一二区在线观| 欧美午夜高清在线| 久久午夜亚洲精品久久| 日本黄色视频三级网站网址| 久久天躁狠狠躁夜夜2o2o| 内射极品少妇av片p| 琪琪午夜伦伦电影理论片6080| 亚洲天堂国产精品一区在线| 黄色女人牲交| 国产精品久久久久久久久免 | 91久久精品国产一区二区成人 | 天堂√8在线中文| 国产av一区在线观看免费| 亚洲一区二区三区色噜噜| 99国产综合亚洲精品| 亚洲精品一区av在线观看| 亚洲真实伦在线观看| or卡值多少钱| 在线观看免费午夜福利视频| 人妻丰满熟妇av一区二区三区| 日韩中文字幕欧美一区二区| 麻豆久久精品国产亚洲av| 精品国产三级普通话版| 禁无遮挡网站| 制服人妻中文乱码| 亚洲 欧美 日韩 在线 免费| 国产三级黄色录像| 久久久国产成人精品二区| 黄色日韩在线| 五月玫瑰六月丁香| 无人区码免费观看不卡| 日韩精品中文字幕看吧| 岛国视频午夜一区免费看| 精品无人区乱码1区二区| 老熟妇乱子伦视频在线观看| 亚洲熟妇中文字幕五十中出| e午夜精品久久久久久久| 黄色成人免费大全| 一二三四社区在线视频社区8| 国产97色在线日韩免费| 午夜两性在线视频| 国产精品一区二区三区四区久久| 亚洲第一电影网av| 午夜福利欧美成人| 熟女少妇亚洲综合色aaa.| 国产野战对白在线观看| 国产视频内射| 久久欧美精品欧美久久欧美| 免费在线观看亚洲国产| 国产av在哪里看| 18禁黄网站禁片午夜丰满| av在线蜜桃| 毛片女人毛片| 精品一区二区三区视频在线观看免费| 桃红色精品国产亚洲av| 亚洲成人免费电影在线观看| 禁无遮挡网站| 亚洲 欧美 日韩 在线 免费| 欧美乱妇无乱码| 九九在线视频观看精品| 午夜免费激情av| 三级男女做爰猛烈吃奶摸视频| 69人妻影院| 国产精品99久久久久久久久| 搡老妇女老女人老熟妇| 国产免费男女视频| 国产高清有码在线观看视频| 99久久九九国产精品国产免费| 搡老妇女老女人老熟妇| 亚洲国产精品合色在线| 久久亚洲真实| 亚洲色图av天堂| а√天堂www在线а√下载| 又黄又粗又硬又大视频| 国产黄色小视频在线观看| 国产熟女xx| 国产一区二区三区在线臀色熟女| 欧美乱码精品一区二区三区| av在线天堂中文字幕| 看黄色毛片网站| 国产一区二区在线av高清观看| 免费在线观看日本一区| 国产精品日韩av在线免费观看| 国内精品久久久久精免费| 亚洲18禁久久av| 天堂网av新在线| 中文字幕人妻丝袜一区二区| 久久久精品大字幕| 亚洲精品粉嫩美女一区| 午夜日韩欧美国产| 超碰av人人做人人爽久久 | av中文乱码字幕在线| 国内精品久久久久久久电影| 午夜福利18| 欧美色欧美亚洲另类二区| 国产精品久久久久久久电影 | 国内久久婷婷六月综合欲色啪| 久久国产精品影院| 他把我摸到了高潮在线观看| 在线观看免费午夜福利视频| 久久精品国产亚洲av涩爱 | 国产成人av激情在线播放| 国产精品,欧美在线| 制服人妻中文乱码| 国产精品一区二区三区四区久久| 国产欧美日韩精品一区二区| 国产一区二区三区在线臀色熟女| 欧美乱色亚洲激情| 日韩av在线大香蕉| 欧美区成人在线视频| 俺也久久电影网| 久久精品91蜜桃| 亚洲av免费高清在线观看| 三级国产精品欧美在线观看| 可以在线观看的亚洲视频| 伊人久久大香线蕉亚洲五| 一级黄片播放器| 最好的美女福利视频网| 色综合欧美亚洲国产小说| 亚洲精品成人久久久久久| 欧美日韩亚洲国产一区二区在线观看| www.色视频.com| 国产高清videossex| 丰满的人妻完整版| 欧美大码av| 岛国视频午夜一区免费看| 亚洲欧美日韩高清在线视频| 久久久国产精品麻豆| 国产亚洲精品综合一区在线观看| 天美传媒精品一区二区| 国产精品98久久久久久宅男小说| 久久性视频一级片| 亚洲专区中文字幕在线| 在线观看免费午夜福利视频| 国产精品98久久久久久宅男小说| 欧美性感艳星| 淫秽高清视频在线观看| 91在线精品国自产拍蜜月 | 欧美日本亚洲视频在线播放| 一本一本综合久久| 精品福利观看| 我要搜黄色片| 欧美不卡视频在线免费观看| 黄片大片在线免费观看| 中文字幕av成人在线电影| 老司机午夜十八禁免费视频| 日韩 欧美 亚洲 中文字幕| 国产精品久久电影中文字幕| 美女黄网站色视频| 国产探花在线观看一区二区| 亚洲性夜色夜夜综合| 国产伦在线观看视频一区| av视频在线观看入口| 在线a可以看的网站| 亚洲av免费高清在线观看| 午夜福利高清视频| 两人在一起打扑克的视频| 亚洲成人中文字幕在线播放| 国产亚洲精品久久久com| 欧美日韩综合久久久久久 | 深夜精品福利| 午夜免费男女啪啪视频观看 | h日本视频在线播放| 午夜免费激情av| 久久国产精品影院| 欧美激情在线99| 熟女人妻精品中文字幕| 夜夜夜夜夜久久久久| 久久久久久九九精品二区国产| 1024手机看黄色片| 女同久久另类99精品国产91| 亚洲av熟女| 无限看片的www在线观看| 哪里可以看免费的av片| 色尼玛亚洲综合影院| 此物有八面人人有两片| 久久性视频一级片| 白带黄色成豆腐渣| 亚洲狠狠婷婷综合久久图片| 欧美一级a爱片免费观看看| avwww免费| e午夜精品久久久久久久| 国产精品综合久久久久久久免费| 免费搜索国产男女视频| 香蕉久久夜色| 国产精品日韩av在线免费观看| 国产 一区 欧美 日韩| 国产不卡一卡二| 久久草成人影院| 日本与韩国留学比较| 国产中年淑女户外野战色| 国产一区二区三区视频了| 99riav亚洲国产免费| 国产精品99久久99久久久不卡| 性色av乱码一区二区三区2| 日韩欧美在线乱码| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕久久专区| 免费看美女性在线毛片视频| 又紧又爽又黄一区二区| 精品一区二区三区视频在线 | 久久久色成人| 不卡一级毛片| 精品欧美国产一区二区三| 欧美+亚洲+日韩+国产| 夜夜夜夜夜久久久久| 99国产极品粉嫩在线观看| 无人区码免费观看不卡| av欧美777| 怎么达到女性高潮| 欧美一区二区亚洲| 变态另类成人亚洲欧美熟女| 国产成人aa在线观看| 亚洲精品成人久久久久久| 国产综合懂色| 嫩草影院精品99| 黄色日韩在线| 国产美女午夜福利| 在线观看一区二区三区| 免费在线观看日本一区| 亚洲欧美一区二区三区黑人| 国产午夜福利久久久久久| x7x7x7水蜜桃| 日韩欧美一区二区三区在线观看| 真人做人爱边吃奶动态| 久久亚洲真实| 亚洲专区中文字幕在线| 亚洲avbb在线观看| 长腿黑丝高跟| 欧美日韩瑟瑟在线播放| 亚洲欧美日韩高清专用| 亚洲成人中文字幕在线播放| 国产成人av激情在线播放| 免费看美女性在线毛片视频| 日韩中文字幕欧美一区二区| 色视频www国产| 久久精品国产清高在天天线| 久久久久久久久中文| 夜夜爽天天搞| 久久精品人妻少妇| 日本三级黄在线观看| 国产精品日韩av在线免费观看| 日本熟妇午夜| 久9热在线精品视频| 18禁黄网站禁片免费观看直播| 亚洲av成人精品一区久久| 我要搜黄色片| 久久精品91蜜桃| 成人鲁丝片一二三区免费| 美女黄网站色视频| 成人永久免费在线观看视频| 免费观看的影片在线观看| 午夜影院日韩av| 久久人妻av系列| 香蕉丝袜av| 精品国产亚洲在线| 免费看日本二区| 亚洲熟妇中文字幕五十中出| 757午夜福利合集在线观看| 精品一区二区三区视频在线 | 亚洲av成人精品一区久久| 亚洲av一区综合| 亚洲 欧美 日韩 在线 免费| 成人鲁丝片一二三区免费| 国产成年人精品一区二区| 欧美绝顶高潮抽搐喷水| 真人一进一出gif抽搐免费| 啦啦啦免费观看视频1| 99热精品在线国产| 欧美在线一区亚洲| 国产爱豆传媒在线观看| 国产精品 欧美亚洲| 90打野战视频偷拍视频| 一级黄色大片毛片| e午夜精品久久久久久久| 日韩欧美三级三区| 两性午夜刺激爽爽歪歪视频在线观看| 真人一进一出gif抽搐免费| 3wmmmm亚洲av在线观看| 99久久精品一区二区三区| 亚洲精品影视一区二区三区av| 欧美+亚洲+日韩+国产| 国产av一区在线观看免费| av在线天堂中文字幕| 精品一区二区三区视频在线观看免费| 最新在线观看一区二区三区| 欧美黑人欧美精品刺激| 岛国在线观看网站| 国产麻豆成人av免费视频| 日韩欧美一区二区三区在线观看| 欧美乱码精品一区二区三区| 亚洲最大成人手机在线| 少妇人妻一区二区三区视频| 国产精品电影一区二区三区| 中亚洲国语对白在线视频| 最好的美女福利视频网| 久久久精品大字幕| 日韩av在线大香蕉| 亚洲精品在线观看二区| 国产色爽女视频免费观看| 精品免费久久久久久久清纯| 亚洲成人久久性| 色尼玛亚洲综合影院| 欧美一区二区亚洲| 我的老师免费观看完整版| 亚洲精品乱码久久久v下载方式 | 久久久国产成人精品二区| 国产成人av激情在线播放| 美女黄网站色视频| 日韩国内少妇激情av| 亚洲人成电影免费在线| 久久久成人免费电影| 9191精品国产免费久久| 嫁个100分男人电影在线观看| 搡老岳熟女国产| 成人精品一区二区免费| 十八禁人妻一区二区| av国产免费在线观看| 中文字幕高清在线视频|