• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Instantaneous frequency measurement using two parallel I/Q modulators based on optical power monitoring

    2022-01-23 06:34:32ChuangyeWang王創(chuàng)業(yè)TigangNing寧提綱JingLi李晶LiPei裴麗JingjingZheng鄭晶晶andJingchuanZhang張景川
    Chinese Physics B 2022年1期
    關(guān)鍵詞:李晶晶晶

    Chuangye Wang(王創(chuàng)業(yè)) Tigang Ning(寧提綱) Jing Li(李晶) Li Pei(裴麗)Jingjing Zheng(鄭晶晶) and Jingchuan Zhang(張景川)

    1Key Laboratory of All Optical Network and Advanced Telecommunication Network of EMC,Institute of Lightwave Technology,Beijing Jiaotong University,Beijing 100044,China

    2Beijing Institute of Spacecraft Environment Engineering,Beijing 100029,China

    Keywords: microwave photonics,instantaneous frequency measurement,optical power monitoring

    1. Introduction

    Instantaneous frequency measurement (IFM) has been a research hotspot in recent years. It has important applications in both military and civil fields, such as radar,communication systems, and electronic warfare systems.[1,2]The traditional electronics method is no longer suitable for future development due to the disadvantages of large loss,small measurement bandwidth and no immunity to electromagnetic interference, but the photonics method perfectly overcomes these shortcomings.[3-5]The researchers have proposed many IFM schemes based on photonics methods, for example,based on the frequency-space mapping method,[6-8]frequency-time mapping method,[9-14]frequency-phase mapping method,[15,16]and frequency-power mapping method.Among them,the method based on frequency-power mapping is the most common. The basic principle is to use a modulator to modulate the received RF signal, then the modulated signal is divided into two channel signals and processed in the optical domain, and the processed optical signals are directly used to measure the optical power, or converted into electrical signals by the photodetector to measure the electrical power. The ACF is constructed to establish the corresponding relationship between the frequency of the RF signal and the power ratio of two channel signals. The frequency of the RF signal can be determined by monitoring the optical power ratio or the electrical power ratio of the two channel signals. In Refs. [17-20], these schemes first used a modulator to modulate the input RF signal, then the modulated signal went through different dispersion processes to achieve different power attenuation,and finally a fixed relationship between the input RF frequency and the power ratio of two output signals was established. The frequency of the RF signal can be derived from the power ratio. In Refs.[21,22],the input RF signal first entered Mach-Zehnder modulator(MZM)for carrier suppression modulation, then the optical filter was used to process the modulated signal, and finally the power ratio of the two processed signals was used to derive the frequency of the input RF signal. In Ref.[23], a phase modulator was put into a Sagnac loop to establish a relationship between the amplitude of the direct current output and the input RF frequency. The measurement range can reach 0.01 GHz-40 GHz and the measurement error is less than 6%. In addition,IFM can also be realized by converting frequency information into power information based on stimulated Brillouin scattering,[24,25]resonators,[26,27]and four-wave mixing.[28]Although these schemes can realize IFM, they are relatively complex in structure. In Ref. [29], the author realized IFM based on a dual-polarization modulator and an electrical delay line. Compared with the previous IFM schemes,the structure is simpler and the cost is lower (there is no expensive highspeed electronic device). However, in this scheme, the polarization controller needs to be accurately kept at 45°, which increases the instability of the system(the polarization device is sensitive to the environment).

    In this paper,a simpler structure for IFM is proposed.The scheme only uses one optical source,one electrical delay line,two I/Q modulators and two optical power meters. By setting the bias point of two I/Q modulators appropriately,a fixed relationship between the input signal frequency and the power ratio of two optical signals output by two I/Q modulators is established. The input signal frequency can be derived by the power ratio. The measurement range and measurement error can be adjusted by changing the delay amount of the electrical delay line. The scheme has a better measurement error for low frequency compared with other schemes. The measurement error of low frequency 0 GHz-9.6 GHz can reach-0.1 GHz to+0.05 GHz in simulation.

    2. Model and theoretical analysis

    Figure 1 shows the schematic diagram of the proposed scheme. The optical signal generated by the CW laser is first divided into two equal power optical signals by an optical power splitter. The two equal power optical signals are injected into two I/Q modulators respectively. I/Q modulator 1 consists of two sub-modulators(MZM-1 and MZM-2),and I/Q modulator 2 consists of two sub-modulators(MZM-3 and MZM-4). The RF signal generated by the RF source is first divided into two equal power electrical signals by an electrical power splitter. One channel electrical signal first passes through an electrical delay line and then is divided by an electrical power splitter, and the generated two electrical signals are injected into the input RF ports of MZM-1 and MZM-3 respectively. The other channel electrical signal passes through an electrical power splitter and the generated two electrical signals are injected into the RF input ports of MZM-2 and MZM-4 respectively. MZM-1,MZM-2,MZM-3 and MZM-4 are biased at minimum transmission point (MITP). I/Q modulator 1 and I/Q modulator 2 are biased at maximum transmission point (MATP) and MITP respectively. Suppose the phase shift induced by DC bias of MZM-1,MZM-2,MZM-3,MZM-4,I/Q modulator 1 and I/Q modulator 2 areφ1,φ2,φ3,φ4,φ5, andφ6respectively, soφ1=φ2=φ3=φ4=φ6=πandφ5=0. The output optical signal by CW laser isEin(t)=E0exp(jω0t), whereE0andω0denote the amplitude and angular frequency respectively. The output electrical signal by the RF source isVRF(t)=VRFcos(Ωt),whereVRFandΩdenote the amplitude and angular frequency respectively. The delay amount of the electrical delay line isτ. The output optical signal of I/Q modulator 1 and I/Q modulator 2 can be expressed as

    Fig. 1. The schematic diagram of the scheme (RF source: radio frequency source; CW laser: continuous-wave laser; MZM: Mach-Zehnder modulator;DL:electrical delay line;OPM:optical power meter;φ1,φ2,φ3,φ4,φ5,and φ6: phase shifts induced by the DC bias of MZM-1, MZM-2, MZM-3,MZM-4,I/Q modulator 1,and I/Q modulator 2,respectively).

    wherefdenotes the frequency of the received RF signal.

    According to Eq. (6), whenτis a fixed value, there is a one-to-one corresponding relationship betweenfandP1/P2.Therefore,the frequency of the received RF signal can be derived by the power ratio of two optical signals generated by two I/Q modulators.

    Figure 2 is calculated ACF,P1,P2versus RF frequency diagram whenτ=20 ps. Figure 3 is the ACF curve diagram correspondingτ=20 ps, 30 ps, 40 ps, and 50 ps. As can be seen in Fig. 3, different delay amountτcorresponds to different ACF curve. Different ACF curve determines different measurement range.

    Fig. 2. Calculated ACF, calculated P1, calculated P2 versus RF frequency when τ =20 ps.

    Fig.3. Calculated ACF versus RF frequency when τ =20 ps,30 ps,40 ps,and 50 ps.

    3. Simulation and discussion

    The feasibility of the scheme is verified by simulation in the software OptiSystem. The parameters are set as follows: the power, wavelength and linewidth of the CW laser are 10 dBm, 1550.12 nm, and 10 MHz respectively. The extinction ratio,insertion loss and half-wave voltage of the MZM are 30 dB, 5 dB, and 4 V respectively. The amplitude of the RF source is 3.6 V (the modulation index of MZM is equal to 1). The electrical delay amount of the electrical delay line is 20 ps. MZM-1, MZM-2, MZM-3 and MZM-4 are biased at MITP. I/Q modulator 1 and I/Q modulator 2 are biased at MATP and MITP respectively. Figure 4 shows simulated received optical power values of the optical power meter 1 and optical power meter 2,and ACF curve when the frequency of RF changes from 0 GHz-30 GHz. As can be seen in Fig. 4,when the frequency of the input RF is from 0 GHz to 25 GHz,the ACF curve is monotonous. There is a one-to-one corresponding relationship between the frequency of the input RF and the value of ACF curve,so we can figure out the frequency of the input RF by the value of ACF in real time.

    Fig.4. Simulated ACF versus RF frequency when τ =20 ps.

    In previous theoretical calculation,the extinction ratio of the modulator is considered to be infinite, but the extinction ratio of the MZM is finite in practice. The effect of extinction ratio of the MZM on the scheme needs to be considered. The extinction ratio of the MZM is set to 20 dB,25 dB,and 30 dB respectively in the OptiSystem. The settings of other parameters remain unchanged. The relationship diagram between ACF and the input RF frequency can be obtained as shown in Fig. 5. Figure 5 shows that the higher the extinction ratio of the MZM is,the closer the obtained ACF curve is to the theoretical ACF curve. This is because the MZM cannot suppress the carrier and even-order sidebands effectively when the extinction ratio of the MZM is not high.

    The effect of the modulation index of the MZM on the scheme also needs to be considered. The modulation index of the MZM is set to 0.5,1.0,and 1.5 respectively.The extinction ratio of the MZM is set to 30 dB.Other parameter settings remain unchanged. The relationship diagram between the ACF and the input RF frequency can be obtained as shown in Fig.6.Figure 6 indicates that the larger the modulation indexmis in a certain range, the closer the ACF curve is to the theoretical curve. This is because the amplitude difference between generated first-order optical sidebands and generated higher odd-order optical sidebands by the MZM will increase when the modulation indexmincreases in a certain range, which will reduce the effect of higher odd-order sidebands on the scheme. However,the ACF curves under different modulation index are only different at the end of the monotone interval(0 GHz-25 GHz) and most regions of the monotone interval coincide with the theoretical ACF curve,which indicates that this scheme is not required for the power of the input RF.

    Fig. 5. Simulated ACF curve versus input RF frequency when εr =20 dB,25 dB,and 30 dB.

    Fig.6. Simulated ACF curve versus input RF frequency when m=0.5,1.0,and 1.5.

    When the modulation indexm= 1, the delay amountτ=20 ps and the extinction ratio of the MZM is 30 dB, the estimation error can be obtained as shown in Figs. 7(a) and 7(b). As shown in Fig. 7(a), the simulated frequency measurement results are approximately equal to the calculated frequency measurement results except around 25 GHz. The reason for the larger measurement error around 25 GHz is that the extinction ratio of the MZM is finite. As shown in Fig. 7(b),the estimation error is-0.15 GHz to +0.3 GHz in the measurement range of 0 GHz-24.5 GHz whenτ=20 ps.

    Fig.7.(a)Estimated RF frequency versus input RF frequency.(b)Estimation error versus input RF frequency.

    The estimation error is analyzed whenτ=30 ps, 40 ps,and 50 ps. The simulated results are shown in Fig. 8. Figures 8(a) and 8(b) indicate that the measurement range and the measurement error are 0 GHz-16 GHz and-0.3 GHz to+0.05 GHz whenτ=30 ps. The estimation error is larger around 16.7 GHz because the extinction ratio of MZM is finite.Similarly,it can be seen from Figs.8(c)and 8(d)that the measurement range and measurement error are 0 GHz-12.2 GHz and-0.05 GHz to +0.2 GHz whenτ=40 ps. Figures 8(e)and 8(f)indicate that the measurement range and measurement error are 0 GHz-9.6 GHz and-0.1 GHz to+0.05 GHz whenτ=50 ps.

    Fig.8.Estimated RF frequency versus input RF frequency at different τ=(a)30 ps, (c) 40 ps, (e) 50 ps. Estimation RF frequency error versus input RF frequency at different τ =(b)30 ps,(d)40 ps,(f)50 ps.

    Different measurement ranges and measurement errors are shown in Table 1. There is a trade-off balance between the measurement range and measurement error,as can be seen in Table 1. Whenτincreases, the measurement range decreases,but the measurement error becomes better. Since the ACF curve in this scheme has a high slope at low frequency,the measurement error of low frequency is better than that of other schemes.

    Table 1. Different measurement ranges and measurement errors.

    In the scheme, the four sub-modulators are set as MITP.I/Q modulator 1 and I/Q modulator 2 are set as MATP and MITP respectively. The effect of DC bias drift of the MZM on the scheme needs to be considered. Suppose that ΔV/Vπis the DC bias drift of the MZM, where ΔVdenotes the varied amount of DC bias voltage of the MZM andVπdenotes the half-wave voltage of the MZM.Takeτ=50 ps for example. The DC bias drift of MZM-1,MZM-2,MZM-3,MZM-4,I/Q modulator 1 and I/Q modulator 2 are set to±10%respectively. The corresponding parameter settings in the simulation software are shown in Table 2.

    Table 2. Parameter settings for different modulators.

    Fig.9. Estimation error diagram when DC bias drift is±10%: (a)MZM-1, (b) MZM-2, (c) I/Q modulator 1, (d) MZM-3, (e) MZM-4, (f) I/Q modulator 2.

    Figures 9(a) and 9(b) are the estimation error diagrams when the DC bias drift of MZM-1 is±10% and the DC bias drift of MZM-2 is±10% respectively. As shown in Figs.9(a)and 9(b),the estimation error becomes-0.55 GHz to +0.05 GHz. In order to reach the measurement error(-0.1 GHz to +0.05 GHz) before DC bias drift, the measurement range becomes 0 GHz-6.5 GHz. Figure 9(c) is the estimation error diagram when the DC bias drift of I/Q modulator 1 is±10%. As shown in Fig.9(c),the estimation error becomes-0.7 GHz to+0.07 GHz. In order to reach the measurement error-0.1 GHz to +0.07 GHz, the measurement range becomes 0 GHz-6.5 GHz.

    Figures 9(d) and 9(e) are the estimation error diagrams when the DC bias drift of MZM-3 is±10% and the DC bias drift of MZM-4 is±10% respectively. As shown in Figs. 9(d) and 9(e), the estimation error becomes-0.1 GHz to +0.7 GHz. In order to reach the measurement error(-0.1 GHz to +0.05 GHz) before DC bias drift, the measurement range becomes 3.9 GHz-9.6 GHz. Figure 9(f) is the estimation error diagram when the DC bias drift of I/Q modulator 2 is±10%. As shown in Fig. 9(f), the estimation error becomes-0.1 GHz to+0.9 GHz. In order to reach the measurement error(-0.1 GHz to+0.05 GHz)before DC bias drift,the measurement range becomes 3.9 GHz-9.6 GHz.

    4. Conclusion

    In this paper, a new scheme to realize IFM is proposed.The structure of the scheme is simple; it only consists of one optical source, one electrical delay line, two I/Q modulators,and two optical power meters. By setting each bias point of two I/Q modulators and the delay amount of the electrical delay line properly, a fixed relationship between the frequency of the RF signal and the optical power ratio can be obtained.Since the scheme is carried out in the optical domain, no expensive electronic devices are used. The scheme also has no polarization devices, which reduces the impact of environmental disturbances on the system. The measurement range and measurement error can be adjusted by changing the delay amount of the electrical delay line. Although there exists a trade-off balance between the measurement range and the measurement error,the measurement error of low frequency in this scheme is better than other schemes because the slope of the ACF curve is large at the low frequency. The measurement error in low frequency 0 GHz-9.6 GHz can reach-0.1 GHz to+0.05 GHz. We believe this method will provide guidance for IFM in the future.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China(Grant No.2018YFB1801003),the National Natural Science Foundation of China (Grant Nos. 61525501 and 61827817), and the Beijing Natural Science Foundation,China(Grant No.4192022).

    猜你喜歡
    李晶晶晶
    巧算最小表面積
    Digging for the past
    甲狀腺瘤瘤切除術(shù)后的臨床護(hù)理要點(diǎn)分析
    齊 家
    照相機(jī)(2021年2期)2021-04-06 16:28:01
    The Hardest Language
    炎熱的夏天
    The Impact of Dignity on Design Behavior
    青年生活(2019年3期)2019-09-10 16:57:14
    銀億股份:于無聲處聽驚雷
    “兄妹”大隱于市
    中外文摘(2015年21期)2015-10-10 11:41:53
    老司机影院成人| 两个人免费观看高清视频| 深夜精品福利| 精品福利永久在线观看| 国产精品免费大片| 免费在线观看视频国产中文字幕亚洲 | 老汉色∧v一级毛片| 日韩视频在线欧美| 一二三四社区在线视频社区8| 最近中文字幕2019免费版| 最近中文字幕2019免费版| 欧美激情高清一区二区三区| 99国产精品免费福利视频| 青春草视频在线免费观看| 欧美精品高潮呻吟av久久| 久久久国产欧美日韩av| 欧美97在线视频| videos熟女内射| 精品亚洲成国产av| 涩涩av久久男人的天堂| 国产精品麻豆人妻色哟哟久久| 欧美精品高潮呻吟av久久| 日韩电影二区| www.999成人在线观看| 国产在线免费精品| 狠狠婷婷综合久久久久久88av| 亚洲五月婷婷丁香| 高潮久久久久久久久久久不卡| 一级黄色大片毛片| 免费在线观看完整版高清| 又大又爽又粗| 亚洲精品久久午夜乱码| 午夜精品国产一区二区电影| 人人妻人人澡人人爽人人夜夜| 亚洲人成电影免费在线| 欧美日韩国产mv在线观看视频| 自线自在国产av| 黄色视频不卡| 99热网站在线观看| 老司机亚洲免费影院| 精品亚洲成国产av| 精品免费久久久久久久清纯 | 如日韩欧美国产精品一区二区三区| 国产高清videossex| 欧美日韩av久久| avwww免费| 欧美在线一区亚洲| 正在播放国产对白刺激| 又紧又爽又黄一区二区| 99精品欧美一区二区三区四区| 18在线观看网站| 亚洲精品国产色婷婷电影| 老司机影院成人| 另类精品久久| 国产熟女午夜一区二区三区| 久久天躁狠狠躁夜夜2o2o| 亚洲黑人精品在线| 亚洲一区二区三区欧美精品| 久久99热这里只频精品6学生| 国产高清国产精品国产三级| 午夜免费鲁丝| 国产免费一区二区三区四区乱码| 老司机影院成人| 国产无遮挡羞羞视频在线观看| 国产一区有黄有色的免费视频| 日韩,欧美,国产一区二区三区| 亚洲激情五月婷婷啪啪| 中国国产av一级| 丰满饥渴人妻一区二区三| 一本一本久久a久久精品综合妖精| 久久九九热精品免费| 亚洲av电影在线观看一区二区三区| 性色av一级| 深夜精品福利| 日韩一卡2卡3卡4卡2021年| 亚洲国产欧美网| av线在线观看网站| 99国产精品一区二区蜜桃av | 国产福利在线免费观看视频| 欧美精品av麻豆av| 亚洲三区欧美一区| 久久久国产精品麻豆| 国产精品秋霞免费鲁丝片| 久久国产亚洲av麻豆专区| 18禁观看日本| 精品免费久久久久久久清纯 | 亚洲免费av在线视频| 欧美乱码精品一区二区三区| 国产淫语在线视频| 制服诱惑二区| 日日摸夜夜添夜夜添小说| 自线自在国产av| 99国产综合亚洲精品| 亚洲免费av在线视频| 99九九在线精品视频| 动漫黄色视频在线观看| 中文字幕制服av| 美女中出高潮动态图| 天天添夜夜摸| 香蕉国产在线看| 亚洲精品乱久久久久久| 国产免费一区二区三区四区乱码| 亚洲三区欧美一区| tube8黄色片| 国产91精品成人一区二区三区 | cao死你这个sao货| 99热国产这里只有精品6| 国产男人的电影天堂91| 免费一级毛片在线播放高清视频 | 久久这里只有精品19| 人妻久久中文字幕网| 99热国产这里只有精品6| 国产精品一区二区在线不卡| 法律面前人人平等表现在哪些方面 | 淫妇啪啪啪对白视频 | avwww免费| 国产一区二区三区在线臀色熟女 | 免费av中文字幕在线| 女人爽到高潮嗷嗷叫在线视频| 999久久久精品免费观看国产| 国产主播在线观看一区二区| av有码第一页| 亚洲国产欧美一区二区综合| 十分钟在线观看高清视频www| 两人在一起打扑克的视频| 国产欧美日韩精品亚洲av| 老汉色av国产亚洲站长工具| 男女之事视频高清在线观看| 男人操女人黄网站| 欧美中文综合在线视频| 黑人操中国人逼视频| 蜜桃国产av成人99| 大香蕉久久网| 亚洲第一欧美日韩一区二区三区 | 老司机影院成人| 欧美午夜高清在线| 热99re8久久精品国产| 一区二区三区乱码不卡18| 美女午夜性视频免费| 又大又爽又粗| 国产在视频线精品| 99精品欧美一区二区三区四区| 99热国产这里只有精品6| 一区二区三区乱码不卡18| avwww免费| 国产一区二区三区av在线| 真人做人爱边吃奶动态| 在线永久观看黄色视频| 国产麻豆69| 久久久久网色| 女人久久www免费人成看片| 一本—道久久a久久精品蜜桃钙片| 欧美日韩精品网址| 一二三四社区在线视频社区8| 老司机午夜十八禁免费视频| 美女国产高潮福利片在线看| 成年人免费黄色播放视频| 日本撒尿小便嘘嘘汇集6| a级毛片黄视频| 亚洲国产精品999| 热99re8久久精品国产| 老司机亚洲免费影院| 黄片小视频在线播放| 一区二区av电影网| 97精品久久久久久久久久精品| 亚洲精品久久成人aⅴ小说| 国产精品一二三区在线看| 精品久久久精品久久久| 亚洲欧美精品综合一区二区三区| 婷婷成人精品国产| 欧美变态另类bdsm刘玥| 国内毛片毛片毛片毛片毛片| 午夜精品久久久久久毛片777| 欧美久久黑人一区二区| 最近中文字幕2019免费版| 亚洲免费av在线视频| 久久国产精品影院| 久久中文字幕一级| 国产成人av激情在线播放| 国产野战对白在线观看| 香蕉国产在线看| 日韩免费高清中文字幕av| 久久精品国产亚洲av香蕉五月 | 黑丝袜美女国产一区| av网站在线播放免费| 欧美日韩黄片免| 99国产综合亚洲精品| 国产高清videossex| 欧美+亚洲+日韩+国产| av网站免费在线观看视频| 亚洲精品久久午夜乱码| 国产av一区二区精品久久| 99香蕉大伊视频| 欧美 亚洲 国产 日韩一| 91麻豆精品激情在线观看国产 | 久久精品国产亚洲av香蕉五月 | 一区在线观看完整版| 两性午夜刺激爽爽歪歪视频在线观看 | 精品久久蜜臀av无| 老熟妇仑乱视频hdxx| 亚洲欧美精品自产自拍| 大片免费播放器 马上看| 久久精品aⅴ一区二区三区四区| 国产熟女午夜一区二区三区| 亚洲精品成人av观看孕妇| 国产一区二区三区在线臀色熟女 | 一个人免费在线观看的高清视频 | 欧美在线黄色| 欧美日韩福利视频一区二区| 亚洲欧美激情在线| 99国产精品一区二区蜜桃av | 丰满迷人的少妇在线观看| 午夜免费成人在线视频| 亚洲一区二区三区欧美精品| 免费日韩欧美在线观看| 成人亚洲精品一区在线观看| 天堂8中文在线网| 亚洲欧美色中文字幕在线| 亚洲美女黄色视频免费看| 日韩免费高清中文字幕av| 人人妻人人爽人人添夜夜欢视频| www.精华液| 好男人电影高清在线观看| 日韩人妻精品一区2区三区| 天堂8中文在线网| 一区二区三区激情视频| 国产精品香港三级国产av潘金莲| 午夜福利在线免费观看网站| 制服诱惑二区| 啦啦啦视频在线资源免费观看| 天天躁夜夜躁狠狠躁躁| 亚洲七黄色美女视频| 久久久久精品国产欧美久久久 | 国产在线视频一区二区| 精品国产一区二区久久| 亚洲欧美清纯卡通| 亚洲第一av免费看| 大型av网站在线播放| 免费在线观看黄色视频的| 丰满人妻熟妇乱又伦精品不卡| 日韩免费高清中文字幕av| 97精品久久久久久久久久精品| 在线永久观看黄色视频| 十八禁人妻一区二区| 精品一区二区三区av网在线观看 | 久久久久视频综合| 9色porny在线观看| 99久久人妻综合| 丝袜美腿诱惑在线| 亚洲精品乱久久久久久| 久久国产精品影院| 人人妻人人爽人人添夜夜欢视频| 制服诱惑二区| 美女福利国产在线| 亚洲少妇的诱惑av| 性色av乱码一区二区三区2| 桃红色精品国产亚洲av| 极品人妻少妇av视频| 午夜成年电影在线免费观看| 中文字幕av电影在线播放| 女性被躁到高潮视频| 黑人巨大精品欧美一区二区蜜桃| 性色av乱码一区二区三区2| 丰满人妻熟妇乱又伦精品不卡| 侵犯人妻中文字幕一二三四区| 久久久欧美国产精品| 一二三四社区在线视频社区8| 亚洲成人国产一区在线观看| 国产xxxxx性猛交| 久久精品国产a三级三级三级| 啦啦啦啦在线视频资源| 午夜激情av网站| 免费日韩欧美在线观看| 在线观看舔阴道视频| 啦啦啦中文免费视频观看日本| 欧美精品av麻豆av| 高清av免费在线| 亚洲免费av在线视频| 国产成人av教育| 中文欧美无线码| 久久免费观看电影| 国产免费福利视频在线观看| 国产免费现黄频在线看| 亚洲久久久国产精品| 考比视频在线观看| 国产在线观看jvid| 亚洲精品一区蜜桃| 女人被躁到高潮嗷嗷叫费观| 黑人巨大精品欧美一区二区mp4| www日本在线高清视频| 精品国产国语对白av| 国产成人免费无遮挡视频| 亚洲精品国产av蜜桃| 蜜桃国产av成人99| 亚洲成人免费电影在线观看| av免费在线观看网站| 男人爽女人下面视频在线观看| 人妻人人澡人人爽人人| 国产成人精品久久二区二区免费| 看免费av毛片| 午夜免费鲁丝| 91老司机精品| 精品第一国产精品| 亚洲av电影在线观看一区二区三区| 国产成人啪精品午夜网站| 欧美日韩亚洲国产一区二区在线观看 | 亚洲视频免费观看视频| 午夜福利乱码中文字幕| 久久国产精品男人的天堂亚洲| 丝袜喷水一区| 女人高潮潮喷娇喘18禁视频| 91字幕亚洲| www.自偷自拍.com| 亚洲国产成人一精品久久久| 亚洲精品在线美女| 妹子高潮喷水视频| 亚洲精品国产区一区二| 欧美亚洲日本最大视频资源| 蜜桃国产av成人99| 另类精品久久| 女人被躁到高潮嗷嗷叫费观| 12—13女人毛片做爰片一| 国产无遮挡羞羞视频在线观看| 国产无遮挡羞羞视频在线观看| 不卡一级毛片| 国产无遮挡羞羞视频在线观看| 成人亚洲精品一区在线观看| 欧美精品一区二区大全| 亚洲国产精品一区二区三区在线| 久久精品国产亚洲av高清一级| 国产成人精品久久二区二区91| 国产福利在线免费观看视频| 国产精品久久久久久人妻精品电影 | 色婷婷久久久亚洲欧美| 高清欧美精品videossex| 欧美少妇被猛烈插入视频| 欧美黄色淫秽网站| 69av精品久久久久久 | 一本一本久久a久久精品综合妖精| 中文字幕人妻丝袜一区二区| 亚洲精品美女久久久久99蜜臀| 黄色视频不卡| 国产男女超爽视频在线观看| 欧美激情高清一区二区三区| 亚洲av日韩在线播放| 一级,二级,三级黄色视频| 欧美亚洲 丝袜 人妻 在线| 久9热在线精品视频| 精品一区二区三区四区五区乱码| 成人国产av品久久久| 国产在线免费精品| 国产精品自产拍在线观看55亚洲 | 欧美国产精品一级二级三级| 国产日韩一区二区三区精品不卡| 免费在线观看日本一区| 亚洲av片天天在线观看| 欧美国产精品va在线观看不卡| 午夜激情av网站| 亚洲精品国产区一区二| 丝瓜视频免费看黄片| 91成人精品电影| 日韩电影二区| 99精品欧美一区二区三区四区| 亚洲av电影在线进入| 51午夜福利影视在线观看| 母亲3免费完整高清在线观看| 汤姆久久久久久久影院中文字幕| 别揉我奶头~嗯~啊~动态视频 | 少妇 在线观看| 国产亚洲欧美在线一区二区| 成人三级做爰电影| 午夜视频精品福利| 午夜福利免费观看在线| 一级片'在线观看视频| 老汉色∧v一级毛片| 人成视频在线观看免费观看| 午夜福利视频精品| 青春草视频在线免费观看| 美女大奶头黄色视频| 亚洲欧洲日产国产| 欧美精品亚洲一区二区| 另类亚洲欧美激情| a在线观看视频网站| 欧美人与性动交α欧美软件| 99精品欧美一区二区三区四区| 国产成人精品无人区| 最黄视频免费看| 国产男女内射视频| 免费一级毛片在线播放高清视频 | 自线自在国产av| 人妻 亚洲 视频| 国产成人精品在线电影| 色精品久久人妻99蜜桃| 国产成人av教育| 国产片内射在线| 咕卡用的链子| 久久久精品区二区三区| 亚洲精品一二三| 久久这里只有精品19| 亚洲欧美精品综合一区二区三区| 亚洲男人天堂网一区| bbb黄色大片| 午夜91福利影院| 久久久国产欧美日韩av| 在线看a的网站| 久久久精品94久久精品| 一区二区三区激情视频| 国产一区二区三区在线臀色熟女 | 深夜精品福利| 天天操日日干夜夜撸| 久久这里只有精品19| 丰满迷人的少妇在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 午夜影院在线不卡| 国产一区二区激情短视频 | 亚洲国产欧美网| 精品国产超薄肉色丝袜足j| 国产真人三级小视频在线观看| 女人久久www免费人成看片| 这个男人来自地球电影免费观看| 日韩大片免费观看网站| 久久99热这里只频精品6学生| 97人妻天天添夜夜摸| 女人高潮潮喷娇喘18禁视频| 99re6热这里在线精品视频| 亚洲黑人精品在线| 久久久久久亚洲精品国产蜜桃av| 精品国内亚洲2022精品成人 | 少妇 在线观看| 国产成人系列免费观看| 日韩有码中文字幕| 亚洲色图综合在线观看| 一边摸一边做爽爽视频免费| 亚洲第一av免费看| 国产一区二区三区在线臀色熟女 | 国产在线视频一区二区| 亚洲一区二区三区欧美精品| 精品欧美一区二区三区在线| 亚洲av片天天在线观看| 飞空精品影院首页| 国产精品国产av在线观看| 亚洲精品中文字幕一二三四区 | 法律面前人人平等表现在哪些方面 | 精品欧美一区二区三区在线| 热re99久久国产66热| 黄色 视频免费看| 免费在线观看完整版高清| 母亲3免费完整高清在线观看| 少妇的丰满在线观看| 国产免费一区二区三区四区乱码| 老司机靠b影院| 久久av网站| 这个男人来自地球电影免费观看| 国产精品久久久久成人av| 中文字幕另类日韩欧美亚洲嫩草| 色播在线永久视频| 国产三级黄色录像| 一级毛片女人18水好多| 悠悠久久av| 十八禁网站网址无遮挡| 在线观看免费日韩欧美大片| 伦理电影免费视频| 狂野欧美激情性bbbbbb| 日本91视频免费播放| 叶爱在线成人免费视频播放| 日韩一卡2卡3卡4卡2021年| 午夜福利视频精品| 亚洲 国产 在线| 一区二区av电影网| 在线观看免费高清a一片| 欧美日韩亚洲高清精品| 中文字幕人妻丝袜一区二区| 久久九九热精品免费| 久久久久久久久免费视频了| 亚洲成人免费电影在线观看| 亚洲精品一二三| 一区二区三区精品91| 久久影院123| 国产日韩欧美视频二区| 欧美老熟妇乱子伦牲交| 91国产中文字幕| 色视频在线一区二区三区| 国产亚洲一区二区精品| 亚洲男人天堂网一区| 黄色 视频免费看| 久久久久精品人妻al黑| 后天国语完整版免费观看| 一区二区三区四区激情视频| 国产欧美日韩一区二区三区在线| 老汉色av国产亚洲站长工具| 在线观看免费午夜福利视频| 国产免费视频播放在线视频| 午夜精品国产一区二区电影| 午夜福利在线免费观看网站| 少妇人妻久久综合中文| 国产在视频线精品| 搡老岳熟女国产| 亚洲黑人精品在线| 搡老乐熟女国产| 另类精品久久| videosex国产| 一本—道久久a久久精品蜜桃钙片| 热99国产精品久久久久久7| 亚洲精品美女久久久久99蜜臀| 欧美大码av| 亚洲国产成人一精品久久久| 精品久久久久久久毛片微露脸 | 高清在线国产一区| 欧美日韩黄片免| 国产免费现黄频在线看| 首页视频小说图片口味搜索| 男人爽女人下面视频在线观看| 在线永久观看黄色视频| 欧美日韩视频精品一区| 久久久久国产精品人妻一区二区| 十八禁网站免费在线| 国产国语露脸激情在线看| 又黄又粗又硬又大视频| 国产免费av片在线观看野外av| 性少妇av在线| 涩涩av久久男人的天堂| cao死你这个sao货| 人人澡人人妻人| 成人国产一区最新在线观看| 日本a在线网址| 两个人看的免费小视频| 国产欧美日韩一区二区三 | 老司机靠b影院| bbb黄色大片| 蜜桃国产av成人99| 中国美女看黄片| www日本在线高清视频| 亚洲av电影在线进入| 亚洲欧美日韩高清在线视频 | 亚洲精品久久成人aⅴ小说| 国产一区二区在线观看av| 水蜜桃什么品种好| 性高湖久久久久久久久免费观看| 中文精品一卡2卡3卡4更新| 999久久久精品免费观看国产| 久久中文字幕一级| 成人影院久久| 女人高潮潮喷娇喘18禁视频| 久久天躁狠狠躁夜夜2o2o| 久久国产亚洲av麻豆专区| 一区福利在线观看| 久久精品久久久久久噜噜老黄| 男人爽女人下面视频在线观看| 十八禁网站网址无遮挡| 大码成人一级视频| 悠悠久久av| 母亲3免费完整高清在线观看| 免费一级毛片在线播放高清视频 | 久久精品久久久久久噜噜老黄| 成年av动漫网址| 亚洲国产av新网站| 纯流量卡能插随身wifi吗| 如日韩欧美国产精品一区二区三区| 久久久久国产精品人妻一区二区| 国产成人精品久久二区二区91| 午夜福利影视在线免费观看| 久久女婷五月综合色啪小说| 黄色毛片三级朝国网站| 日本黄色日本黄色录像| 国产成人av激情在线播放| 亚洲国产日韩一区二区| 日本猛色少妇xxxxx猛交久久| av线在线观看网站| 中文欧美无线码| 亚洲一区中文字幕在线| 成人亚洲精品一区在线观看| 欧美大码av| 精品一区二区三卡| 一区二区av电影网| 天堂俺去俺来也www色官网| 久久99一区二区三区| 热re99久久国产66热| 午夜福利,免费看| 国产男女内射视频| 久久精品国产a三级三级三级| 黄片大片在线免费观看| 色婷婷久久久亚洲欧美| 一个人免费在线观看的高清视频 | 亚洲av成人一区二区三| 日本精品一区二区三区蜜桃| 国产成人啪精品午夜网站| 精品亚洲成a人片在线观看| 欧美精品一区二区免费开放| a 毛片基地| 中文字幕另类日韩欧美亚洲嫩草| 国产av国产精品国产| 18禁国产床啪视频网站| 亚洲avbb在线观看| 国产亚洲精品第一综合不卡| 99精品久久久久人妻精品| 国产亚洲av高清不卡| 99国产精品一区二区蜜桃av | 巨乳人妻的诱惑在线观看| 久久久精品国产亚洲av高清涩受| 热re99久久精品国产66热6| 国产精品 国内视频| 欧美 亚洲 国产 日韩一| 亚洲av电影在线进入| 窝窝影院91人妻| 人妻一区二区av| 欧美精品av麻豆av| 午夜免费观看性视频| 亚洲国产欧美在线一区| 国产日韩欧美亚洲二区| 国产欧美日韩综合在线一区二区| 另类精品久久| 久久性视频一级片| 侵犯人妻中文字幕一二三四区| cao死你这个sao货| 国产精品熟女久久久久浪|