• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electron-impact ionization cross section calculations for lithium-like ions

    2022-01-23 06:36:04GuoJieBian卞國杰JyhChingChang張稚卿KeNingHuang黃克寧ChenShengWu武晨晟YongJunCheng程勇軍KaiWang王凱andYongWu吳勇
    Chinese Physics B 2022年1期
    關(guān)鍵詞:時能循跡王凱

    Guo-Jie Bian(卞國杰) Jyh-Ching Chang(張稚卿) Ke-Ning Huang(黃克寧) Chen-Sheng Wu(武晨晟)Yong-Jun Cheng(程勇軍) Kai Wang(王凱) and Yong Wu(吳勇)

    1National Key Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    2Department of Physics,National Tsing Hua University,Hsinchu 300,China

    3Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,China

    4School of Physics and Information Technology,Shaanxi Normal University,Xi’an 710119,China

    5Hebei Key Laboratory of Optic-electronic Information and Materials,The College of Physics Science and Technology,Hebei University,Baoding 071002,China

    6HEDPS,Center for Applied Physics and Technology,and College of Engineering,Peking University,Beijing 100871,China

    Keywords: total cross sections,electron-impact ionization,excitation-autoionization,distorted-wave

    1. Introduction

    Electron-impact ionization is an important physical process in plasma environment. Nonequilibrium plasma simulations, such as magnetic confinement fusion, inertial confinement fusion, and astrophysics, require a large amount of data on cross sections of electron-impact ionization,in which ionization cross sections directly affect the charge transfer and energy transport of the plasma state.[1-6]A great deal of attention has been paid to the electron-impact ionization for lithium isoelectronic sequence due to the K-L excitationautoionization process, which plays an important role in ionization dynamics.[7,8]Although much work has been devoted to improving the theory of electron-impact ionization, there are still discrepancies between theoretical predictions and experimental data for some members of the sequence.[9,10]Therefore, it is of vital importance to investigate behavior of electron-impact ionization along the isoelectronic sequence.

    Experimentally, the modulated crossed-beam technique is commonly used in measurements of electron-impact ionization. Lithium isoelectronic sequence has been extensively investigated in lowZions. Absolute cross sections have been measured for Be+, B2+, C3+, N4+, O5+, and Ne7+ions[7,11-17]in the energy range of 18-2000 eV.Wonget al.[18]measured cross sections for Ti19+, V20+, Cr21+, Mn22+, and Fe23+ions at approximately 2.3 times ionization energy with typical uncertainties of 10%. Moreover, Ba53+ion was measured at 22 keV,[19]and U89+ion was also be measured.[20]

    Theoretically, extensive calculations have been performed with various methods.The most commonly used method for direct ionization is the Coulomb-Born approximation,[21]in which the continuum electrons are regarded as Coulomb or distorted waves. Younger[22,23]introduced several applications of the Coulomb-Born and distorted-wave approximations, which produced results for hydrogen-, helium- and lithium-like ions. However, performance of the Coulomb-Born method is poor and, in many cases, it overestimates total cross sections. The electron exchange in transition matrix elements and Coulomb distortion waves are observed to be vital.Jakubowicz and Moores[9]discussed the Coulomb-Born exchange and distorted-wave exchange approximations, which solved the problems in the inclusion of exchange for the positive ions. When the indirect process is dominant, the close-coupling method is considered to be an effective prescription to describe the quasibound states of the target ion.[9]Fursa and Bray[24]presented the electron-helium scattering with convergent close-coupling formulations. This method requires numerous computations and applies only to a system with few valence electrons. The initial and final states of electron-impact ionization process for neutral helium were studied in the R-matrix basis,[25]which is a combined distorted-wave and close-coupling approach. A special feature of this method is the consistency of the initial bound state and the final continuum state of the ions. Furthermore, the R-matrix method, which is independent of the energy of the scattered electrons in the inner region, was extended to the electron-impact ionization of Ne7+.[10]

    In recent years,the two-potential distorted-wave(TPDW)approximation, which uses different asymptotic charges for the distorting potential to study the mutual screening of the faster and slower electrons, has been developed and widely used in the calculation of electron-, positron-, and protonimpact ionizations of hydrogen-, helium-, and beryllium-like ions.[26-34]Compared with other theoretical and experimental data, generally more reliable results are obtained in these works.

    2. Theory

    whereJ0is the total angular momentum of the target,andTfiis the appropriate transition amplitude. The real amplitudedαis defined by the reduced matrix element of the partial-wave amplitude in channelα,

    whereσκpandσκsare the Coulomb phase shifts of the two outing electrons,the index i refers to the incident electron,JαandJare the total angular momentum of the residual ion and of the entire collision complex,andHIis the appropriate interaction Hamiltonian.

    The direct-ionization cross sections can be calculated as

    Here,αiandβiare the Dirac 4×4 matrices,andpirepresents the momentum operator. Before the collision,subscript 1 represents the incident electron,andi=2,3,4 are the indices for bounded electrons. According to two-potential distorted-wave formulation,the potentialViis separated into the distorting potentialUiand the residual potentialWi. They are defined as

    The distorting potentials can be approximated as Coulomb potential from the nuclei and the average screened potential,corresponding to the asymptotic chargesZpandZs.In this work, three models of distorting potential are applied in the calculation, and some information of these potentials is listed in Table 1. Models TPDW00 and TPDW11 are two extreme models for the electron-impact ionization process.In model TPDW00, the scattered electrons are completely screened from each other,so they experience the same distorting potential as the incident electron. In model TPDW11,it is completely free from the mutual screening effects by scattered electrons, thus both outgoing electrons are only affected by the bound electrons and the nucleus. The model TPDW01 is closer to the real scene,where the faster electron is completely screened by the slower electron in the asymptotic region, so that the faster electron is affected by the asymptotic charge ofZ-3, and the slower electron is affected by the asymptotic charge ofZ-2. The average screened potential due to the residual electrons of helium-like ions inUpandUsis given by

    Considering the important contributions from the indirect ionization process, we calculate the cross sections of indirect ionization using the R-matix method,[37]in which the configuration space is divided into two regions at a spherical radiusr=a. For the boundary ofr

    where the(N+1)-electron exchange effects are important and must be taken into account. For the boundary ofr>a, the amplitude of the bound wave function is negligible, and then the exchange interaction between the bound and the continuous electrons can be ignored. For electron-impact ionization of lithium-like ions,the K-L excitation-autoionization process will cause a rapid enhancement of the cross sections at about four times the ionization energy. In present work,the intermediate states 1s2l2l′formed by the 1s electron excited ton=2 orbitals are included and partial wave contributions up to angular momentumL=7 are included to obtain converged ionization cross sections,in which the 1s2l2l′2Se,2Poresonances dominate the excitation-autoionization contributions.[9,10]

    The indirect-ionization cross sections is calculated as

    轉(zhuǎn)彎速度:當(dāng)鐵絲直徑為8 毫米時,轉(zhuǎn)彎速度為5000 時能完成循跡轉(zhuǎn)彎,但速度過慢,加速到5600 時能完成循跡且時間最短,當(dāng)加速到6000 時小車速度過快易沖出賽道。

    2.1. Total cross sections

    In the present work, we have calculated the total cross sections of electron-impact ionization for C3+, N4+, O5+,Ne7+and Fe23+ions with incident energiesuiin the range of threshold energy units from 1 to 10. The two-potential distorted-wave method is used in the lower energy region,and when the incident energy is above the autoionization threshold, the distorted-wave combined with the R-matrix method is employed to calculate the contributions from the excitation-autoionization process. The bound-state wavefunctions and ionization energies of Li-like ions are generated from a multi-configuration Dirac-Fock (MCDF) calculation,which is implemented in the relativistic MCDF code written by Desclaux.[39]

    One distinct feature of the ionization cross section for lithium-like ions is the important role played by the excitationautoionization mechanism at the energies between three and five times the direct ionization threshold,which is completely different from the cases of beryllium and boron sequences.For example,this effect contributes approximately 17%of the total ionization cross section of Ne7+, while it is smaller in Ne6+and not observed for Ne5+.[7]In addition,the contribution from the excitation-autoionization process is dominated by 1s2l2l′intermediate states. Therefore, the configurations of 1s2s2, 1s2s2p and 1s2p2are included, where the configurations of 1s2s22Seand 1s2s2p2Podominate the excitationautoionization contributions; the other resonances have minimal contributions to the cross sections.[9,10]The energies and total cross sections are given at autoionization resonance hump in Table 2, along with the other theoretical results and experimental data. Our calculations are close to the experiments and the Coulomb-Born exchange approximation with closecoupling results.[9]Generally,the model TPDW11 is in good agreement with the experimental measurements for the largest difference less than 5%. The only exception is for Ne7+ion,

    where the TPDW00 model behaves well and there is a 10%discrepancy between TPDW00 and TPDW11 models.

    Table 2. Energies E (eV)and total cross sections σ (10-3 a.u.)at the positions of autoionization resonances for lithium-like ions.

    The total cross sections produced by using the models TPDW00, TPDW01 and TPDW11 for the ions C3+, N4+,O5+, Ne7+and Fe23+are presented in Figs. 1-5, along with available experimental data and theoretical results. Generally the ionization cross section is a slow and smooth varying function of the incident electron energy, but sharp peak appears at about four times the ionization energy. The cross sections using three models appear to be very similar with each other at the low energies, so we present the results in Table 3. The results generated by the TPDW00 model are smaller than TPDW01 and TPDW11 at less than 1.25 times the ionization energy and are larger in higher incident energy. At small incident energies, the model TPDW00 accurately describes continuous electrons because two electrons are screened each other by sharing a small kinetic energy. At large incident energies,the model TPDW01 or TPDW11 is expected to be more reliable,since at least one scattered electron possesses a large kinetic energy,which generates small screening effects. The results of three models become similar as the nuclear chargeZincreases because the nuclear potential dominates the cross section of highly charged ions such that the mutual screening effects of continuous electrons affect negligibly. We also present the excitation-autoionization contributions for C3+, N4+, O5+, Ne7+and Fe23+ions from Figs.1-5.Obviously,the excitation-autoionization mechanism plays a significant role for all the ions. The contributions are approximately 15%of the total cross section at formant in C3+,N4+,O5+, and Ne7+ions, while it is less than 7% for Fe23+ion.Another interesting feature is the shift of the resonant peak toward the lower energy with an increase in the number of nuclear charges. The peak position is about five times the ionization energy for C3+ion,but drops to about three times the ionization energy for Fe23+ion. Note that the cross sections caused by the direct inner-shell ionization are also considered when the incident electron energy is greater than the 1sionization energy threshold, and this contribution never exceeds 15%.

    Table 3. The total cross sections σ (10-3 a.u.) are calculated for lithium-like ions near the threshold with the models TPDW00,TPDW01 and TPDW11,respectively.

    Figure 1 shows the total cross sections for C3+, along with the theoretical values[9]and the experimental results[15]with their uncertainty of about 12%. The agreement between the Coulomb-Born exchange results and experiment is good below 2.5 times the ionization energy. After that, the discrepancy has become more pronounced. As is expected, the TPDW00 model results are much higher than experiment except near the threshold. The TPDW01 or TPDW11 model appears to be somewhat larger compared with the measurements before the peak of direct ionization, with a difference less than 6%. The TPDW11 model is in better agreement with experiment in the autoionization region than Coulomb-Born exchange. Figures 2 and 3 depict the two-potential data for N4+and O5+together with the experimental results,[17]and the theoretical values with the Coulomb-Born exchange method,[9]respectively. Here, the theoretical results containing the excitation-autoionization contributions are discussed.Similarly, the TPDW00 model is higher than experiment,while,this difference becomes smaller with the nuclear charge increasing. The Coulomb-Born exchange approximation is again smaller than our results of two-potential distorted-wave in direct process. However, since the distortion effects will be small at the high energies of autoionization region, the coulomb-wave and distorted-wave results tend to be close.For both ions,the TPDW11 results are in excellent agreement with the experiments.

    Fig. 1. Electron-impact ionization cross sections of C3+ (ionization energy = 64.385 eV). The solid curves represent the two-potential distorted-wave calculations with models TPDW00, TPDW01, and TPDW11 and the results of excitation-autoionization. The Coulomb-Born exchange results[9] with dashed curve and the experimental data[15] with solid dot are shown for comparison.

    Figure 4 shows the theoretical results of Ne7+,which include the excitation-autoionization contribution using closecoupling approximation[9]and with the distorted waves-Rmatrix method.[10]The Coulomb-Born exchange calculation underestimates the direct ionization contribution below the autoionization threshold, whereas the excitation-autoionization contribution is consistent with the present results. Moreover,the direct ionization cross sections of Riahiet al.[10]are lower than others and the excitation-autoionization contributions seem to be overestimated using the R-matrix method.With the nuclear charge increasing, the TPDW00 model is found to be closer to the measurements.[7,17]Our two-potential results provide an excellent estimation for incident energies in the ranging of threshold energy units from 1 to 10.

    Fig. 2. Electron-impact ionization cross sections of N4+ (ionization energy = 97.777 eV). The solid curves represent the two-potential distorted-wave calculations with models TPDW00, TPDW01, and TPDW11 and the results of excitation-autoionization. The Coulomb-Born exchange results[9] with dashed curve and the experimental data[17] with solid dots are shown for comparison.

    Fig. 3. Electron-impact ionization cross sections of O5+ (ionization energy = 138.006 eV). The solid curves represent the two-potential distorted-wave calculations with models TPDW00, TPDW01, and TPDW11 and the results of excitation-autoionization. The Coulomb-Born exchange results[9] with dashed curve and the experimental data[17] with solid dots are shown for comparison.

    Fig. 4. Electron-impact ionization cross sections of Ne7+ (ionization energy = 238.996 eV). The solid curves represent the two-potential distorted-wave calculations with models TPDW00, TPDW01, and TPDW11 and the results of excitation-autoionization. The Coulomb-Born exchange results[9] with dashed curve, the distorted waves-Rmatrix results[10]with dotted curve,and the experimental data[7,17]with solid dots are shown for comparison.

    Figure 5 shows our data of Fe23+ion, as well as theoretical data[9]and the experiment.[18]Our results are slightly higher than those of Coulomb-Born exchange approximation,in which the relativistic effect is not included. However, the relativistic corrections are important for the case of Fe23+ion.The effect of distortion decreases with increasing charge as expected,and all calculations are more or less consistent.

    Fig. 5. Electron-impact ionization cross sections of Fe23+ (ionization energy =2046.634 eV). The solid curves represent the two-potential distorted-wave calculations with models TPDW00, TPDW01, and TPDW11 and the results of excitation-autoionization. The Coulomb-Born exchange results[9] with dashed curve and the experimental data[18] with solid dots are shown for comparison.

    2.2. Contributions from exchange effect

    Since the transition matrix element has been separated into direct,interchange,and capture parts in Eq.(10),we can explore the contributions from different terms in the potential,which is also of great interest in the studies of ionization dynamics. As an example, a separation of the contributions on the total cross sections of C3+and Fe23+ions from model TPDW01 are presented in Fig. 6. Obviously, the direct part plays a major role in both ions. The interchange terms increase the cross sections by 50% near the threshold and decrease them by about 10% after the peak. For C3+ion, the contributions from capture terms are negative and influence on the cross sections is less than 2%. For Fe23+,the trend of the capture terms is similar to the low-Zions, but the proportion decreases to 0.2%.

    It is observed that the capture terms have more contribution for lower-Zions, but become negligible for higher-Zions in the selected targets. The bound electrons of lower-Zions spread wider, so that there is more opportunity for incident electron to overlap and exchange energy with bound electrons. Simultaneously, because the incident electron spends more time to interact with target near the threshold, the exchange effects become more significant. Moreover, the radial integral〈WpbRλWsi〉in the interchange terms[40]become larger;thus the interchange terms contribute significantly near the threshold. However, the bound electrons are more tightly bound together, so there are fewer opportunities to exchange with the incident electron for higher-Zions.

    Fig. 6. Contributions from exchange effects on the cross sections of C3+ and Fe23+ in the model TPDW01.

    3. Conclusion

    We have applied the two-potential distorted-wave and Rmatrix methods to describe the electron-impact ionization with direct and indirect mechanisms for selected lithium-like ions.Several sets of asymptotic charges in three models TPDW00,TPDW01 and TPDW11 are used to characterize the effects of mutual screening from scattered electrons.The total cross sections obtained in the present work for the lithium isoelectronic sequence show good agreement with experimental results. It is found that the model TPDW00 better describes the electronimpact ionization process at lower incident energies,whereas the model TPDW01/TPDW11 works better at higher incident energies. With the nuclear charge increasing, the TPDW00 model becomes more reliable. The contributions from the exchange amplitudes, including the interchange and capture parts,are also discussed in the present work. The interchange term is important for all the isoelectronic sequence and the contribution of capture term only becomes non-negligible for the case of lower-Z ions. Furthermore, the K-L excitationautoionization processes are non-negligible for lithium-like ions, which contribute at most 7%-15% in the present total cross section calculations.This work can provide a set of highprecision ionization cross section data for related plasma simulations,and it can also provide a reference for future studies with more sophisticated methods.

    Acknowledgements

    This work is supported by the National Natural Science Foundation of China (Grant Nos. 11934004 and U1832201),the Science Challenge Project (Grant No. TZ2016005), and the CAEP Foundation(Grant No.CX2019022).

    猜你喜歡
    時能循跡王凱
    戒不掉的甜
    食品與生活(2023年2期)2023-04-06 15:49:58
    基于DFT算法的電力巡檢無人機(jī)循跡檢測系統(tǒng)設(shè)計
    王凱室內(nèi)設(shè)計作品選登
    基于單片機(jī)的智能循跡小車的設(shè)計
    電子測試(2018年15期)2018-09-26 06:01:14
    智能差分循跡小車設(shè)計
    電子制作(2017年1期)2017-05-17 03:54:20
    基于MC9S12XS128處理器的智能循跡小車分析研究
    電子制作(2016年11期)2016-11-07 08:43:49
    微笑的境界
    “靖王”王凱:我自己看《瑯琊榜》也會哭
    金色年華(2016年2期)2016-02-28 01:38:42
    由一道習(xí)題錯解想到的
    我想有對翅膀
    久久久久久国产a免费观看| 久久亚洲国产成人精品v| 欧美xxxx黑人xx丫x性爽| 国产精品三级大全| 亚洲国产精品sss在线观看| 精品不卡国产一区二区三区| 午夜免费男女啪啪视频观看| 狠狠精品人妻久久久久久综合| 亚洲国产最新在线播放| 国产成人福利小说| 久久这里只有精品中国| 一个人看的www免费观看视频| 成人亚洲精品av一区二区| 欧美成人一区二区免费高清观看| 有码 亚洲区| 国产真实伦视频高清在线观看| 免费观看在线日韩| 中国美白少妇内射xxxbb| 午夜福利成人在线免费观看| 亚洲av免费高清在线观看| 欧美日韩视频高清一区二区三区二| 亚洲自偷自拍三级| 久久久亚洲精品成人影院| 国产探花极品一区二区| 老女人水多毛片| 99热全是精品| 免费观看无遮挡的男女| 精品亚洲乱码少妇综合久久| 亚洲av中文av极速乱| 国产老妇女一区| 中文资源天堂在线| 国产色爽女视频免费观看| 99热这里只有是精品在线观看| 性插视频无遮挡在线免费观看| 国产精品一及| 日本与韩国留学比较| 国产一级毛片七仙女欲春2| 亚洲欧美成人精品一区二区| 精品99又大又爽又粗少妇毛片| 亚洲欧美一区二区三区国产| 午夜福利在线观看吧| 久久久国产一区二区| 亚洲av男天堂| 久久99蜜桃精品久久| 寂寞人妻少妇视频99o| 成人毛片a级毛片在线播放| 大陆偷拍与自拍| 伊人久久精品亚洲午夜| 日韩欧美一区视频在线观看 | 亚洲精品乱久久久久久| 五月伊人婷婷丁香| ponron亚洲| 国产精品久久久久久久电影| 国内精品一区二区在线观看| 亚洲三级黄色毛片| 亚洲人成网站在线播| 国产视频内射| 韩国av在线不卡| 在线 av 中文字幕| 国产亚洲精品久久久com| 视频中文字幕在线观看| 日韩不卡一区二区三区视频在线| 日韩欧美精品v在线| 亚洲成人精品中文字幕电影| 纵有疾风起免费观看全集完整版 | 国产免费一级a男人的天堂| 色网站视频免费| 男的添女的下面高潮视频| 久久久久久久久久久免费av| 日韩电影二区| 直男gayav资源| 国产乱来视频区| 午夜激情福利司机影院| 久久午夜福利片| 七月丁香在线播放| 深夜a级毛片| av网站免费在线观看视频 | 精品午夜福利在线看| 中文欧美无线码| 国产毛片a区久久久久| 国产精品国产三级国产专区5o| 国产免费视频播放在线视频 | 午夜精品在线福利| 禁无遮挡网站| 在线观看免费高清a一片| 一区二区三区四区激情视频| 偷拍熟女少妇极品色| 亚洲av成人av| 国产精品综合久久久久久久免费| 亚洲在线自拍视频| 亚洲高清免费不卡视频| 欧美精品国产亚洲| 精品酒店卫生间| 在现免费观看毛片| 久久99热这里只有精品18| 久久久久久久久久成人| 老司机影院成人| 七月丁香在线播放| 国产毛片a区久久久久| 亚洲人与动物交配视频| 亚洲美女视频黄频| 在线观看人妻少妇| 观看美女的网站| 久久国产乱子免费精品| 精品少妇黑人巨大在线播放| 成人av在线播放网站| 国产亚洲av嫩草精品影院| 亚洲18禁久久av| 亚洲一级一片aⅴ在线观看| 26uuu在线亚洲综合色| 国产真实伦视频高清在线观看| 日韩人妻高清精品专区| 国内精品美女久久久久久| 成人高潮视频无遮挡免费网站| av在线亚洲专区| 国产伦精品一区二区三区四那| 少妇的逼水好多| 尤物成人国产欧美一区二区三区| 午夜激情福利司机影院| 国产人妻一区二区三区在| 狂野欧美白嫩少妇大欣赏| 国产精品国产三级国产专区5o| 久久午夜福利片| 毛片一级片免费看久久久久| 搡老乐熟女国产| 日本猛色少妇xxxxx猛交久久| 又粗又硬又长又爽又黄的视频| 夫妻午夜视频| 激情 狠狠 欧美| 舔av片在线| 一级毛片久久久久久久久女| 两个人视频免费观看高清| 午夜免费激情av| 男插女下体视频免费在线播放| 91精品伊人久久大香线蕉| 在线观看免费高清a一片| 国产av国产精品国产| 99九九线精品视频在线观看视频| 久久久精品94久久精品| 国产成人精品婷婷| 日韩欧美三级三区| 亚洲怡红院男人天堂| 九九久久精品国产亚洲av麻豆| 亚洲精品成人久久久久久| 久久久午夜欧美精品| av在线蜜桃| 身体一侧抽搐| 国产免费一级a男人的天堂| 国产高潮美女av| 麻豆久久精品国产亚洲av| 国产免费福利视频在线观看| 国产老妇女一区| 欧美日韩综合久久久久久| h日本视频在线播放| 黄色一级大片看看| 亚洲在久久综合| 久久久久国产网址| 两个人的视频大全免费| 人人妻人人澡欧美一区二区| 日韩精品有码人妻一区| 久久久久久久久久人人人人人人| 国产精品久久久久久久电影| 蜜臀久久99精品久久宅男| 在线观看一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 麻豆乱淫一区二区| 狠狠精品人妻久久久久久综合| 国产 一区 欧美 日韩| 可以在线观看毛片的网站| 亚洲欧美成人精品一区二区| 网址你懂的国产日韩在线| 国内精品美女久久久久久| 精品久久久久久久久亚洲| 久久久精品欧美日韩精品| 国产黄色视频一区二区在线观看| 久久久久久久国产电影| 天堂网av新在线| .国产精品久久| av免费观看日本| 日韩强制内射视频| 亚洲欧美清纯卡通| 久久人人爽人人片av| 国产 一区 欧美 日韩| 十八禁网站网址无遮挡 | 午夜福利在线在线| 最新中文字幕久久久久| 国产成年人精品一区二区| 国产黄片视频在线免费观看| 毛片女人毛片| 免费看日本二区| 国产乱人偷精品视频| 亚洲人成网站在线观看播放| 伦理电影大哥的女人| 边亲边吃奶的免费视频| 久久久久久久久大av| 精品一区在线观看国产| 亚洲精品国产av成人精品| 狂野欧美白嫩少妇大欣赏| 乱码一卡2卡4卡精品| 国产成人freesex在线| 国产爱豆传媒在线观看| 国产 亚洲一区二区三区 | 亚州av有码| 久久6这里有精品| 国产淫片久久久久久久久| 成年av动漫网址| 中文资源天堂在线| 我的老师免费观看完整版| 亚洲最大成人av| 一区二区三区乱码不卡18| 国产69精品久久久久777片| 99热这里只有是精品50| 久久久久国产网址| 久久精品人妻少妇| 国产伦精品一区二区三区视频9| 乱人视频在线观看| 精品欧美国产一区二区三| 久久精品国产亚洲av天美| 国产欧美日韩精品一区二区| 国产精品1区2区在线观看.| 午夜福利在线在线| 国产欧美另类精品又又久久亚洲欧美| 一级毛片电影观看| videossex国产| 成人鲁丝片一二三区免费| 成年av动漫网址| 伦理电影大哥的女人| 1000部很黄的大片| 日本色播在线视频| 精品久久久久久久久av| 国产精品美女特级片免费视频播放器| av黄色大香蕉| 国产精品一区二区在线观看99 | 少妇的逼好多水| 18禁裸乳无遮挡免费网站照片| 99热全是精品| 国产伦精品一区二区三区四那| 国产高清不卡午夜福利| 两个人的视频大全免费| 免费观看av网站的网址| 亚洲国产高清在线一区二区三| 永久免费av网站大全| 日韩欧美 国产精品| 22中文网久久字幕| 亚洲经典国产精华液单| 久久精品国产亚洲av涩爱| 免费人成在线观看视频色| 久久久a久久爽久久v久久| 国产在视频线在精品| 亚洲美女搞黄在线观看| 亚洲av不卡在线观看| 国产老妇伦熟女老妇高清| 欧美xxxx黑人xx丫x性爽| 久久97久久精品| 亚洲高清免费不卡视频| 日韩欧美精品免费久久| 国产精品久久视频播放| 啦啦啦中文免费视频观看日本| 久久久国产一区二区| 精品久久久久久久久av| 丝袜美腿在线中文| 亚洲欧美一区二区三区国产| 精品久久久久久久久久久久久| 欧美日韩综合久久久久久| 97人妻精品一区二区三区麻豆| 99久久中文字幕三级久久日本| 国产欧美另类精品又又久久亚洲欧美| 午夜精品在线福利| 在线观看人妻少妇| 亚洲av二区三区四区| 亚洲欧美一区二区三区黑人 | 免费看日本二区| 成人欧美大片| 日本黄大片高清| 国产伦精品一区二区三区视频9| 亚洲婷婷狠狠爱综合网| 国产在线一区二区三区精| 国产午夜精品论理片| 精品人妻偷拍中文字幕| 国产成人精品婷婷| 日本欧美国产在线视频| 青春草视频在线免费观看| 免费观看av网站的网址| 久久久久精品久久久久真实原创| 18禁在线无遮挡免费观看视频| 大又大粗又爽又黄少妇毛片口| 亚洲真实伦在线观看| 国产综合精华液| 亚洲精品一区蜜桃| 亚洲精品aⅴ在线观看| 少妇的逼好多水| 亚洲精品国产av成人精品| 亚洲av电影不卡..在线观看| 欧美变态另类bdsm刘玥| 寂寞人妻少妇视频99o| 国产 亚洲一区二区三区 | 国产精品日韩av在线免费观看| 18禁在线无遮挡免费观看视频| 18禁动态无遮挡网站| 亚洲最大成人中文| 国产av在哪里看| 淫秽高清视频在线观看| 一本一本综合久久| 51国产日韩欧美| 午夜激情福利司机影院| 最近2019中文字幕mv第一页| 麻豆乱淫一区二区| 国产在视频线在精品| 青春草视频在线免费观看| 波多野结衣巨乳人妻| 国产伦一二天堂av在线观看| 亚洲最大成人中文| 一个人看的www免费观看视频| 欧美激情久久久久久爽电影| 日韩,欧美,国产一区二区三区| 肉色欧美久久久久久久蜜桃 | 精品人妻熟女av久视频| 日韩亚洲欧美综合| 三级国产精品片| 啦啦啦啦在线视频资源| 美女高潮的动态| 久久精品久久久久久久性| 超碰97精品在线观看| 久久这里有精品视频免费| 国产成人精品久久久久久| 高清日韩中文字幕在线| 最后的刺客免费高清国语| 国产 一区 欧美 日韩| 大香蕉久久网| 国产成人免费观看mmmm| 一个人观看的视频www高清免费观看| 麻豆精品久久久久久蜜桃| 成年女人在线观看亚洲视频 | 久久久久久久久中文| 寂寞人妻少妇视频99o| 亚洲国产精品专区欧美| 精品欧美国产一区二区三| 国产免费又黄又爽又色| 精品一区二区三区人妻视频| 丰满人妻一区二区三区视频av| 美女cb高潮喷水在线观看| videos熟女内射| 成人亚洲欧美一区二区av| 午夜福利高清视频| 色吧在线观看| 春色校园在线视频观看| 欧美激情在线99| 久久国内精品自在自线图片| 日韩欧美一区视频在线观看 | 久久精品国产亚洲av天美| 99re6热这里在线精品视频| 国产黄色免费在线视频| 男女边吃奶边做爰视频| 亚洲国产精品成人久久小说| 国产淫语在线视频| 国产免费福利视频在线观看| 高清av免费在线| 麻豆成人午夜福利视频| 欧美97在线视频| 成人毛片60女人毛片免费| 亚洲熟妇中文字幕五十中出| 精品欧美国产一区二区三| 国产欧美日韩精品一区二区| freevideosex欧美| 一个人免费在线观看电影| 欧美极品一区二区三区四区| 99久久九九国产精品国产免费| 精品国产三级普通话版| 欧美成人a在线观看| 蜜桃久久精品国产亚洲av| 纵有疾风起免费观看全集完整版 | 国产精品爽爽va在线观看网站| 中文乱码字字幕精品一区二区三区 | 成人二区视频| 白带黄色成豆腐渣| 久久久成人免费电影| 18禁在线无遮挡免费观看视频| 99久久人妻综合| 国产老妇女一区| 亚洲一级一片aⅴ在线观看| 亚洲高清免费不卡视频| 国产色婷婷99| 最近中文字幕2019免费版| 国产一区二区亚洲精品在线观看| 日韩一区二区三区影片| 高清视频免费观看一区二区 | 亚洲精品成人av观看孕妇| 一个人看视频在线观看www免费| 色综合亚洲欧美另类图片| 日韩亚洲欧美综合| 看免费成人av毛片| 爱豆传媒免费全集在线观看| 国内精品宾馆在线| kizo精华| 免费不卡的大黄色大毛片视频在线观看 | 欧美xxxx性猛交bbbb| 亚洲在久久综合| 亚洲怡红院男人天堂| 午夜福利在线观看吧| 久久久久久久久中文| 国产女主播在线喷水免费视频网站 | 亚洲精品久久午夜乱码| 亚洲av成人精品一区久久| av播播在线观看一区| 老司机影院成人| 三级经典国产精品| or卡值多少钱| 久久久a久久爽久久v久久| 亚洲乱码一区二区免费版| 性色avwww在线观看| 伊人久久精品亚洲午夜| 国产av不卡久久| 国产精品蜜桃在线观看| 国产成人精品久久久久久| 男女国产视频网站| 狠狠精品人妻久久久久久综合| 三级国产精品欧美在线观看| videossex国产| 亚洲国产日韩欧美精品在线观看| 日韩大片免费观看网站| 亚洲av电影不卡..在线观看| 久久精品人妻少妇| 一二三四中文在线观看免费高清| 国产大屁股一区二区在线视频| 免费高清在线观看视频在线观看| 日本欧美国产在线视频| 久久久欧美国产精品| 国产成年人精品一区二区| 免费黄网站久久成人精品| 中文欧美无线码| 国产免费视频播放在线视频 | 久久久久久久午夜电影| 国产综合懂色| 国产高清不卡午夜福利| 国产不卡一卡二| a级一级毛片免费在线观看| 美女主播在线视频| 免费看av在线观看网站| 国产精品国产三级专区第一集| 2021少妇久久久久久久久久久| 国产熟女欧美一区二区| 亚洲高清免费不卡视频| 九草在线视频观看| 搡老妇女老女人老熟妇| 久久精品国产亚洲av涩爱| 久久综合国产亚洲精品| 18+在线观看网站| 久久人人爽人人爽人人片va| 国产精品麻豆人妻色哟哟久久 | 国产精品一区www在线观看| 亚洲电影在线观看av| 69人妻影院| 亚洲精华国产精华液的使用体验| 精品久久久久久久久av| 精品久久久噜噜| 亚洲av免费在线观看| 成年av动漫网址| 看非洲黑人一级黄片| 欧美 日韩 精品 国产| 日本午夜av视频| 久久草成人影院| 日韩欧美精品v在线| 青春草国产在线视频| 日韩av在线免费看完整版不卡| 亚洲成人久久爱视频| 午夜福利网站1000一区二区三区| 在现免费观看毛片| 免费观看av网站的网址| 日本欧美国产在线视频| 国产午夜福利久久久久久| 国内精品宾馆在线| 日本黄大片高清| 亚洲欧洲国产日韩| 爱豆传媒免费全集在线观看| 非洲黑人性xxxx精品又粗又长| 国产毛片a区久久久久| 国产男人的电影天堂91| 久久草成人影院| 欧美区成人在线视频| 嫩草影院精品99| 中文字幕人妻熟人妻熟丝袜美| 久久久午夜欧美精品| 成人午夜高清在线视频| 久久精品国产鲁丝片午夜精品| 中文字幕av成人在线电影| 一个人观看的视频www高清免费观看| 成人综合一区亚洲| 亚洲国产精品sss在线观看| 国语对白做爰xxxⅹ性视频网站| 联通29元200g的流量卡| 婷婷色麻豆天堂久久| 一区二区三区免费毛片| 在线播放无遮挡| 亚洲自偷自拍三级| 免费看日本二区| 永久网站在线| 日韩不卡一区二区三区视频在线| 免费观看无遮挡的男女| 国产成人一区二区在线| 欧美性感艳星| 亚洲人成网站在线观看播放| 天堂√8在线中文| 国产色爽女视频免费观看| 国产伦精品一区二区三区视频9| 特大巨黑吊av在线直播| 91av网一区二区| 国产亚洲一区二区精品| 亚洲成人精品中文字幕电影| 乱系列少妇在线播放| 你懂的网址亚洲精品在线观看| 欧美成人一区二区免费高清观看| 国产精品人妻久久久久久| 国产精品一区二区三区四区久久| 观看免费一级毛片| 亚洲av男天堂| 久久久久久久久久久丰满| 国内揄拍国产精品人妻在线| 国产视频内射| 成人毛片60女人毛片免费| 大片免费播放器 马上看| 成年版毛片免费区| 免费观看无遮挡的男女| 小蜜桃在线观看免费完整版高清| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩一区二区视频免费看| 午夜日本视频在线| 亚洲国产色片| 99视频精品全部免费 在线| 青青草视频在线视频观看| 国产色婷婷99| 五月玫瑰六月丁香| 国产大屁股一区二区在线视频| 热99在线观看视频| 国产精品伦人一区二区| 男人舔奶头视频| 亚洲国产最新在线播放| 国产黄片美女视频| 国产成人freesex在线| 亚洲最大成人av| 久久久精品免费免费高清| 亚洲av男天堂| 国产精品一二三区在线看| 亚洲国产高清在线一区二区三| 国产精品女同一区二区软件| 伊人久久国产一区二区| 久久99精品国语久久久| 国语对白做爰xxxⅹ性视频网站| 伦精品一区二区三区| 我的女老师完整版在线观看| 国产精品嫩草影院av在线观看| 免费少妇av软件| 天天躁夜夜躁狠狠久久av| 狂野欧美激情性xxxx在线观看| 亚洲av电影不卡..在线观看| av在线蜜桃| 午夜亚洲福利在线播放| 国产精品麻豆人妻色哟哟久久 | 男人舔女人下体高潮全视频| 18禁在线无遮挡免费观看视频| 欧美变态另类bdsm刘玥| av免费观看日本| 亚洲婷婷狠狠爱综合网| 看黄色毛片网站| 国产一区二区在线观看日韩| 亚洲aⅴ乱码一区二区在线播放| 如何舔出高潮| 国产白丝娇喘喷水9色精品| 在线免费观看的www视频| 在现免费观看毛片| 赤兔流量卡办理| 久久精品久久久久久噜噜老黄| 美女cb高潮喷水在线观看| 国产激情偷乱视频一区二区| 91午夜精品亚洲一区二区三区| 一区二区三区四区激情视频| 欧美一级a爱片免费观看看| 最近最新中文字幕免费大全7| 伊人久久国产一区二区| 免费av毛片视频| 日本三级黄在线观看| 精品一区二区免费观看| 亚洲不卡免费看| 国产一区二区在线观看日韩| 久久精品久久久久久久性| 国产亚洲5aaaaa淫片| 亚洲精品成人av观看孕妇| 最近中文字幕2019免费版| 在线观看免费高清a一片| 麻豆成人av视频| 欧美性猛交╳xxx乱大交人| 亚洲精华国产精华液的使用体验| 亚洲av.av天堂| 伊人久久国产一区二区| 又大又黄又爽视频免费| 成年免费大片在线观看| 日韩一本色道免费dvd| 亚洲国产精品成人久久小说| 大话2 男鬼变身卡| 午夜免费激情av| 日本-黄色视频高清免费观看| 亚洲精品国产av成人精品| 免费观看av网站的网址| 能在线免费看毛片的网站| av.在线天堂| 在线免费十八禁| 日韩精品青青久久久久久| 国产精品熟女久久久久浪| 波野结衣二区三区在线| 免费观看无遮挡的男女| 亚洲成人av在线免费| 亚洲国产色片| 亚洲自拍偷在线| 直男gayav资源| 亚州av有码| 小蜜桃在线观看免费完整版高清|