• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low-loss belief propagation decoder with Tanner graph in quantum error-correction codes

    2022-01-23 06:34:24DanDanYan顏丹丹XingKuiFan范興奎ZhenYuChen陳禎羽andHongYangMa馬鴻洋
    Chinese Physics B 2022年1期
    關(guān)鍵詞:丹丹

    Dan-Dan Yan(顏丹丹), Xing-Kui Fan(范興奎), Zhen-Yu Chen(陳禎羽), and Hong-Yang Ma(馬鴻洋)

    School of Sciences,Qingdao University of Technology,Qingdao 266033,China

    Keywords: tanner graph,belief propagation decoder,augmented model,fourier transform

    1. Introduction

    With the rapid development of information network, the quantum computing and quantum communication have made great progress.[1]The quantum communication and quantum computing have been applied for capturing imaginations for almost 60 years. Currently, there are two important parts of quantum information science, which offer deeply paths to solve problems that could never be overcame by classical computing and communication.[2]In recent years, many scholars are studying in the quantum walking fields.[3]The quantum communication and quantum computing have closely related.[4]On the one hand, the former is the theoretical and environmental basis of the latter. On the other hand,the latter provides operational guarantee for the former.

    The quantum computing and quantum communication have made a qualitative leap. For instance,quantum communication includes quantum key distribution and quantum secure direct communication.[4,5]Propagation in quantum network has been studied in Ref. [6]. In 2019, Qiet al. have been studied quantum many-body states in Ref.[7]with neural network used, and routing in quantum network has been studied in Ref.[8].Then,parity checks have been used in concentration and measurement.[9,10]In addition,low-density parity check (LDPC) codes have been extensively used in quantum secure direct communication,[11,12]and quantum errorcorrection has become one focus in quantum computing as shown in Ref. [13]. There is a huge challenge to reconstruct the existing decoders,[14,15]and the most difficult problem is how to resolve the node duplication of the existing decoders.[16,17]This paper mainly focused on resolving this problem and constructing a GF(4) augmented model belief propagation (BP) decoder with Tanner graph.[18-20]We not only use sparse matrix, bipartite graph and the properties of approaching Shannon limit for quantum low-density parity check (QLDPC) codes,[21-27]but also use the directivity of Tanner graph. From these properties we know that the length of the ring is at most one.[28-31]In 2019, Alex Rigbyet al. have been proposed an improved belief propagation decoder on QLDPC code.[26]The decoder was designed to correct the error of the quantum error-correction code and obtained the accurate sequence,and then the information can be transmitted.[32,33]

    In this paper,combined with the properties of stabilizers,a novel QLDPC code based on the BP algorithm decoding is studied.[34,35]The BP algorithm can achieve hardware parallelization. Besides, the algorithm is calculated by a simply linear function related to the code length, thus, it has no error layer effect. Since the stabilizers are theoretically GF(4)linear codes,[36]a new GF(4) augmented model BP decoder with the Tanner graph is constructed by using the augmented model. We use the received information to carry out iterative operation between the variable node and check node,and to obtain the maximum decoding gain.[28,35,37]As mentioned above, the BP algorithm is based on a linear function related to the code length. Therefore, the parallel implementation in hardware can greatly improve the decoder speed.[38]The decoding frame error rate(FER)of BP algorithm decreases aptly with the increase of the signal-noise ratio (SNR) and it does not have the phenomenon of error floor (carpet effect).[39-41]Combining the BP decoder, a novel GF(4) augmented model BP decoder with the Tanner graph is constructed,and the decoder adds an augmented model with the Tanner graph that can check the repeated nodes.[42]The conditional probability distribution and marginal probability distribution are used to calculate the decoding FER. Since there is no node duplication on the decoder, the FER has been greatly reduced. The algorithm rules and commutative principle in GF(4)field,the inverse Fourier transform and Hadamard transform are used for decoding.[43-45]Finally,the result of simulation shows that compared with the existing decoders, the proposed decoder has stronger anti-interference ability and it can achieve better FER performance in terms of the random perturbation strength and the number of attempts.

    The structure of the present paper is organized as follows.In Section 2,the quantum error-correcting codes and the Tanner graphs are introduced. In Section 3,the limitations of the original belief propagation decoder are analyzed.In Section 4,we propose a scheme of the GF(4) augmented model BP decoder with Tanner graph. In Section 5, the GF(4)augmented model BP decoder with Tanner graph has better FER performance than the existing decoders through the simulation. Finally,the conclusion is given in the last section.

    2. Quantum error-correction codes and Tanner graph

    2.1. Quantum error-correction codes

    The QLDPC code in this paper is a quantum code based on stabilizer codes. It not only meets the sparse matrix of classical LDPC codes, which is close to Shannon’s limit performance,[26]but also meets the characteristics of cyclic difference sets of stabilizer codes. According to the above structural properties, the ring length is guaranteed to be no more than 1. In the Tanner graph, the problem of node duplication can be prevented and the efficiency of decoding can be improved. Therefore, the characteristics of QLDPC codes with Tanner graph provide a basic theory for the decoding process.

    2.2. Tanner graph

    which gives Tanner graph shown in Fig.1.[36]

    Fig. 1. [[5,1,3]] Z-error or X-error Tanner graph. The blue arrow between the variable node and the error node represents the exchange and correction of the information.

    In Fig. 1,{v1,v2,v3,v4,v5}represents the variable node of[[5,1,3]],and{c1,c2,c3,c4}represents its check node. The blue arrow in the check node indicates that the check node sequence has the property of cyclic difference set and solid lines at each node represent the transmission of information.

    3. Limitations of belief propagation decoder

    Belief propagation algorithm,also known as sum-product algorithm or message passing algorithm, is to treat the sumproduct operation in variable elimination method as a message and save it,which can save a lot of computing resources. For the general quantum low-density parity code,the length of its ring is 2 or more, there will be a defect of node duplication.When the decoder operation is carried out, many nodes may recalculate the number of times more than twice, resulting in a relatively high FER.

    The following is the construction of belief propagation algorithm. All error statesE ∈Pncan affect then-bit quantum code,and only those that conform to the exchange law of the stabilizers and error operator can be used to measureSc. In other words,the conditional probability distribution under the error operatorsis

    whereεScis coefficient.

    However, belief propagation has its inherent the limitations that it cannot check for node duplication in a Tanner graph. Therefore, this paper improves the BP decoder via adding a GF(4) augmented model with Tanner graph. Such advantage is to solve the problem that node duplication cannot be checked in the BP decoder, which further reduces the decoding frame error rate (FER). The information shifted from the check node to the variable node can be expressed as

    wheren(v)?crepresents all of the adjacent nodes ofvexcept nodec.

    On the basis of the above belief propagation algorithm,for GF(2) and GF(4) belief propagation decoders, the variation trend of FER of[[5,1,3]]is plotted under the random perturbation strengthp=0.008-0.02. However, it can be seen from Fig.2 that,for the belief propagation decoder,the value of FER reaches only an order of magnitude of 10-2. Therefore,the efficiency and stability of the augmented model belief propagation decoder with Tanner graph is much higher than that of the belief propagation decoder,and the order of magnitude of FER is as low as 10-5.

    Fig. 2. Comparing the relationship of p and FER in the GF(2) and GF(4) of [[5,1,3]]. Note that the FER of GF(2) and GF(4) overlaps when p=0.009-0.012,due to node duplication in GF(4),which leads to higher FER.

    For Fig.3,the relationship between iterative attempts and FER of [[5,1,3]] is studied. As can be seen from the left figure,when the attempts between 5 and 15,there are two sharp points. The sharp points indicate that the gradient disappears,and this part of the simulation is invalid. In this case,the numerical simulation may not get the correct result. Comparatively, as can be seen from the right figure, the numerical results of GF(4) are more greatly impressive. The right figure of Fig.3 shows the simulation of[[5,1,3]]code on the GF(4)belief propagation decoder. With the increasing of attempts,FER shows an approximately linear decline,and the accuracy of FER reaches 10-7when the attempts are 100. In contrast,GF(2)is very unstable in the decoding process,and GF(4)has better FER performance and effects. As the code length is too short,it shows a downward trend with the increase of attempts.However, with the increase of code length, the FER also will gradually increase.

    Fig. 3. Comparing the relationship of attempts and FER in the GF(2)and GF(4)of[[5,1,3]]. Specially,at about 5-15 in the left figure,there are two sharp point where the GF(2)decoder fails because the gradient disappears.

    4. Schemes for implementing the augmented model BP decoder in quantum errorcorrection codes

    4.1. The variable elimination method

    Take the Bayesian network structure in Fig.4(a)as an example. Suppose the objective of the inference is to calculate the marginal probabilityp(x5). Obviously,in order to do this,we simply eliminate the variable{x1,x2,x3,x4}by addition,namely,

    The variablexiis eliminated, wheren(i) represents the adjacency node of nodexi. In the belief propagation algorithm, this operation is treated as passing a messagemij(xj)fromxitoxj. Thus,the variable elimination process described by Eq. (5) can be described as the message passing process shown in Fig.4(b). It is not difficult to find that each message passing operation is only directly related to the variablexiand its adjacent nodes. In other words, the calculation related to message passing is limited to the local part of the graph.

    In the belief propagation algorithm,a node can only send a message to another node after receiving messages from all other nodes. The marginal distribution of a node is proportional to the product of messages it receives,namely,

    for example,in Fig.4(b),before nodex3can send a message tox5,it must receive a message from nodesx2andx4in advance,and the probability that messagem35(x5) gets tox5isP(x5).Figure 5 shows the diagram of belief propagation algorithm.

    Fig.4. The variable elimination method and its corresponding messaging process.

    Fig.5. Diagram of belief propagation algorithm.

    4.2. The augmented model belief propagation

    The augmented model decoder is the one novel decoder,which first appeared in classical binary code.[22]For QLDPC code,an augmented model decoder can be based on any coded GF(4) decoder. Re-decoding is performed by using a randomly generated augmented check matrix

    In order to further optimize the calculation,the stabilizer code with the theory on the GF(4)field is associated. Suppose Pauli operator groupGis generated by{I,X,Z,Y=XZ}. The quaternion of GF(4)in Galois field is{0,1,ω,ˉω=ω2}. The following mapping is a one-to-one correspondence mapping of the Pauli operator inGto the GF(4)field,namely,

    Here to be sure,G →GF(4)is not the only one. The relation between theX →ω,z →ˉω,Y →1 corresponding relation is adopted in some literatures.

    4.3. Classical decoder decoding and GF(4) augmented model BP decoder decoding with Tanner graph

    In particular, convolution can be converted to take the product of the Fourier transform and the inverse Fourier transform. The following is the belief propagation algorithm based on fast Fourier transform, namely, FFT-BP algorithm. It should be noted that the subscript operation of the convolution solution of the probability sequence belongs to the operation of GF(4),so the transformation can be regarded as a series of two-point FFT transformations in thep-dimensional space. In essence,the method adopts the Hadamard transform

    5. Main results

    In this paper, we mainly analyze and calculate the simulation of GF(2)augmented and GF(4)augmented of bicycle code[[450,200]]on the depolarizing channel. Compared with the random perturbation strength of the existing decoders,[47]the FER performance of decoders is as shown in Fig.6 below.

    Figure 6 shows the relationship betweenpand FER for GF(2),GF(4),GF(2)augmented model and GF(4)augmented model,respectively.What is remarkable is the degree to which it helps,with a significantly greater relative gain than a novel GF(4) augmented model BP decoder with Tanner graph over other decoders. By comparing 3 and 4 in Fig.6 horizontally,it can be seen that whenp=0.0115-0.0116, the GF(4) augmented decoder is one order of magnitude lower than GF(2)augmented decoder,and the minimum value of FER for GF(4)augmented decoder is 7.1975×10-5whenp=0.0115. At this point, FER= 7.1975×10-5is the low-loss decoder of GF(4) augmented model BP decoder compared with the existing decoder. Furthermore, a longitudinal comparison is made to compare 1 and 3 in Fig. 6. It can be seen from the minimum value of each figure that GF(2) augmented model decoder can withstand greater random perturbation strength when FER is of the same order of magnitude, and the decoding effect is better than GF(2) decoder. Therefore, whenp=0.005-0.0115(0.0116), it shows a downward trend, and then the decoder plays a vital role. As shown in Fig.7,whenp=0.0115,the FER performance of the decoder is constantly changing under different attempts.

    Fig. 6. The relationship between p and FER. As can be seen from the third and fourth pictures of Fig. 6, there is a small increment of FER before p=0.005,which is due to the influence caused by noise in the environment. The decoder also needs some time to adapt to the noise in the environment.

    Fig.7. The relationship of attempts and FER in GF(2)Aug and GF(4)Aug.In the case of certain random perturbation strength,when the number of attempts is 50-80,the FER of GF(2)augmented model decoder appears negative number,at this point,it has a gradient disappearance,which indicates that it has failed.

    As can be seen from Fig.7,the FER of GF(4)augmented model BP decoder does not change significantly with the increase of the number of attempts. However,GF(2)augmented model BP decoder fluctuates greatly.In effect,the novel GF(4)augmented model BP decoder has the highest efficiency and is more suitable to be used as a decoder for quantum errorcorrection codes. Moreover, at a given random perturbation strengthp=0.0115 and the number of attemptsN=60-70,its minimum FER can reach an order of magnitude of 10-5.Compared with GF(4) augmented decoder, the stability of GF(2)augmented decoder is far less than its.

    6. Conclusion

    The paper mainly includes two aspects. On the one hand,Tanner graph plays a key role in the construction of decoding algorithm. On the other hand,the characteristics of cyclic difference sets of QLDPC codes and the construction of sparse matrices provide a solid foundation for the belief propagation algorithm. Therefore,a new GF(4)augmented model belief propagation decoder with Tanner graph is found, which is suitable for the new code. According to the simulation of the GF(2) Aug decoder and the GF(4) Aug decoder of bicycle code [[450,200]] on the depolarizing channel, whenp=0.0115-0.0116 and number of attemptsN=60-70, the FER of the novel decoder is nearly zero decreased to 7.1975×10-5.The decoder has a wide range of applications,with better FER performance than the random perturbation decoder. Due to the construction of the Tanner graph is not unique, the Tanner graph can be found that is most suitable for this decoder.In the future, quantum fault tolerance and threshold or noise compression information will be further investigated.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 11975132 and 61772295), the Natural Science Foundation of Shandong Province, China(Grant No.ZR2019YQ01),and the Higher Education Science and Technology Program of Shandong Province,China(Grant No.J18KZ012).

    猜你喜歡
    丹丹
    紙的由來之路
    好看的丹丹
    相距多少米
    高中數(shù)學(xué)之美
    誰去拖地
    《丹丹》
    人文天下(2021年10期)2022-01-26 03:23:12
    美人魚2
    青年生活(2020年5期)2020-03-27 11:47:02
    林丹丹
    海峽姐妹(2020年1期)2020-03-03 13:36:06
    詩集精選
    散文詩(2019年9期)2019-01-28 07:04:14
    A brief introduction to the English Suffix—ive
    国产精品自产拍在线观看55亚洲| 亚洲五月天丁香| 欧美一区二区精品小视频在线| 亚洲av成人不卡在线观看播放网| 俺也久久电影网| 国产av一区二区精品久久| e午夜精品久久久久久久| 中国美女看黄片| 欧美性猛交╳xxx乱大交人| 久久精品国产清高在天天线| 高清在线国产一区| 18禁国产床啪视频网站| 国产成人精品久久二区二区免费| 女生性感内裤真人,穿戴方法视频| 日韩欧美精品v在线| 99久久久亚洲精品蜜臀av| 麻豆成人av在线观看| 国产亚洲精品一区二区www| 夜夜爽天天搞| 午夜福利在线在线| 精品久久蜜臀av无| 国产一区二区激情短视频| 九九热线精品视视频播放| 岛国在线免费视频观看| 日韩大码丰满熟妇| 日本在线视频免费播放| 中文字幕av在线有码专区| 一级毛片精品| 国产亚洲av高清不卡| 久久这里只有精品中国| 制服丝袜大香蕉在线| 久久性视频一级片| 国产精品 欧美亚洲| 99精品在免费线老司机午夜| 老熟妇乱子伦视频在线观看| 此物有八面人人有两片| 宅男免费午夜| 久久久久九九精品影院| 性欧美人与动物交配| 国产精品一区二区免费欧美| 日本熟妇午夜| 97人妻精品一区二区三区麻豆| 哪里可以看免费的av片| 日韩高清综合在线| 美女扒开内裤让男人捅视频| 国产av麻豆久久久久久久| 亚洲人成网站高清观看| 久久久久国内视频| 女人高潮潮喷娇喘18禁视频| 国产精品久久电影中文字幕| 亚洲五月婷婷丁香| 国产精品,欧美在线| 波多野结衣高清无吗| 国产av一区二区精品久久| 欧美zozozo另类| 国产av又大| 久久亚洲真实| 久久久水蜜桃国产精品网| 激情在线观看视频在线高清| 成年免费大片在线观看| 欧美乱妇无乱码| 男女之事视频高清在线观看| 巨乳人妻的诱惑在线观看| 久久久久久久久中文| 级片在线观看| 人妻夜夜爽99麻豆av| 看免费av毛片| 看黄色毛片网站| 99久久99久久久精品蜜桃| 成人永久免费在线观看视频| 亚洲国产精品合色在线| 欧美乱码精品一区二区三区| 不卡av一区二区三区| 国产精品99久久99久久久不卡| 欧美性长视频在线观看| 在线十欧美十亚洲十日本专区| 亚洲av片天天在线观看| 国产精品亚洲美女久久久| 久久精品亚洲精品国产色婷小说| 黑人操中国人逼视频| 国产精品亚洲美女久久久| 日韩欧美在线乱码| 国产片内射在线| 一区二区三区国产精品乱码| 又紧又爽又黄一区二区| 久久这里只有精品中国| 性色av乱码一区二区三区2| 午夜精品久久久久久毛片777| 老司机午夜福利在线观看视频| 窝窝影院91人妻| 欧美激情久久久久久爽电影| 波多野结衣高清无吗| 深夜精品福利| 制服丝袜大香蕉在线| 久久性视频一级片| 最新美女视频免费是黄的| 国产伦一二天堂av在线观看| 亚洲精品一区av在线观看| 亚洲成人国产一区在线观看| 亚洲aⅴ乱码一区二区在线播放 | 久久精品国产99精品国产亚洲性色| 精品久久久久久久久久免费视频| 亚洲午夜精品一区,二区,三区| 国产男靠女视频免费网站| 亚洲熟妇中文字幕五十中出| 两性夫妻黄色片| 午夜亚洲福利在线播放| 黄色片一级片一级黄色片| 九色国产91popny在线| 亚洲一区二区三区不卡视频| 老汉色∧v一级毛片| 成人特级黄色片久久久久久久| 99国产极品粉嫩在线观看| 日本免费一区二区三区高清不卡| 99精品欧美一区二区三区四区| 一级片免费观看大全| www国产在线视频色| 看片在线看免费视频| 亚洲人成网站在线播放欧美日韩| avwww免费| 亚洲性夜色夜夜综合| 在线观看免费日韩欧美大片| 欧美中文综合在线视频| 免费无遮挡裸体视频| 99国产极品粉嫩在线观看| www.999成人在线观看| 岛国在线免费视频观看| 可以免费在线观看a视频的电影网站| 免费观看精品视频网站| 亚洲国产高清在线一区二区三| 啦啦啦免费观看视频1| 亚洲av日韩精品久久久久久密| 成人手机av| 高清在线国产一区| 黄色成人免费大全| 在线观看一区二区三区| 欧美zozozo另类| 夜夜夜夜夜久久久久| 国产亚洲精品综合一区在线观看 | 最近最新免费中文字幕在线| 成熟少妇高潮喷水视频| 999精品在线视频| 国产免费av片在线观看野外av| 成人午夜高清在线视频| 成人亚洲精品av一区二区| av免费在线观看网站| 在线视频色国产色| 国产精品自产拍在线观看55亚洲| 三级毛片av免费| 窝窝影院91人妻| 成人特级黄色片久久久久久久| 国产又色又爽无遮挡免费看| 在线观看午夜福利视频| 国产av一区在线观看免费| 色老头精品视频在线观看| 国内揄拍国产精品人妻在线| 黄色视频不卡| 欧美日韩一级在线毛片| 日韩欧美在线乱码| 一区二区三区高清视频在线| 亚洲av熟女| 久久久久国产一级毛片高清牌| 搡老熟女国产l中国老女人| 国产三级中文精品| 19禁男女啪啪无遮挡网站| 在线看三级毛片| 一区二区三区国产精品乱码| 国产亚洲精品第一综合不卡| av视频在线观看入口| 国产麻豆成人av免费视频| 欧美日韩国产亚洲二区| 巨乳人妻的诱惑在线观看| 一个人免费在线观看的高清视频| 欧美一级毛片孕妇| 老司机在亚洲福利影院| 久久久久久大精品| 99久久精品国产亚洲精品| 欧美久久黑人一区二区| 国产亚洲精品久久久久久毛片| 岛国视频午夜一区免费看| 俺也久久电影网| 丁香六月欧美| 97碰自拍视频| 91av网站免费观看| 成人18禁在线播放| 97碰自拍视频| 久久中文字幕一级| 欧美丝袜亚洲另类 | 最新在线观看一区二区三区| 亚洲一区二区三区不卡视频| 国产精品香港三级国产av潘金莲| 最近在线观看免费完整版| 国产在线精品亚洲第一网站| 国产亚洲精品久久久久久毛片| 日本 av在线| 亚洲欧美一区二区三区黑人| 久久伊人香网站| 又紧又爽又黄一区二区| 亚洲国产欧洲综合997久久,| 岛国在线免费视频观看| 日本在线视频免费播放| 在线观看免费视频日本深夜| 人人妻人人澡欧美一区二区| 天天添夜夜摸| 精品无人区乱码1区二区| 亚洲av成人一区二区三| 日本免费一区二区三区高清不卡| 亚洲片人在线观看| 麻豆国产97在线/欧美 | 搞女人的毛片| 亚洲人成网站在线播放欧美日韩| 亚洲,欧美精品.| 一区二区三区高清视频在线| 久久久国产精品麻豆| 香蕉国产在线看| 91老司机精品| 成人av一区二区三区在线看| 久久精品综合一区二区三区| x7x7x7水蜜桃| 中文字幕av在线有码专区| 又粗又爽又猛毛片免费看| 亚洲国产欧美人成| 桃色一区二区三区在线观看| 老司机在亚洲福利影院| 午夜福利欧美成人| www.www免费av| 最近最新中文字幕大全电影3| 国产午夜福利久久久久久| 88av欧美| 99在线视频只有这里精品首页| 国产99久久九九免费精品| 老司机靠b影院| 欧美黄色片欧美黄色片| 日本一区二区免费在线视频| 欧美 亚洲 国产 日韩一| 日韩欧美 国产精品| 一进一出好大好爽视频| 一本一本综合久久| 91老司机精品| 国产片内射在线| 亚洲熟女毛片儿| 欧美黑人精品巨大| 一个人观看的视频www高清免费观看 | 成人国产综合亚洲| avwww免费| 黄色视频,在线免费观看| 精品欧美国产一区二区三| 欧美成狂野欧美在线观看| 免费看日本二区| 最新美女视频免费是黄的| 黑人操中国人逼视频| 99热这里只有是精品50| 欧美性长视频在线观看| 搡老岳熟女国产| 国产真人三级小视频在线观看| 国产蜜桃级精品一区二区三区| 国产精品免费视频内射| 国产av在哪里看| 午夜a级毛片| 久久精品国产亚洲av香蕉五月| 亚洲国产高清在线一区二区三| 啦啦啦免费观看视频1| 变态另类丝袜制服| 天堂√8在线中文| 亚洲性夜色夜夜综合| 一个人免费在线观看的高清视频| 99热6这里只有精品| 国产成年人精品一区二区| 亚洲一区高清亚洲精品| 国内精品久久久久久久电影| 精品久久久久久久末码| 久久国产乱子伦精品免费另类| 熟女电影av网| 小说图片视频综合网站| 亚洲欧美日韩东京热| xxx96com| 91国产中文字幕| 欧美在线一区亚洲| 亚洲成人精品中文字幕电影| 夜夜看夜夜爽夜夜摸| 国产亚洲精品久久久久久毛片| www日本在线高清视频| 欧美高清成人免费视频www| 久久久久久久久中文| 国产亚洲精品av在线| 久久久精品国产亚洲av高清涩受| 日本免费a在线| 亚洲七黄色美女视频| 少妇裸体淫交视频免费看高清 | av视频在线观看入口| 亚洲性夜色夜夜综合| 露出奶头的视频| 亚洲av日韩精品久久久久久密| 深夜精品福利| 岛国视频午夜一区免费看| 精品国产美女av久久久久小说| 久久亚洲精品不卡| av中文乱码字幕在线| 在线视频色国产色| 日韩欧美精品v在线| 国产真人三级小视频在线观看| 97人妻精品一区二区三区麻豆| 18禁黄网站禁片免费观看直播| 大型黄色视频在线免费观看| 嫩草影视91久久| 午夜免费成人在线视频| 日韩成人在线观看一区二区三区| 久久久国产欧美日韩av| 999久久久国产精品视频| 亚洲一区二区三区不卡视频| 亚洲成av人片在线播放无| 国产亚洲精品综合一区在线观看 | 久久久久久久午夜电影| 亚洲狠狠婷婷综合久久图片| 听说在线观看完整版免费高清| 国产精品av久久久久免费| 久久久久久国产a免费观看| 亚洲性夜色夜夜综合| 日本a在线网址| 日本 欧美在线| a级毛片在线看网站| 老鸭窝网址在线观看| 亚洲九九香蕉| 大型av网站在线播放| 日韩大码丰满熟妇| 久久午夜亚洲精品久久| 1024手机看黄色片| 日本撒尿小便嘘嘘汇集6| 可以免费在线观看a视频的电影网站| 亚洲国产中文字幕在线视频| 欧美大码av| 亚洲在线自拍视频| 人人妻人人看人人澡| 亚洲国产精品合色在线| 全区人妻精品视频| 久久久久亚洲av毛片大全| 亚洲欧美日韩无卡精品| 少妇人妻一区二区三区视频| 久久99热这里只有精品18| 免费电影在线观看免费观看| 欧美日韩中文字幕国产精品一区二区三区| 五月伊人婷婷丁香| 在线永久观看黄色视频| 亚洲18禁久久av| 90打野战视频偷拍视频| 一进一出好大好爽视频| 九色成人免费人妻av| or卡值多少钱| 最近最新中文字幕大全免费视频| 俺也久久电影网| 久久久精品国产亚洲av高清涩受| 亚洲av电影不卡..在线观看| 亚洲av电影不卡..在线观看| 国产aⅴ精品一区二区三区波| 国产99久久九九免费精品| 法律面前人人平等表现在哪些方面| www.精华液| 亚洲精品av麻豆狂野| 亚洲色图 男人天堂 中文字幕| bbb黄色大片| 免费搜索国产男女视频| 精品欧美国产一区二区三| 国产视频内射| 午夜精品久久久久久毛片777| 中文字幕精品亚洲无线码一区| 国产97色在线日韩免费| 黄色丝袜av网址大全| 狂野欧美激情性xxxx| 国产又黄又爽又无遮挡在线| 欧美乱码精品一区二区三区| 可以免费在线观看a视频的电影网站| 伦理电影免费视频| 啦啦啦韩国在线观看视频| 又黄又粗又硬又大视频| 成人特级黄色片久久久久久久| 色哟哟哟哟哟哟| 久久久国产欧美日韩av| 99精品欧美一区二区三区四区| 欧美性猛交╳xxx乱大交人| av视频在线观看入口| 天堂√8在线中文| 日本免费a在线| 成人av在线播放网站| 最近最新免费中文字幕在线| 露出奶头的视频| 欧美成人一区二区免费高清观看 | 成人国产综合亚洲| 国产精品一区二区精品视频观看| ponron亚洲| av中文乱码字幕在线| 国产一级毛片七仙女欲春2| 久久久国产欧美日韩av| 宅男免费午夜| 久久精品国产亚洲av高清一级| 国产真实乱freesex| 两性夫妻黄色片| 亚洲人成伊人成综合网2020| 国产高清videossex| 一本综合久久免费| 999精品在线视频| 日韩精品免费视频一区二区三区| 久久中文看片网| av视频在线观看入口| 亚洲男人的天堂狠狠| 在线观看66精品国产| 他把我摸到了高潮在线观看| 禁无遮挡网站| 国产成人av激情在线播放| 2021天堂中文幕一二区在线观| 欧美zozozo另类| 亚洲国产日韩欧美精品在线观看 | 一级作爱视频免费观看| 久久 成人 亚洲| 国产精品影院久久| 丝袜美腿诱惑在线| 久久久国产成人精品二区| 超碰成人久久| 草草在线视频免费看| 禁无遮挡网站| 黄色毛片三级朝国网站| 97碰自拍视频| 国产精品爽爽va在线观看网站| 大型av网站在线播放| 亚洲人成伊人成综合网2020| 香蕉久久夜色| 2021天堂中文幕一二区在线观| 国产伦人伦偷精品视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲色图av天堂| 色在线成人网| 一级片免费观看大全| 男女那种视频在线观看| 少妇粗大呻吟视频| 国产精品爽爽va在线观看网站| 高清毛片免费观看视频网站| 99热这里只有是精品50| 免费无遮挡裸体视频| 亚洲欧美日韩无卡精品| av在线天堂中文字幕| 亚洲男人的天堂狠狠| 国产午夜福利久久久久久| 久久精品综合一区二区三区| xxxwww97欧美| 欧美精品亚洲一区二区| 久久天堂一区二区三区四区| 黄频高清免费视频| 精品一区二区三区四区五区乱码| 精品国产乱子伦一区二区三区| 欧美不卡视频在线免费观看 | 亚洲av成人av| 99久久精品国产亚洲精品| 男男h啪啪无遮挡| 日韩精品青青久久久久久| 国产一区二区激情短视频| 欧美3d第一页| 国内少妇人妻偷人精品xxx网站 | 大型黄色视频在线免费观看| 亚洲黑人精品在线| 99久久国产精品久久久| 色综合婷婷激情| 国产高清激情床上av| 精品无人区乱码1区二区| 国产精品一区二区三区四区免费观看 | 超碰成人久久| 亚洲人成77777在线视频| 久久久久久久久免费视频了| 久久99热这里只有精品18| 热99re8久久精品国产| 一区二区三区国产精品乱码| 2021天堂中文幕一二区在线观| 久久久久九九精品影院| 久久久国产成人免费| 成人永久免费在线观看视频| 久久久精品欧美日韩精品| 精品国产乱子伦一区二区三区| 久久天堂一区二区三区四区| 婷婷丁香在线五月| 亚洲欧美日韩无卡精品| 最近在线观看免费完整版| av福利片在线观看| 亚洲黑人精品在线| 激情在线观看视频在线高清| 香蕉丝袜av| 99久久99久久久精品蜜桃| 黄色视频不卡| 啦啦啦观看免费观看视频高清| 欧美在线黄色| 欧美中文日本在线观看视频| 在线观看66精品国产| 亚洲成av人片免费观看| 老司机在亚洲福利影院| 国产亚洲精品久久久久5区| 麻豆一二三区av精品| 十八禁网站免费在线| 精品久久久久久久久久免费视频| 色综合亚洲欧美另类图片| 午夜精品在线福利| 国产99白浆流出| 男插女下体视频免费在线播放| 校园春色视频在线观看| 男女下面进入的视频免费午夜| 成人亚洲精品av一区二区| 国产精品影院久久| 日韩有码中文字幕| 黄色 视频免费看| 久9热在线精品视频| 久久精品国产综合久久久| 日韩欧美国产一区二区入口| 欧美色欧美亚洲另类二区| 精品少妇一区二区三区视频日本电影| 欧美zozozo另类| 人人妻人人看人人澡| 亚洲中文av在线| 欧美最黄视频在线播放免费| 国产av一区二区精品久久| 在线播放国产精品三级| 午夜a级毛片| 校园春色视频在线观看| 久久久水蜜桃国产精品网| 怎么达到女性高潮| 婷婷精品国产亚洲av在线| 国产成人aa在线观看| 国产一级毛片七仙女欲春2| 亚洲人成77777在线视频| 国产成人精品久久二区二区免费| 亚洲人成77777在线视频| 亚洲在线自拍视频| 男女床上黄色一级片免费看| 日本一本二区三区精品| 日韩欧美三级三区| 伦理电影免费视频| 国产精品,欧美在线| 91大片在线观看| 久久久久亚洲av毛片大全| 精品熟女少妇八av免费久了| 久久久久久免费高清国产稀缺| 亚洲性夜色夜夜综合| 黄色毛片三级朝国网站| 精品国产亚洲在线| 一夜夜www| 又黄又爽又免费观看的视频| 亚洲精华国产精华精| 欧美成人午夜精品| 国产一区二区激情短视频| 真人做人爱边吃奶动态| 国产一区二区激情短视频| 天堂av国产一区二区熟女人妻 | 久久久久久亚洲精品国产蜜桃av| 国产亚洲精品第一综合不卡| 国产精品日韩av在线免费观看| 最近最新中文字幕大全电影3| 国产精品香港三级国产av潘金莲| 国产精品永久免费网站| 日韩免费av在线播放| 两个人视频免费观看高清| 国产精品亚洲美女久久久| 国产亚洲欧美在线一区二区| www.www免费av| 国产一区二区三区视频了| 午夜福利欧美成人| 免费观看精品视频网站| 又粗又爽又猛毛片免费看| 亚洲avbb在线观看| 亚洲国产精品久久男人天堂| avwww免费| 18禁美女被吸乳视频| 看黄色毛片网站| 精品国产乱码久久久久久男人| 色综合婷婷激情| 黄色视频,在线免费观看| 又黄又粗又硬又大视频| 一本一本综合久久| 91成年电影在线观看| 别揉我奶头~嗯~啊~动态视频| 人人妻,人人澡人人爽秒播| 日韩免费av在线播放| 狂野欧美激情性xxxx| АⅤ资源中文在线天堂| 亚洲av五月六月丁香网| 一进一出抽搐动态| 色综合亚洲欧美另类图片| 国产成人精品久久二区二区免费| 天天添夜夜摸| 动漫黄色视频在线观看| 国产v大片淫在线免费观看| 久久国产乱子伦精品免费另类| 一卡2卡三卡四卡精品乱码亚洲| 亚洲中文av在线| 亚洲欧美日韩高清在线视频| 搡老妇女老女人老熟妇| 成人av一区二区三区在线看| 午夜老司机福利片| 一进一出好大好爽视频| 一本大道久久a久久精品| 国产精品久久久久久人妻精品电影| 在线观看66精品国产| 久久九九热精品免费| 亚洲成人中文字幕在线播放| 亚洲 欧美一区二区三区| 久久中文字幕人妻熟女| 日本黄色视频三级网站网址| 好男人在线观看高清免费视频| 99re在线观看精品视频| 男男h啪啪无遮挡| 欧美日韩乱码在线| 久久久久久九九精品二区国产 | 999精品在线视频| 久久久精品国产亚洲av高清涩受| 少妇被粗大的猛进出69影院| 欧美日本视频| 琪琪午夜伦伦电影理论片6080| 免费在线观看日本一区| 国产av在哪里看| 久久天堂一区二区三区四区| 免费高清视频大片|