• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Determination of quantum toric error correction code threshold using convolutional neural network decoders

    2022-01-23 06:35:44HaoWenWang王浩文YunJiaXue薛韻佳YuLinMa馬玉林NanHua華南andHongYangMa馬鴻洋
    Chinese Physics B 2022年1期
    關(guān)鍵詞:玉林華南

    Hao-Wen Wang(王浩文) Yun-Jia Xue(薛韻佳) Yu-Lin Ma(馬玉林)Nan Hua(華南) and Hong-Yang Ma(馬鴻洋)

    1School of Sciences,Qingdao University of Technology,Qingdao 266033,China

    2School of Information and Control Engineering,Qingdao University of Technology,Qingdao 266033,China

    Keywords: quantum error correction,toric code,convolutional neural network(CNN)decoder

    1. Introduction

    Since qubits are not independent in quantum computers,[1]they will interact with the external environment during operation,thereby destroying the entangled state between qubits and causing quantum collapse.[2]In order to overcome the influence of noise caused by quantum incoherence, the emergence of quantum error correction codes is an important technology to solve the problem of noise. According to the theory of quantum error correction(QEC),[3-6]if the interference intensity generated by noise is less than a certain threshold,the logical qubits encoded with physical qubits can be well protected.

    In order to make the interference of noise intensity closer to the threshold level in the experiment, finding a quantum error correction code with excellent performance is crucial.The stabilizer formalism[7]is a powerful technique for defining and studying quantum error correction codes based on the Pauli operator. It can directly analyze the symmetry of the code,perform error detection and correction,and describe the most widely used form of topological codes.[8,9]The stabilizer code is a quantum error correction code defined in the stabilizer form. It consists of two sets of operators. One set is a stabilizer generator and the other set codes logical operators.The stabilizer code can detect errors by measuring the information of the stabilizer operator, without changing the coded information,[10]so that the qubit information is not detected and collapsed.

    Next, we analyze the error information detected by the stabilizer operator[11]and perform a recovery operation to correct the error. The appearance of the decoder allows researchers to find a suitable error correction from the available classical data,that is,the output of the stabilizer operator measurement[12,13]result in the form of±1 is called a decoder.We need to find the result that the optimal decoder reaches the output threshold close to the optimal threshold. For the determination of the best decoder, the decoding calculation under the simplest noise model such as the depolarization noise model is also a very difficult problem.Therefore,we try to find a code with a good constrained structure.[14]The appearance of topological code[15-19]provides us with great convenience in decoding calculations. It has a stable generator with local support, and its stabilizer is geometrically locally, to characterize any return-1 measurement result that does not meet the constraints of the stabilizer. The result indicates that there is an error in the qubits near it. Using this scheme, we can effectively decode. In the choice of decoder,we use the CNN network structure to provide great convenience for the following toric code error correction.

    2. Toric codes in dual space

    2.1. Quantum toric error correction code under the plane

    Toric code[20-22]is a quantum error correction code with good periodicity proposed earlier. Its typical representative is that the quadrilateral lattice conforms to the self-dual and boundary roughness, which perfectly conforms to the error correction. The code requires regularity and periodicity for error correction in handling error types. In addition, it is the simplest topological code with good local stability,which also provides a guarantee for it as a good error correction code.The square is embedded in the toric torus,so that the leftmost edge is marked on the rightmost side,and the uppermost edge is marked on the bottom edge. As shown in Fig. 1, the lattice consists of vertices(points where edges intersect),lattices(closed quadrilaterals surrounded by edges), and boundaries(consisting of edges on the edges of the lattice). Among them,boundaries,vertices and grids play a key role in the error correction process.

    Among them,Rrepresents a type of logical operator, which is composed of multiple physical qubits,Prepresents a stable generator, which is composed of the tensor product of multiple Puli operators,LIis one of theRlogical operators group,and it characterizes the stability of logical qubits. We embed qubits on each side of the lattice (represented by green circles in Fig. 1). On theL×Llattice with periodic boundary conditions, we have 2L2edges. When calculating the boundaries, care should be taken not to count repeatedly(in Fig.1,the edges of the edges are represented by gray circles). From this,we can calculate that the toric code hasn=2L2physical qubits. Corresponding to the foregoing, in the toric code, the vertices and lattices on the lattice constitute two stable generators,which are define as follows:ALandBPare vertex operator and plaquette operator:

    among them,jrepresents the edge,and bothXandZare Pauli operators. The plaquette operator is composed of the tensor product[23,24]of the PauliZoperator acting on the 4 qubits of the lattice boundary, as shown in Fig. 1. The vertex operator consists of the tensor product of the PauliXoperator acting on the 4 qubits adjacent to the vertex. According to the characteristics of stable generators (see Eq. (1)), all operators must be in reciprocity(to ensure that they are not affected by the order in which errors occur),so all plaquette operators in the lattice are reciprocal, and so are all vertex operators. More importantly, adjacent plaquettes and vertex operators are also commutative(the two adjacent ones have two overlapping edges),but non-adjacent lattices and vertex operators are not commutative,because they are in different qubits forming a non-trivial ring.[25,26]

    Fig. 1. The toric code is a lattice with a boundary after the circular surface located inside the torus is mapped to the plane. The square is embedded in the toric ring,the leftmost side of the square is connected to the rightmost side of the square,and the uppermost side is connected to the rightmost side, so we only identify one side. Among them, 4-qubit Pauli Z can form a vertex operator and 4-qubit Pauli X can form a plaquette operator.

    2.2. Toric code mapping under dual lattice

    The plane lattice (also called primitive lattice) is given above. We move the plane lattice up and down by half a unit to generate the dual lattice.[27,28]The dotted line indicates the formation of the dual lattice as shown in Fig.2. The plane lattice has the same size and boundary,but according to the mapping relationship of the dual lattice, we define as follows: A dual latticeΛof latticeΛ∨is a set of vectorsX ∈span(Λ)and satisfies?v ∈Λ:x,v ∈Z.If we add a linear transformation[29]to the original lattice(here is rotation),then the dual lattice of the new latticeRΛcan be obtained by rotating the original dual lattice(RΛ)∨=R(Λ)∨. We find that no matter what kind of lattice is,its dual lattice has the following relationship with it:

    Fig.2. Choose a 5×5 toric code,where the dotted line represents the dual double lattice after the plane lattice. Move up and down by half a unit,the circle represents the physical qubit,the gray circle represents the period. The boundary,the dual double lattice is on the dual lattice.Topological operators X and Z each form a topological correction chain on the dual double lattice. Finally,the topological correction chains of X and Z are combined to form a complete correction quaternion. The local stability of the topology is used to facilitate the stable progress of quantum error correction.

    Therefore,we have a characteristic that the dual lattice is the“reciprocal”of the original lattice. Returning to our toric code under the dual dual lattice, its vertices are the lattices of the plane lattice,[30,31]and vice versa,corresponding in the Pauli operator,the PauliXoperator under the dual double lattice corresponds to theZoperator of the plane lattice,and the PauliZoperator under the dual double lattice corresponds to theXoperator of the plane lattice. The dual double lattice plays an important role in the toric code. We can choose the most suitable lattice for our calculation to describe the vertices of the original lattice,which greatly simplifies the calculation process.[32]For example, in Fig. 2, we can choose a suitable small grid to understand the tensor product of the operator.We choose the square as the carrier for studying the toric code.An important reason is that the dual of the square is also a square.We call this the dual grid to be self-dual, and this feature is very suitable for equal protection of topology codes withXandZerrors.

    3. Quantum error correction and CNN decoder framework

    3.1. Error detection

    Error detection[33]is carried out by measuring the output result of the stable generator.When there is no error,the stable generator will output an eigenvalue of+1. When an error occurs,the constraint condition[34]of the stable generator is not met, and the output is-1 eigenvalues. For the measurement of stable generators, we do not need to measure all generator groups, i.e., 2m, because the properties of each group of stable generators will ensure the independence of each group of stable generators. Therefore, we only need to measureN-Kstable generators,and the number of measurements is linearly proportional to the number of physical qubits. When we find the location of the error, the next step is the error correction process.

    We defineQas the Pauli error operator.[35]If it is in a pairwise relationship with the stable generatorS,then we can set|ψ〉as the initial state before the error occurs,so

    It can be seen that the stateQ|ψ〉after the error is the-1 eigenvalue ofS. Since we only consider the errors caused by Pauli operator (because the measurement of the stabilizer operators projects converts more general errors into Pauli errors),any two Pauli operators withn-bit qubits are either commute or anti-commute[36]easy, so all error cases are suitable for our analysis above. For simpler noise models, the processing of depolarized noise models[37]is independent and the generation of each error type with the same distribution isPX=PY=PZ=Peff/3. Among them,peffis the error rate characterizing the error correction capability. Since different errors will produce the same syndrome,the equivalence class members of logical operators are the main reason for the impact.

    Fig.3. The two strings(red and yellow in the figure)formed by the Z error on the original lattice can form the same syndrome. In the stabilizer,errors can be corrected and combined into a set of closed loops toform a stabilizer operator.

    3.2. Error correction

    We can regard the syndrome as a charged quasiparticle.[38-41]When the measurement output is +1, the charge is 0(we call it no particle). When the measurement result is-1,the charge amount of 1 is the quasiparticle related to the vertex and the grid. According to the error correction rules,theZerror in the error-free state will create a pair of+1 charged quasiparticles at adjacent vertices. When an error occurs,theZerror adjacent to the+1 quasiparticle will move the quasiparticle to the case that,if the error is adjacent to another vertex, then another quasiparticle is moved here, they will be annihilated,and the qubit at the vertex will be in a zero charge state,thus achieving an error correction process. As shown in Fig. 3, the error correction capability also depends on the intensity and type of errors. We define the error correction and elimination rules of toric codes as follows:

    among them,the subscriptkrepresents the excited state at the toric code grid,and the subscriptmrepresents the excited state at the vertex. From this,we can conclude that the excited state of the error particle is generated in pairs to form a closed loop for the excited state annihilation. Can be generated individually,which will cause errors that cannot be corrected.

    In the past, we can determine the appropriate syndrome according to the statistical mapping method. However,due to the strong spatial correlation between the grid and the vertices of the toric code,it is difficult for us to use the usual statistical methods to select[42]to make selections. Therefore, we now propose a machine learning-based CNN decoder to determine the best syndrome more quickly,and continue to optimize the conditions to achieve the maximum good threshold. Given errorQand stabilizer elementS,when the errorsQandSQlead to the same measurement result(produce the same syndrome),we need to automatically select the error correction operator from a set of stabilizer measurement results,which is called a decoder,[43-45]as shown in Fig.4.

    Fig.4. Z will generate two pairs of green syndromes at the four adjacent vertices,and X will generate a pair of upper and lower red syndromes.When two syndromes of the same type generated by errors appear in the same position,they will cancel out.When different types of syndromes appear in the same position,they will be marked as new yellow syndromes.

    3.3. Convolutional neural network architecture

    Convolutional neural network consists of three structures:convolution,activation and pooling. The reason why the CNN model can be designed by using the strong spatiality in the image is that the grid and vertices of the toric code have a strong correlation, and the feature space (syndrome) will be used as the input of the fully connected neural network. The fully connected layer is used to complete the mapping from the input feature space to the label set(recovery operator after error correction), that is, to achieve the classification effect. In the early stage of the experiment(or operation),we will train the neural network decoder,starting with smaller data and shorter code distance,[46,47]and when the training threshold is close to the optimal threshold we want,we will expand the amount of data. At the same time,the expansion of the amount of data will lead to an increase in training time and the requirements for the machine will be particularly high. Therefore,we must reduce the cost of training by optimizing various conditions of the CNN network structure. CNN achieves the training effect by iteratively adjusting the network weights through training data,which is called a backward propagation algorithm,[48]as shown in Fig.5.

    Fig.5.The input is mapped to the convolutional neural network from the dual dual lattice with vertices and plaquette dual channels respectively.A certain size of convolution kernel is selected in the convolution layer. If it is wrong in the output layer,the eigenvalue of the output is+1. If it is wrong,the output eigenvalue is-1.

    We clearly know that the training of the correction process as a classification is a supervised learning,[49]our loss function is the classification cross entropy[see Eq.(7)]. In order to ensure that the value obtained during each classification cross entropy can be best close to the true value,we introduce the currently popular Adam optimizer.[50,51]On the one hand,it performs gradient descent after each iteration of entropy to prevent local optimal conditions. To avoid the phenomenon that the error is too large, on the other hand, the normalization process can minimize the loss function. Due to the large number of iterations and the huge amount of data,we use the RestNet network[52,53]structure in the CNN network. This architecture makes a reference(X)for each layer of the iteration and learns to form the residual function. We pass 7 or 14 iterations,after that,the residual block will be obtained,which will reduce the dimensionality of our convolution operation, thus ensuring the improvement of the iteration speed, and further reducing the dimensionality of the convolution kernel, which can increase the iteration depth by 50%, a good convolution effect can be achieved. This is achieved by introducing the remaining shortcuts,connecting to perform identity mapping,and skipping stacked layers. The shortcut output is added to the output of the stacked layer, and when moving from one stage to the next,the number of filters is doubled.the syndrome that can successfully mark various error rates[54]below the threshold. Since syndromes with a higher error rate are generally more challenging for classification, it is desirable to train the neural network mainly in a configuration corresponding to an error rate close to the threshold. First, we train with a small code distance through the collected data set,choosing RestNet7 and RestNet14 as the network architecture,and the prediction model is generated on this lower error rate data set.

    Then we increase the code distance,use a data set with the same error rate for prediction training,and stop training when we are close to the threshold. Finally,when the code distance is increased again,we can find that the prediction result of the data set with the same error rate is far from the threshold value,which means that we have trained the prediction model closest to the threshold value under this data set. As shown in Fig.6,the prediction model under the smaller code distance is still far away from our training model. Through further optimization,as shown in Fig.7,we find that the error rate of the prediction model is almost the same as our training error rate.[55]Consistent in Table 1,we provide the training data set,the number of iteration steps and the accuracy rate,and then use the training model to correct the detection process.

    Fig.6. The accuracy of the RestNet7 network layer is much lower than that of the prediction model when the number of samples is small. With the continuous increase of training samples,the prediction accuracy approaches the training accuracy, which can get about 65.547%, better predicting the model we need.

    where→yiis the classification bit string for input→xi,→f(xi)is the likelihood vector returned by the neural network.

    3.4. Training

    In order to better predict the correction model,we need to train the data set through the CNN network model, and train

    Fig. 7. Compared with RestNet7, the RestNet14 network layer has a better fitting effect in accuracy. A very good prediction can be achieved from the first few samples, but the accuracy is low. When the number of training samples continues to expand,the accuracy can be 65.987%in increase. Because the code distance and the influence of external factors are also involved,when the code distance is increased,the prediction accuracy rate reaches a saturation level.

    Table 1. The accuracy of prediction model.

    3.5. Result

    When we correct and predict the trained convolution model,we need to do some processing on the convolution. As shown in Fig. 6, in order to ensure the boundary and periodicity of the grid after each step of convolution,we need to fill it regularly. First assign a random error ratepeffto each edge.Then,we sample the errors based on the error rate of each edge and calculate the syndrome. In the process of correction, we usepfailto characterize logical errors and find their intersection with different code distances. We draw the threshold of the CNN decoder under the depolarization noise model.[56]In Table 2 we give the training parameters, steps and thresholds under different code distances. From the table, we can conclude that as the distance of the code increases,the accuracy of the correction will increase. However,due to the influence of the amount of data and training time,the threshold will reach a saturation level,and increasing the amount of data again will have the opposite effect.

    Table 2. Different code distance thresholds.

    Under the code distance ofd=3 andd=5 in Fig.8,the logic error rate[57]rises faster at the beginning and reaches the threshold level later. Therefore, when we increase the code distance, we must also consider the amount of training data and the effect of correction time. When we increase the code distance but do not increase the amount of training data, as shown in Fig.10,we can see that the initial effective error rate rises relatively slowly, and the training speed is also limited and increases with the code distance. When we increase the training data set,it can be seen that the initial logic error rate increases faster than Fig. 9 with the increase of the effective error rate function, but the two curves are basically flat when thepeffreaches about 0.18.

    Fig. 8. Under the code distance of d =3, 5 and 7, the logic error rate shows a gentle increase. There is not much difference in the growth rates for the three curves,and the threshold level can only reach about 3.5%,which is still far from our ideal optimal threshold.

    Fig.9. Under the same code distance,we switch to the RestNet14 network layer. It is obvious that the logic error rate has a rapid increase in the initial trend,and the threshold level has also been well improved,reaching about 5.9%.

    Fig.10. When we increase the code distance,d=5,7 and 9,the logic error rate is initially higher than before. However, the error rate will slowly increase when it reaches the middle position, until it reaches a plateau and the threshold is raised to about 8.9%.

    In Fig. 11, we increase the data set while increasing the code distance.[58-60]It is obvious that the logic error rate ofd=9 is significantly higher than the other three pictures,and it can reach the threshold level faster. However,as thepeffincreases, the logic error rate tends to be stable, and increasing the data set again will have a reduced effect.

    Fig.11. In order to further improve our threshold level,while increasing the code distance, we also replaced the high-accuracy RestNet14 network layer. It can be clearly seen that the logic error rate has a larger threshold in the initial stage. As peff increases, our threshold level approaches 10.8%,and we have the ideal threshold level we need.

    4. Conclusion

    We still have a long way to go in our search for quantum error correction. We need more powerful code support to solve the impact of complex noise models,and the increase in code distance beyond the threshold limit will lead to low proficiency of error correction. Therefore, we need to find more powerful algorithm support in the optimization of the decoder,and we also need to develop more sophisticated instruments in terms of the accuracy of the training process. Mature neural network decoders also need to consider the possibility of stabilization errors,and the influence of this factor is not added in this training process. The toric code threshold for this training has reached 10.8%,which is very close to the optimal threshold desired by the busy schedule. However,its accuracy is far from enough to control the influence of various factors in the operation of quantum computers. We still need more in-depth research to fully grasp the fault tolerance and error correction mechanism of quantum computers!

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 11975132 and 61772295), the Natural Science Foundation of Shandong Province, China(Grant No. ZR2019YQ01), and the Project of Shandong Province Higher Educational Science and Technology Program,China(Grant No.J18KZ012).

    猜你喜歡
    玉林華南
    王玉林作品
    海油華南譜新篇
    《華南地震》征稿簡(jiǎn)則
    華南地震(2022年1期)2022-04-06 05:55:10
    馬玉林書法作品選(2幅)
    華南風(fēng)采
    海峽姐妹(2019年8期)2019-09-03 01:00:46
    邱玉林藝術(shù)作品欣賞
    記華南女院前三任校長(zhǎng)
    海峽姐妹(2018年10期)2018-12-26 01:20:56
    華南掠影
    海峽姐妹(2018年10期)2018-12-26 01:20:54
    蘇萌娜 初心不渝 情牽華南
    海峽姐妹(2018年10期)2018-12-26 01:20:52
    Unit 6 Travelling around Asia Listening and speaking
    精品久久久精品久久久| 看黄色毛片网站| 国产精品98久久久久久宅男小说| 男女午夜视频在线观看| 免费高清视频大片| 在线永久观看黄色视频| 亚洲国产欧美一区二区综合| 国产精品 欧美亚洲| 国产亚洲精品一区二区www| 夜夜看夜夜爽夜夜摸 | 九色亚洲精品在线播放| 天天影视国产精品| 亚洲aⅴ乱码一区二区在线播放 | 在线视频色国产色| 90打野战视频偷拍视频| 亚洲精华国产精华精| 51午夜福利影视在线观看| 日本精品一区二区三区蜜桃| 国产成人精品无人区| 很黄的视频免费| 国产aⅴ精品一区二区三区波| 一本大道久久a久久精品| 亚洲成人久久性| 国产精品久久久人人做人人爽| 久久中文字幕人妻熟女| 无人区码免费观看不卡| 国产精品久久电影中文字幕| 欧美日韩国产mv在线观看视频| 纯流量卡能插随身wifi吗| 亚洲久久久国产精品| 人成视频在线观看免费观看| 精品无人区乱码1区二区| 可以在线观看毛片的网站| 九色亚洲精品在线播放| 美女高潮喷水抽搐中文字幕| 桃红色精品国产亚洲av| 日本三级黄在线观看| 亚洲一区中文字幕在线| 丰满的人妻完整版| 一个人观看的视频www高清免费观看 | 久热爱精品视频在线9| av在线播放免费不卡| 精品国产乱码久久久久久男人| 久久精品亚洲av国产电影网| 91老司机精品| 热99国产精品久久久久久7| 人人妻,人人澡人人爽秒播| 久久精品影院6| 久久久久久久精品吃奶| 99久久综合精品五月天人人| 高清欧美精品videossex| 日本五十路高清| 中文字幕人妻丝袜一区二区| 久久香蕉激情| 看黄色毛片网站| 天天躁夜夜躁狠狠躁躁| 露出奶头的视频| 免费看十八禁软件| 成人三级做爰电影| 亚洲人成电影观看| 国内久久婷婷六月综合欲色啪| 久久久久久久久中文| 亚洲 欧美 日韩 在线 免费| 国产一区二区三区综合在线观看| 如日韩欧美国产精品一区二区三区| 高清在线国产一区| 在线观看免费视频日本深夜| 88av欧美| 欧美成狂野欧美在线观看| 91大片在线观看| 一边摸一边抽搐一进一出视频| 大型黄色视频在线免费观看| 日韩视频一区二区在线观看| 免费不卡黄色视频| 亚洲一区二区三区不卡视频| 涩涩av久久男人的天堂| 午夜福利在线免费观看网站| 女人被狂操c到高潮| av国产精品久久久久影院| 一边摸一边抽搐一进一出视频| 久久亚洲精品不卡| 欧美精品一区二区免费开放| 午夜日韩欧美国产| 久久欧美精品欧美久久欧美| 欧美日韩亚洲综合一区二区三区_| 97超级碰碰碰精品色视频在线观看| 国产亚洲精品综合一区在线观看 | 国产97色在线日韩免费| 老熟妇乱子伦视频在线观看| 黄片小视频在线播放| 久久久久九九精品影院| 97超级碰碰碰精品色视频在线观看| 亚洲一区二区三区不卡视频| 天天影视国产精品| 老鸭窝网址在线观看| √禁漫天堂资源中文www| 777久久人妻少妇嫩草av网站| 日韩欧美一区视频在线观看| 亚洲五月婷婷丁香| 国产激情欧美一区二区| 涩涩av久久男人的天堂| 麻豆av在线久日| 国产高清国产精品国产三级| 国产高清视频在线播放一区| 国产有黄有色有爽视频| 丰满人妻熟妇乱又伦精品不卡| 侵犯人妻中文字幕一二三四区| 久久精品国产清高在天天线| 国产国语露脸激情在线看| 精品卡一卡二卡四卡免费| 91成人精品电影| 国产免费现黄频在线看| 99久久综合精品五月天人人| 国产无遮挡羞羞视频在线观看| 久久精品影院6| 国产成人av教育| 久久精品国产综合久久久| 色在线成人网| 又大又爽又粗| 久久国产亚洲av麻豆专区| av天堂在线播放| 日本免费a在线| 叶爱在线成人免费视频播放| 国产精品秋霞免费鲁丝片| 在线国产一区二区在线| 久久久久亚洲av毛片大全| 91av网站免费观看| 搡老乐熟女国产| 悠悠久久av| 美女高潮到喷水免费观看| 国产成人一区二区三区免费视频网站| 一本综合久久免费| a级片在线免费高清观看视频| 久久午夜亚洲精品久久| 韩国av一区二区三区四区| 亚洲第一av免费看| 午夜精品在线福利| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利一区二区在线看| 91国产中文字幕| 国产激情欧美一区二区| 久久狼人影院| 99在线视频只有这里精品首页| 精品卡一卡二卡四卡免费| 精品一区二区三卡| 如日韩欧美国产精品一区二区三区| 成人精品一区二区免费| 久久狼人影院| 欧美日韩视频精品一区| 国产成+人综合+亚洲专区| 国产又色又爽无遮挡免费看| 国产熟女午夜一区二区三区| a级毛片黄视频| 岛国视频午夜一区免费看| 操出白浆在线播放| 久久久久国产精品人妻aⅴ院| 男女做爰动态图高潮gif福利片 | 自拍欧美九色日韩亚洲蝌蚪91| 老司机深夜福利视频在线观看| 日本 av在线| 91国产中文字幕| 亚洲午夜理论影院| 亚洲精品久久成人aⅴ小说| 又大又爽又粗| 又黄又粗又硬又大视频| 久久精品影院6| 十分钟在线观看高清视频www| 老司机在亚洲福利影院| 国产一区二区激情短视频| 最新在线观看一区二区三区| 亚洲中文字幕日韩| 丝袜美腿诱惑在线| 久久伊人香网站| 超碰97精品在线观看| 淫秽高清视频在线观看| 法律面前人人平等表现在哪些方面| 精品一区二区三区视频在线观看免费 | 亚洲精品国产精品久久久不卡| 最新在线观看一区二区三区| 国产成人欧美| 中文字幕另类日韩欧美亚洲嫩草| 人妻丰满熟妇av一区二区三区| 久久久国产欧美日韩av| 最近最新免费中文字幕在线| 亚洲国产欧美网| 在线观看免费视频网站a站| 成人手机av| 韩国av一区二区三区四区| 午夜福利一区二区在线看| 日韩有码中文字幕| 亚洲专区国产一区二区| 亚洲av电影在线进入| 欧美另类亚洲清纯唯美| 自线自在国产av| 亚洲一码二码三码区别大吗| 日日摸夜夜添夜夜添小说| 在线观看一区二区三区激情| 午夜精品国产一区二区电影| 一级,二级,三级黄色视频| 亚洲色图综合在线观看| 国产真人三级小视频在线观看| 久久精品亚洲av国产电影网| 91九色精品人成在线观看| 80岁老熟妇乱子伦牲交| 久久精品国产99精品国产亚洲性色 | 黄色丝袜av网址大全| 亚洲一区二区三区色噜噜 | 夜夜躁狠狠躁天天躁| 日本五十路高清| 视频在线观看一区二区三区| 免费一级毛片在线播放高清视频 | 亚洲精华国产精华精| 在线观看免费高清a一片| 亚洲国产看品久久| 极品人妻少妇av视频| 亚洲va日本ⅴa欧美va伊人久久| 日本精品一区二区三区蜜桃| √禁漫天堂资源中文www| 大型黄色视频在线免费观看| 中文欧美无线码| 一本综合久久免费| 琪琪午夜伦伦电影理论片6080| 成熟少妇高潮喷水视频| 乱人伦中国视频| 最近最新免费中文字幕在线| 亚洲欧美一区二区三区久久| 国产xxxxx性猛交| 如日韩欧美国产精品一区二区三区| 日韩国内少妇激情av| 久久精品影院6| 熟女少妇亚洲综合色aaa.| 亚洲国产欧美日韩在线播放| 色精品久久人妻99蜜桃| 可以在线观看毛片的网站| 激情视频va一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 嫩草影院精品99| x7x7x7水蜜桃| 国产精品98久久久久久宅男小说| 天天添夜夜摸| 亚洲在线自拍视频| 国产欧美日韩一区二区三| 国产97色在线日韩免费| www.自偷自拍.com| 亚洲五月婷婷丁香| 在线观看66精品国产| 国产成人精品在线电影| 精品一区二区三区av网在线观看| 久久精品国产亚洲av香蕉五月| 久久久精品国产亚洲av高清涩受| 国产无遮挡羞羞视频在线观看| 高清黄色对白视频在线免费看| av国产精品久久久久影院| 精品人妻在线不人妻| 日本撒尿小便嘘嘘汇集6| 亚洲专区国产一区二区| 男女下面插进去视频免费观看| 热re99久久国产66热| 亚洲片人在线观看| bbb黄色大片| 老司机深夜福利视频在线观看| 99在线人妻在线中文字幕| 成人亚洲精品av一区二区 | 真人一进一出gif抽搐免费| 久久精品亚洲熟妇少妇任你| 叶爱在线成人免费视频播放| 丝袜美足系列| 91精品三级在线观看| 高清av免费在线| 自线自在国产av| 国产精华一区二区三区| 黄色成人免费大全| 啪啪无遮挡十八禁网站| 久久精品亚洲熟妇少妇任你| 90打野战视频偷拍视频| 国产1区2区3区精品| 亚洲成人国产一区在线观看| 久久久久精品国产欧美久久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产97色在线日韩免费| av中文乱码字幕在线| 一级,二级,三级黄色视频| 国产免费男女视频| 国产黄a三级三级三级人| www.熟女人妻精品国产| 亚洲精品国产区一区二| 国产成人精品无人区| 亚洲av片天天在线观看| 久久久久久大精品| 窝窝影院91人妻| 国产精品久久久av美女十八| 99久久国产精品久久久| 亚洲专区中文字幕在线| 午夜精品在线福利| 黑人巨大精品欧美一区二区mp4| 亚洲成人国产一区在线观看| 精品午夜福利视频在线观看一区| 日韩免费av在线播放| 大陆偷拍与自拍| 丰满人妻熟妇乱又伦精品不卡| 亚洲第一av免费看| 大码成人一级视频| 天天影视国产精品| 久久久久国产一级毛片高清牌| 悠悠久久av| 在线观看免费日韩欧美大片| 一区二区三区激情视频| a在线观看视频网站| 手机成人av网站| 欧美日韩亚洲综合一区二区三区_| 看片在线看免费视频| 亚洲熟妇中文字幕五十中出 | 露出奶头的视频| av国产精品久久久久影院| 在线免费观看的www视频| 成熟少妇高潮喷水视频| 国产不卡一卡二| 欧美丝袜亚洲另类 | 国产一区二区三区综合在线观看| 最新美女视频免费是黄的| av在线播放免费不卡| 国产单亲对白刺激| 一级a爱片免费观看的视频| aaaaa片日本免费| 少妇粗大呻吟视频| 99热国产这里只有精品6| 久久久久久免费高清国产稀缺| 亚洲精华国产精华精| 激情在线观看视频在线高清| 亚洲av熟女| 两性午夜刺激爽爽歪歪视频在线观看 | 女人精品久久久久毛片| 女人高潮潮喷娇喘18禁视频| 日本vs欧美在线观看视频| 少妇粗大呻吟视频| 国产精品美女特级片免费视频播放器 | 亚洲人成网站在线播放欧美日韩| 国产精品 国内视频| 欧美激情久久久久久爽电影 | 婷婷丁香在线五月| 日本欧美视频一区| 少妇的丰满在线观看| 久久久久亚洲av毛片大全| 视频区图区小说| 欧美一区二区精品小视频在线| 婷婷精品国产亚洲av在线| 亚洲色图 男人天堂 中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 人成视频在线观看免费观看| 亚洲午夜精品一区,二区,三区| 午夜免费成人在线视频| 操出白浆在线播放| 国产视频一区二区在线看| 久久久久久久午夜电影 | 天天影视国产精品| 97超级碰碰碰精品色视频在线观看| 亚洲av成人不卡在线观看播放网| av片东京热男人的天堂| 免费看a级黄色片| 日本wwww免费看| 超碰97精品在线观看| 男人的好看免费观看在线视频 | 亚洲色图 男人天堂 中文字幕| 激情视频va一区二区三区| 男人的好看免费观看在线视频 | 极品人妻少妇av视频| 亚洲av成人不卡在线观看播放网| av片东京热男人的天堂| 美女大奶头视频| 久久久久久亚洲精品国产蜜桃av| 日本五十路高清| 午夜老司机福利片| 成人国产一区最新在线观看| 免费在线观看亚洲国产| 村上凉子中文字幕在线| 欧美中文日本在线观看视频| 亚洲第一av免费看| 午夜成年电影在线免费观看| 在线永久观看黄色视频| 久久久久久久久免费视频了| 十八禁网站免费在线| 国产成人av激情在线播放| 欧美黑人欧美精品刺激| 亚洲精品av麻豆狂野| 欧美日本中文国产一区发布| 久久 成人 亚洲| 国产午夜精品久久久久久| 窝窝影院91人妻| 亚洲中文av在线| 国产精品野战在线观看 | 老司机亚洲免费影院| 丝袜美腿诱惑在线| 超碰成人久久| 亚洲五月天丁香| 欧美激情久久久久久爽电影 | 国产av一区在线观看免费| 一进一出好大好爽视频| 亚洲精品久久午夜乱码| 露出奶头的视频| 香蕉久久夜色| а√天堂www在线а√下载| 亚洲一区中文字幕在线| 18禁裸乳无遮挡免费网站照片 | 最近最新中文字幕大全电影3 | 亚洲精品国产区一区二| 99久久国产精品久久久| 在线视频色国产色| 黑人猛操日本美女一级片| 黄色女人牲交| 9色porny在线观看| 女性生殖器流出的白浆| 又黄又粗又硬又大视频| a级毛片在线看网站| 一二三四在线观看免费中文在| 亚洲五月天丁香| 成人特级黄色片久久久久久久| 国产精华一区二区三区| 91字幕亚洲| 国产亚洲欧美98| 久久国产精品男人的天堂亚洲| 老司机福利观看| 亚洲精品久久成人aⅴ小说| 级片在线观看| www.999成人在线观看| 亚洲色图综合在线观看| 亚洲av电影在线进入| 中文字幕精品免费在线观看视频| 一级片免费观看大全| 亚洲欧美日韩另类电影网站| 亚洲一卡2卡3卡4卡5卡精品中文| 新久久久久国产一级毛片| 久久国产精品男人的天堂亚洲| 色婷婷av一区二区三区视频| 丁香欧美五月| 色尼玛亚洲综合影院| 在线永久观看黄色视频| 亚洲色图综合在线观看| 国产有黄有色有爽视频| av免费在线观看网站| 国产色视频综合| 天天躁夜夜躁狠狠躁躁| 亚洲第一欧美日韩一区二区三区| 久久精品国产亚洲av香蕉五月| 9色porny在线观看| 90打野战视频偷拍视频| 日韩精品中文字幕看吧| 中国美女看黄片| 动漫黄色视频在线观看| 午夜老司机福利片| 日韩 欧美 亚洲 中文字幕| 久久伊人香网站| 日本精品一区二区三区蜜桃| 精品国产国语对白av| 国产伦人伦偷精品视频| 亚洲欧美精品综合一区二区三区| 麻豆国产av国片精品| av天堂在线播放| 国产亚洲欧美精品永久| 欧美黄色片欧美黄色片| 精品国产国语对白av| 亚洲一码二码三码区别大吗| 亚洲精品在线美女| 97超级碰碰碰精品色视频在线观看| 亚洲国产看品久久| 精品一区二区三区av网在线观看| 久久久精品欧美日韩精品| 99国产精品一区二区三区| 在线观看午夜福利视频| 少妇粗大呻吟视频| 可以免费在线观看a视频的电影网站| 男女下面进入的视频免费午夜 | 大香蕉久久成人网| 久久久久亚洲av毛片大全| 成熟少妇高潮喷水视频| 亚洲久久久国产精品| 黑人操中国人逼视频| 精品福利永久在线观看| 超碰97精品在线观看| 日本vs欧美在线观看视频| 在线观看免费视频网站a站| 国产成人av激情在线播放| 亚洲狠狠婷婷综合久久图片| 一边摸一边抽搐一进一出视频| 青草久久国产| 国产精品综合久久久久久久免费 | 丰满人妻熟妇乱又伦精品不卡| 日本黄色日本黄色录像| 一本综合久久免费| a在线观看视频网站| 欧美+亚洲+日韩+国产| 精品日产1卡2卡| 宅男免费午夜| 中文字幕高清在线视频| 国产成人精品无人区| 亚洲精品在线美女| 久久久久久亚洲精品国产蜜桃av| 1024香蕉在线观看| 9191精品国产免费久久| 色精品久久人妻99蜜桃| 自线自在国产av| 校园春色视频在线观看| 国产精品一区二区三区四区久久 | 十分钟在线观看高清视频www| 国产精品久久久人人做人人爽| 丁香六月欧美| 久久人妻福利社区极品人妻图片| 国产亚洲精品久久久久久毛片| 国产精品成人在线| 无遮挡黄片免费观看| 黑人猛操日本美女一级片| 欧美激情极品国产一区二区三区| 757午夜福利合集在线观看| 两性夫妻黄色片| 亚洲美女黄片视频| 久久热在线av| 成在线人永久免费视频| 一边摸一边做爽爽视频免费| 色婷婷av一区二区三区视频| 午夜免费观看网址| 午夜日韩欧美国产| 在线观看午夜福利视频| 国产av在哪里看| 国产精品 欧美亚洲| av有码第一页| 一边摸一边抽搐一进一出视频| 久久九九热精品免费| 亚洲少妇的诱惑av| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩中文字幕国产精品一区二区三区 | 三级毛片av免费| 日韩 欧美 亚洲 中文字幕| 免费在线观看日本一区| 亚洲七黄色美女视频| 久久婷婷成人综合色麻豆| 国产成人av教育| 十分钟在线观看高清视频www| 国产欧美日韩一区二区三| 丰满迷人的少妇在线观看| 国产精品自产拍在线观看55亚洲| 9191精品国产免费久久| 国产成人影院久久av| 国产欧美日韩一区二区三区在线| 色综合欧美亚洲国产小说| 日韩精品免费视频一区二区三区| 国产成人免费无遮挡视频| 亚洲aⅴ乱码一区二区在线播放 | 精品国产一区二区久久| 日韩欧美一区视频在线观看| 国产1区2区3区精品| 国产精品 国内视频| 三上悠亚av全集在线观看| 可以免费在线观看a视频的电影网站| 天堂动漫精品| 亚洲国产精品合色在线| 18美女黄网站色大片免费观看| 乱人伦中国视频| 国产aⅴ精品一区二区三区波| 久久人妻福利社区极品人妻图片| 欧美日韩黄片免| 久久久国产成人精品二区 | 亚洲国产欧美网| 丝袜人妻中文字幕| 无遮挡黄片免费观看| 黄色怎么调成土黄色| 18禁美女被吸乳视频| 亚洲五月色婷婷综合| 老司机午夜十八禁免费视频| 在线免费观看的www视频| 99国产精品一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲片人在线观看| 久久精品国产综合久久久| 在线观看免费日韩欧美大片| 国产又爽黄色视频| 麻豆一二三区av精品| 日韩人妻精品一区2区三区| 精品人妻1区二区| 亚洲情色 制服丝袜| 少妇裸体淫交视频免费看高清 | 亚洲人成电影观看| 国产成人系列免费观看| 亚洲在线自拍视频| 日韩av在线大香蕉| 婷婷精品国产亚洲av在线| 丰满迷人的少妇在线观看| 狠狠狠狠99中文字幕| 国产99白浆流出| 精品久久久久久成人av| 亚洲精品国产精品久久久不卡| 变态另类成人亚洲欧美熟女 | 免费日韩欧美在线观看| 18禁黄网站禁片午夜丰满| 1024香蕉在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产熟女午夜一区二区三区| 两个人免费观看高清视频| 9191精品国产免费久久| tocl精华| 国产又爽黄色视频| 热re99久久国产66热| 久久性视频一级片| 国产在线观看jvid| 可以在线观看毛片的网站| 国产黄色免费在线视频| 在线观看一区二区三区激情| 美女福利国产在线| 日韩大码丰满熟妇| 亚洲国产精品sss在线观看 | 欧美黑人欧美精品刺激| 老司机在亚洲福利影院| 国产97色在线日韩免费| 国产午夜精品久久久久久| 久久香蕉精品热| 成熟少妇高潮喷水视频| 亚洲性夜色夜夜综合|