• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers

    2022-01-23 06:35:10XiaoBoHe何小波HuaTianHu胡華天JiBoTang唐繼博GuoZhenZhang張國(guó)楨XueChen陳雪JunJunShi石俊俊ZhenWeiOu歐振偉ZhiFengShi史志鋒ShunPingZhang張順平ChangLiu劉昌andHongXingXu徐紅星
    Chinese Physics B 2022年1期
    關(guān)鍵詞:陳雪華天史志

    Xiao-Bo He(何小波) Hua-Tian Hu(胡華天) Ji-Bo Tang(唐繼博) Guo-Zhen Zhang(張國(guó)楨)Xue Chen(陳雪) Jun-Jun Shi(石俊俊) Zhen-Wei Ou(歐振偉) Zhi-Feng Shi(史志鋒)Shun-Ping Zhang(張順平) Chang Liu(劉昌) and Hong-Xing Xu(徐紅星)

    1School of Physics and Technology,Center for Nanoscience and Nanotechnology,

    and Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education,Wuhan University,Wuhan 430072,China

    2Shandong Provincial Engineering and Technical Center of Light Manipulation and Shandong Provincial Key Laboratory of Optics and Photonic Devices,School of Physics and Electronics,Shandong Normal University,Jinan 250014,China

    3The Institute for Advanced Studies,Wuhan University,Wuhan 430072,China

    4Key Laboratory of Materials Physics of Ministry of Education,School of Physics and Microelectronics,

    Zhengzhou University,Zhengzhou 450052,China

    Keywords: electroluminescence, plasmonics, inelastic electron tunneling, multilayer insulator, atomic layer deposition

    1. Introduction

    Light emission by inelastic tunneling (LEIT) through a tunnel junction can offer unique opportunities to realize ultrafast electrical-optical-signal transduction,[1,2]which can generate light below the diffraction limit and provide potential applications in nanoscale biosensing,[3,4]optical communication,[5]and integrated photonics circuits.[6]First demonstrated by Lambe and McCarthy in 1976,[7]the tunneling electrons in a planar metal-insulator-metal(MIM)tunnel junction will excite the surface plasmons and may subsequently decay into far-field photons. This luminescence process is in principle ultrafast because the timescale for an electron tunneling through the junction proves to be on the order of 10 fs (the excitation process), and the lifetime of an emitter in the nanogap can be shortened to tens of fs(the emission process).[8,9]This phenomenon is then used to visualize the local density of states in scanning tunneling microscopes[10-13]until recently it has received considerable renewed interest in electrically-driven optical antennas.[14,15]Significant advances have been made since then,including the improvement of the emission efficiency,[16,17]radiation directionality,[18]and spectra shape[19-21]of the MIM tunnel sources. The stability of an LEIT device, a key operation figure of merit, depends significantly on the fabrication of the tunnel barrier.Till now, a highly stable tunnel barrier has relied mainly on the synthesis of a dense insulator layer between the biased metal structures,by,e.g.,thermal oxide,[22]exfoliated hexagonal boron nitride,[23]or self-assemble molecules.[24]However, these methods are either hard to control the thickness(oxidization) or incompatible with the modern microfabrication streamline,hindering the LEIT devices from being manufactured and put into practical applications.

    Atomic layer deposition(ALD)is a well-developed technique of depositing thin films in microelectronics,[25,26]lightemitting diodes,[27]hot-electron electrochemistry,[28]and diffusion barrier coatings with low gas permeability.[29]The uniqueness of ALD in these applications is attributed to its ability to grow the uniform,pinhole-free,and nanometer-thick insulator layers.[30,31]However,the operation of LEIT devices with a single Al2O3layer grown by ALD is unstable under ambient condition due to the formation of grains and defects during the growing process.[32]Therefore, it is necessary to obtain high-quality tunnel insulators by ALD so that the fabrication of LEIT devices is fully compatible with microfabrication techniques.

    2. Method

    2.1. Device fabrication

    Electrically driven plasmonic gratings are fabricated on Si/SiO2substrate. The thickness of the SiO2layer is 300 nm that can efficiently reduce the leak current. The bottom Au electrode is prepared by a series of fabrication steps,including EBL, reaction-ion etching (RIE, using CHF3gas flow), and thermal evaporation of Au film(50 nm). After lift-off,the O2plasma treatment process in an RIE is used to generate the high hydroxyl density substrate,in which the treatment power is 50 W and the treatment time is 1 min. The treated sample is then grown on the multiple insulator layers by ALD at a temperature of 150°C. Then, the top gratings are prepared by the EBL, Au evaporation, and lift-off. The details of the fabrication process are shown in the supporting information,Fig.S1.

    2.2. Electrical and optical characterization

    For electrical measurements, two tungsten probes with 10-μm diameter are used to contact the Au electrodes with a sourcemeter(Keithley 2634B).The parameters are 5 NPLC(number of power line cycles) for the analog-to-digital converter,integration times of 1 s,and the current using the automatic range switch. The EL images are recorded by an optical microscope (Olympus BX51) equipped with a 50× long working distance objective (NA = 0.5) and a CCD camera(DVC 710M-00-MW).The emission spectrum is collected by a spectrometer(Andor 550i,150 lines/mm blazing at 800 nm)and detected by the EMCCD (Andor Newton). The reflection spectrum is collected by a home-built microscope using a 100×objective(NA=0.9)and the diameter of the white light spot is 2μm.

    2.3. Electromagnetic simulations

    Full wave electromagnetic simulations are carried out by commercial FEM software (COMSOL Multiphysics, V5.2a).A two-dimensional model is established by considering the grating positioned on the top of an Au film. The permittivity of Au is cited from the Johnson and Christy.[40]The insulator gaps within the structures have a thickness of 4.0 nm and a refractive index of 2.05.

    3. Experiment and results

    In this work, we fabricate an LEIT device with uniform light emission and a long working lifetime under ambient condition, by optimizing the composition during the ALD growth. For the first time, we grow alternative insulator layers (TiO2-Al2O3-TiO2-Al2O3) as the tunnel barrier,in a fully microfabrication-compatible manner. Our devices can be stored for a long time (several weeks) and the tunneling current keeps stable for intermittent measurements from hours to days. The light emission is uniform in the entire active region, and the emission spectra can be controlled by a plasmonic grating. Our study demonstrates that the multilayer insulators grown by ALD enable a stable and uniform LEIT device. Furthermore, the composite tunnel barrier may also provide an additional degree of freedom for the band structure of the tunnel barrier[33,34]or find applications in other ultrafast electro-optical circuits. Figure 1(a) shows the schematic of an LEIT device. It consists of a square bottom Au electrode, alternate insulator (TiO2-Al2O3) layers, and a top Au plasmonic grating simultaneously serving as a coupler for light and a positive electrode. The bottom Au electrode and the top plasmonic grating are prepared by electron beam lithography(EBL),and both layers are 50-nm thick.The grating is aligned accurately to the bottom square electrode during the exposure.Thealternate insulator layers are deposited by ALD,including 18 cycles(0.8 nm)of TiO2,8 cycles(0.8 nm)of Al2O3,18 cycles(0.8 nm)of TiO2,and 16 cycles(1.6 nm)of Al2O3. The total thickness of the four layers is 4 nm.The entire fabrication process fits well with the modern microfabrication streamline(for details see supporting information Fig. S1). The inset of Fig. 1(a) shows a side view of the active region, where the silicon substrate is not shown.

    The energy band diagram of the MIM junction with and without bias voltage is shown in Fig.1(b). There are five potential barrier interfaces between Au electrodes. The shape of the energy band diagram of tunnel barriers is determined by the work function of the Au electrode(5.1 eV),[35]the electron affinity of insulator,and the applied bias voltage. The electron affinity potential of TiO2and Al2O3depend on the thickness and morphology of the film,[36]and are estimated to be 4.3 eV and 3.5 eV from the ALD process. The barrier height of interface at the zero bias is determined to beΦ1=0.8 eV for Au-TiO2interface,Φ2=1.6 eV for Au-Al2O3interface,andΦ3=0.8 eV for TiO2-Al2O3interfaces,as shown in the upper panel of Fig. 1(b). When electrons tunnel over the insulator barrier under the bias voltage, part of electrons will undergo the inelastic scattering and lose their energy by generating a plasmon, subsequently radiating photons or creating heat in the local region. By changing the height, period, duty cycle of the grating and the thickness of the alternate insulators,the spectrum and polarization of the electroluminescence can be controlled. Comparing with the tunneling junctions with single insulators,the choice of two or more insulators facilitates the design of both the electronic and photonic aspects of the devices. For example, the tunneling current can be larger for such an alternate insulator junction than the counterpart of a pure Al2O3junction with equal thickness. For a given tunneling current,a multilayer junction can sustain a higher damage voltage, which is a key to a stable light emission by inelastic tunneling device.Unlike traditional light sources,the emission process of LEIT does not rely on the spontaneous recombination of electron-hole pairs. The response time of the emission can decrease down to tens of femtosecond,dependent mainly on the electron tunneling process and the subsequent radiative decay of the plasmons.[37]These enable the light emission by inelastic tunneling to become a component of an integrated ultrafast optoelectronic circuit.

    Fig. 1. (a) Schematic diagram of the device. The inset shows a side view of active region (unscaled), and contains, from bottom to top, a silica substrate,a square Au bottom electrode,alternative insulator layers,and an Au grating. The 50-nm-thick gratings are fabricated onto the bottom electrode with a 4-nm-thick tunnel barrier of TiO2&Al2O3 grown in between. (b)Energy band diagram of multilayer tunnel junction with zero and positive bias,with Φi (i=1,2,3)denoting barrier height,Vb applied voltage,and ˉhω light emission.

    Fig.2.(a)Current-voltage characteristic curve of connected plasmonic grating device with a tunneling gap, where insets show energy band diagrams of multilayer tunneling junction with a negative or positive bias applied to top Au electrode. (b)Asymmetry(η =|IF/IR|)versus bias voltage for the MIM tunnel diode,where inset displays time trace of tunneling current at a constant bias of Vb=2.0 V with tunnel junction size being 60μm2.

    The tunneling current of our device is determined by both the amplitude and the direction of the applied voltage since there are multiple insulators with different electron affinities in the tunnel barrier. The characteristic of current density(J)as a function of the applied voltage is shown in Fig.2(a). A pronounced asymmetry appears when the direction of injection electrons is reversed. The inset of Fig. 2(a) presents the energy band diagram with negative and positive voltage. When applying a positive bias voltage of +2 V to the top Au electrode, the width of the TiO2&Al2O3tunnel barrier is smaller than that when applying a negative bias of-2 V. Hence, the positive current density is greater than the negative one at the MIM tunnel junction. In the following,we always use a positive bias in the LEIT measurements since the intensity of emission photons depends linearly on the amplitude of the tunnel current.[20]Supporting information figure S2 also shows that the tunneling current increases linearly with the augment of area of the junction.

    We now come to study the asymmetry of the currentversusvoltage(I-V)curve and the stability of the tunnel junctions. The asymmetry of theI-Vcurve is defined as the forward current divided by the reverse current (η=|IF/IR|),which presents the characterization of rectification for a tunnel MIM diode. Figure 2(b)shows that the value of asymmetry is related to the value of applied voltage. The asymmetry value of the tunnel junction reaches 45 when|Vb|=2 V.The inset of Fig. 2(b) shows the time trace of the tunneling current of the MIM junction with a junction size of 60μm2at a bias voltage of 2.0 V. The tunneling current keeps stable during the measurement, guaranteeing key feature required in further applications (e.g., optoelectronic circuits). Stabler devices can be achieved by packaging the final device or utilizing the transferred top Au nanostructure(electrodes).[38]

    Fig. 3. (a) Reflection spectra of grating under parallel (red) and perpendicular (black) excitation. Inset shows scanning electron microscope image of the grating. It has a duty cycle of 0.5 and a period of 700 nm. Scale bar: 1μm. (b)Simulated reflection spectra of the grating under parallel(red)and perpendicular excitation. The inset shows the electric field distribution under the resonance condition with a wavelength of 750 nm. (c)EL spectra of the grating for various applied voltages. The inset shows the I-V curve of the device. (d)Image of light emitted from the grating at a constant bias of Vb=3.0 V.The CCD exposure time is 3 s. The right panels indicate the intensity profiles along the major axis and minor axis of the EL image,corresponding to the dashed line on the left panel.

    The optical characterization of the tunneling device and the emission spectra of the LEIT source are determined by the resonance properties of the grating. The reflection spectra are measured in the home-built microscope (for details, see supporting information Fig. S3). Considering that the plasmon resonance has a smaller loss in the near-infrared region,[37]the grating is designed with a duty cycle of 0.5 and a period of 700 nm.Figure 3(a)shows the reflection spectra from the grating under perpendicular and parallel polarization. The grating shows a strong polarization response, an apparent reflection dip at 770 nm shows up under perpendicular polarization.The polarization dependence of EL spectrum presents a similar behavior,with the emitted photon polarized perpendicular to the grating (supporting information, Fig. S6).The inset of Fig. 3(a) shows the scanning electron microscopy images of the same devices. Numerical simulations of the grating nanostructure are in good agreement with the experimental result as shown in Fig. 3(b). The inset shows a side view of the electric field distribution of a grating at the resonant wavelength.High enhancement of the electric field is confined in the tunnel junction and at the top edge of the grating,which conduces to improving the efficiency of LEIT device.

    Next,we explore the properties of the emission light from the electrically driven grating. We use two tungsten probes connected with a sourcemeter to apply the bias voltage to the device. Light emission from the tunneling junction is collected by a long working distance objective (Olympus, 50×,NA=0.5)and then recorded by a CCD camera or by a spectrometer(for details,see Methods).All measurements are conducted at room temperature. Figure 3(c) shows the emission spectra with various bias voltages, the intensity of EL peak becomes stronger with voltage increasing. The peak position of EL spectrum is 728 nm,which fits well with the reflection spectrum. We note that the drop of the EL spectrum at about 820 nm is not caused by the experimental collection system.It may be due to the lower electric field enhancement in the tunnel junction and at the top edge of the grating,corresponding to a weak radiation efficiency at the dip (~840 nm) in the reflection spectrum in Fig. 3(b) (also see supporting information Fig. S7). The inset of Fig. 3(c) shows the correspondingI-Vcurves of the same device. Figure 3(d) shows the direct imaging of light emitted from gratings at a constant bias voltage ofVb=3.0 V.The intensity of the emission spot is uniform, which shows that the tunneling electrons uniformly pass through the barrier of the MIM junction. The right panels show that the intensity profiles along the different axes of the tunnel source, and there appear only small fluctuations from different positions. Supporting information Fig.S5 shows the photon emission from a planar MIM tunnel junction, and the emitted photons are observed only from the edges of the top electrode. The external conversion efficiency of the electronto-photon of the light source is estimated at about 3.8×10-6atVb=3.0 V,following the same procedure as in our previous work.[20]

    4. Conclusions

    In this work, we demonstrate electrically driven plasmonic gratings based on a multilayer tunneling barrier grown by ALD,where the source shows stable and uniform emission characteristics. Four insulator layers are utilized to fabricate the MIM tunneling sources for the first time. It shows that the tunneling probability of one electron is dependent on the injection direction due to the utilization of the multiple insulators with different electron affinities in one tunnel barrier.The tunneling probability of the electrons from the bottom Au electrode is much higher than that from the top grating. The problem of poor stability of the ultrathin insulator layer grown by ALD in the MIM tunnel source is solved by utilizing multilayer barriers. According to Ref.[39],the resonant electron tunneling based on multilayer barriers may happen and will further enhance the efficiency.[39]Our work paves the way for fabricating a stabler and efficient subwavelength LEIT device,which is of potential significance in implmenting the on-chip optical communication,biosensing,and photodetection.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12004222 and 91850207),the National Key Research and Development Program of China(Grant Nos.2017YFA0303504 and 2017YFA0205800),the Fundamental Research Funds for the Central Universities, China, the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000),and the Postdoctoral Science Foundation of China (Grant No.2020M682223).

    猜你喜歡
    陳雪華天史志
    《鸚鵡演奏會(huì)》
    《節(jié)約用水》
    《讓愛包圍艾》
    華天軟件完成B輪融資1.8億元
    智能制造(2021年4期)2021-11-14 18:56:41
    紅嘴藍(lán)鵲
    綠色天府(2021年9期)2021-10-15 06:16:32
    華天驊手捏戲文泥塑作品
    Superlubricity enabled dry transfer of non-encapsulated graphene?
    盛大華天直銷之殤
    機(jī)構(gòu)薦股:華天科技、萬(wàn)方發(fā)展、科陸電子、證通電子
    有朋遠(yuǎn)方來(lái)
    久久久久久久大尺度免费视频| 国产又爽黄色视频| 亚洲精品粉嫩美女一区| 久久九九热精品免费| 夫妻午夜视频| 国产精品一区二区精品视频观看| 天天影视国产精品| 成人亚洲精品一区在线观看| 三级毛片av免费| 淫妇啪啪啪对白视频 | 90打野战视频偷拍视频| 亚洲人成电影免费在线| 久久综合国产亚洲精品| 九色亚洲精品在线播放| 精品国产一区二区三区四区第35| 久久人妻福利社区极品人妻图片| 国产成人欧美在线观看 | 天堂8中文在线网| 侵犯人妻中文字幕一二三四区| 日韩视频在线欧美| 欧美精品人与动牲交sv欧美| 国产亚洲欧美精品永久| 五月天丁香电影| 国产亚洲精品第一综合不卡| 久久人妻熟女aⅴ| 国产一区二区在线观看av| av国产精品久久久久影院| 韩国高清视频一区二区三区| 99国产精品免费福利视频| 亚洲人成电影观看| 黄片播放在线免费| 12—13女人毛片做爰片一| 午夜福利,免费看| 久久久久国内视频| 人人澡人人妻人| 黄网站色视频无遮挡免费观看| 久久精品国产亚洲av香蕉五月 | 免费高清在线观看日韩| 亚洲精品乱久久久久久| 美女国产高潮福利片在线看| 久久精品aⅴ一区二区三区四区| 69av精品久久久久久 | 成年人午夜在线观看视频| 无遮挡黄片免费观看| 精品久久久久久久毛片微露脸 | 一级黄色大片毛片| a级片在线免费高清观看视频| 电影成人av| 大片电影免费在线观看免费| 国产精品1区2区在线观看. | 12—13女人毛片做爰片一| 热99re8久久精品国产| 久久人人爽av亚洲精品天堂| 女人被躁到高潮嗷嗷叫费观| 亚洲av电影在线进入| 欧美日韩一级在线毛片| 亚洲av片天天在线观看| 乱人伦中国视频| 91成年电影在线观看| 亚洲天堂av无毛| 精品少妇久久久久久888优播| 妹子高潮喷水视频| 90打野战视频偷拍视频| 精品欧美一区二区三区在线| 国产精品一区二区精品视频观看| 91精品三级在线观看| 亚洲熟女精品中文字幕| 99久久综合免费| 久久精品国产a三级三级三级| 久久久国产精品麻豆| 亚洲人成电影免费在线| 大片免费播放器 马上看| 亚洲精品国产av蜜桃| 日本黄色日本黄色录像| 国产麻豆69| 男男h啪啪无遮挡| 欧美+亚洲+日韩+国产| 亚洲成av片中文字幕在线观看| 麻豆av在线久日| 亚洲欧洲精品一区二区精品久久久| 亚洲专区国产一区二区| 精品少妇黑人巨大在线播放| 国产精品秋霞免费鲁丝片| 国产成人精品久久二区二区免费| 极品少妇高潮喷水抽搐| 香蕉丝袜av| 亚洲第一欧美日韩一区二区三区 | 亚洲中文字幕日韩| 女人久久www免费人成看片| 精品国产乱码久久久久久小说| 国产免费视频播放在线视频| 波多野结衣av一区二区av| 91成年电影在线观看| 夜夜夜夜夜久久久久| 国产精品久久久久成人av| 日本91视频免费播放| 国产免费福利视频在线观看| 91大片在线观看| 97精品久久久久久久久久精品| 欧美老熟妇乱子伦牲交| 国产欧美日韩综合在线一区二区| 老司机深夜福利视频在线观看 | 久久99热这里只频精品6学生| 飞空精品影院首页| 国产亚洲精品久久久久5区| 大码成人一级视频| 天堂俺去俺来也www色官网| 欧美老熟妇乱子伦牲交| 日本撒尿小便嘘嘘汇集6| 欧美人与性动交α欧美软件| 午夜免费成人在线视频| 老鸭窝网址在线观看| 正在播放国产对白刺激| 韩国精品一区二区三区| 国产成人精品无人区| 国产成人啪精品午夜网站| 麻豆乱淫一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 欧美 日韩 精品 国产| 视频区欧美日本亚洲| 两人在一起打扑克的视频| 免费日韩欧美在线观看| 午夜福利,免费看| 操出白浆在线播放| 亚洲欧美一区二区三区久久| 国产不卡av网站在线观看| 成人手机av| 久久 成人 亚洲| 精品亚洲成a人片在线观看| 在线看a的网站| 丰满人妻熟妇乱又伦精品不卡| 另类精品久久| 叶爱在线成人免费视频播放| 多毛熟女@视频| 国产精品国产三级国产专区5o| 日本黄色日本黄色录像| 一级片'在线观看视频| 老熟妇乱子伦视频在线观看 | 国产激情久久老熟女| 日韩一区二区三区影片| 国产一区二区三区在线臀色熟女 | 午夜免费观看性视频| 亚洲七黄色美女视频| 亚洲欧洲日产国产| 韩国精品一区二区三区| 亚洲性夜色夜夜综合| 各种免费的搞黄视频| 丝袜脚勾引网站| 亚洲国产精品999| 国产欧美日韩综合在线一区二区| 中文字幕av电影在线播放| 欧美 日韩 精品 国产| 久久亚洲国产成人精品v| 精品福利永久在线观看| 亚洲黑人精品在线| 男人舔女人的私密视频| 久久av网站| 丝袜美腿诱惑在线| 免费人妻精品一区二区三区视频| 欧美一级毛片孕妇| 男人爽女人下面视频在线观看| 波多野结衣av一区二区av| 最近中文字幕2019免费版| 免费观看a级毛片全部| 久久青草综合色| 午夜视频精品福利| 美女高潮到喷水免费观看| 成人黄色视频免费在线看| 日本vs欧美在线观看视频| 91大片在线观看| 免费日韩欧美在线观看| 老汉色∧v一级毛片| h视频一区二区三区| 国产亚洲精品久久久久5区| 国产麻豆69| 一级毛片精品| 婷婷色av中文字幕| 久久久欧美国产精品| 交换朋友夫妻互换小说| 亚洲国产av影院在线观看| 免费在线观看日本一区| 一边摸一边做爽爽视频免费| 巨乳人妻的诱惑在线观看| 久久人妻熟女aⅴ| 在线av久久热| 午夜免费鲁丝| 人人妻人人添人人爽欧美一区卜| 国产高清视频在线播放一区 | 亚洲美女黄色视频免费看| 免费久久久久久久精品成人欧美视频| 两个人看的免费小视频| 国产成人免费无遮挡视频| 超碰97精品在线观看| 宅男免费午夜| 亚洲国产欧美一区二区综合| 亚洲第一欧美日韩一区二区三区 | 国产精品免费大片| 99国产精品一区二区三区| 97在线人人人人妻| 性高湖久久久久久久久免费观看| 久9热在线精品视频| 天堂8中文在线网| 又黄又粗又硬又大视频| 久久久精品免费免费高清| 操出白浆在线播放| 久久人人爽人人片av| 久久精品人人爽人人爽视色| 国产精品 欧美亚洲| 中文字幕制服av| 亚洲国产精品一区二区三区在线| 中文字幕高清在线视频| 国产av一区二区精品久久| 欧美日韩福利视频一区二区| 侵犯人妻中文字幕一二三四区| 90打野战视频偷拍视频| 精品国产乱子伦一区二区三区 | 搡老乐熟女国产| 国产日韩欧美亚洲二区| 欧美人与性动交α欧美精品济南到| 老司机深夜福利视频在线观看 | 亚洲中文日韩欧美视频| 国产伦理片在线播放av一区| 国产激情久久老熟女| 91字幕亚洲| 1024视频免费在线观看| 亚洲欧美清纯卡通| 国产精品.久久久| 国产精品欧美亚洲77777| 久久久久久久国产电影| 成年人黄色毛片网站| 欧美国产精品va在线观看不卡| 中文字幕人妻丝袜一区二区| 欧美精品av麻豆av| 日韩 欧美 亚洲 中文字幕| 别揉我奶头~嗯~啊~动态视频 | 欧美日韩视频精品一区| 欧美日韩av久久| 色94色欧美一区二区| 中文字幕最新亚洲高清| 精品视频人人做人人爽| 在线av久久热| 欧美 日韩 精品 国产| av超薄肉色丝袜交足视频| 9191精品国产免费久久| 午夜免费成人在线视频| 国产有黄有色有爽视频| 久久 成人 亚洲| 久久久欧美国产精品| 亚洲成国产人片在线观看| 亚洲精品国产区一区二| 又大又爽又粗| 黄色视频在线播放观看不卡| 男女之事视频高清在线观看| 99久久99久久久精品蜜桃| 欧美黄色片欧美黄色片| 久久久精品94久久精品| 男人添女人高潮全过程视频| 一本色道久久久久久精品综合| 12—13女人毛片做爰片一| a级毛片在线看网站| 女人爽到高潮嗷嗷叫在线视频| 中文字幕人妻丝袜一区二区| 青春草亚洲视频在线观看| 少妇精品久久久久久久| 老司机午夜十八禁免费视频| 好男人电影高清在线观看| 最新的欧美精品一区二区| 久久精品亚洲熟妇少妇任你| 国内毛片毛片毛片毛片毛片| 99久久99久久久精品蜜桃| 亚洲男人天堂网一区| 人妻久久中文字幕网| 天天躁夜夜躁狠狠躁躁| 国产熟女午夜一区二区三区| 天堂俺去俺来也www色官网| 男女下面插进去视频免费观看| 王馨瑶露胸无遮挡在线观看| 国产一区二区激情短视频 | 90打野战视频偷拍视频| 啦啦啦视频在线资源免费观看| kizo精华| 正在播放国产对白刺激| av视频免费观看在线观看| 两人在一起打扑克的视频| 欧美日韩亚洲高清精品| 成人黄色视频免费在线看| 又紧又爽又黄一区二区| 亚洲av欧美aⅴ国产| 午夜91福利影院| 黄色视频不卡| 精品国产乱子伦一区二区三区 | 精品高清国产在线一区| 五月开心婷婷网| 久久人人爽av亚洲精品天堂| 亚洲,欧美精品.| 久久久久久亚洲精品国产蜜桃av| 午夜免费成人在线视频| 极品人妻少妇av视频| 免费在线观看影片大全网站| 男人操女人黄网站| 妹子高潮喷水视频| 亚洲美女黄色视频免费看| 国产精品免费视频内射| 一级,二级,三级黄色视频| 国产精品熟女久久久久浪| 天天添夜夜摸| 精品卡一卡二卡四卡免费| 国产在线视频一区二区| 免费在线观看日本一区| 欧美日本中文国产一区发布| 国产99久久九九免费精品| 国产欧美日韩一区二区三 | av在线app专区| 99热国产这里只有精品6| 另类精品久久| 如日韩欧美国产精品一区二区三区| 久久国产精品影院| 亚洲av国产av综合av卡| 又紧又爽又黄一区二区| 亚洲精品久久久久久婷婷小说| 亚洲午夜精品一区,二区,三区| 欧美激情高清一区二区三区| 夜夜骑夜夜射夜夜干| 久久女婷五月综合色啪小说| 9191精品国产免费久久| 最近中文字幕2019免费版| 精品高清国产在线一区| 人妻一区二区av| 亚洲av男天堂| 国产视频一区二区在线看| 女人爽到高潮嗷嗷叫在线视频| 欧美av亚洲av综合av国产av| 超色免费av| 美女福利国产在线| 精品亚洲成a人片在线观看| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕高清在线视频| www.999成人在线观看| 国产片内射在线| av欧美777| 欧美日韩亚洲国产一区二区在线观看 | 成人黄色视频免费在线看| 天堂俺去俺来也www色官网| 久久久久国内视频| 激情视频va一区二区三区| 午夜福利在线观看吧| 老熟妇乱子伦视频在线观看 | 欧美日韩国产mv在线观看视频| av有码第一页| 9191精品国产免费久久| 丝袜美腿诱惑在线| 女人爽到高潮嗷嗷叫在线视频| 免费高清在线观看日韩| 夜夜骑夜夜射夜夜干| 国内毛片毛片毛片毛片毛片| 亚洲va日本ⅴa欧美va伊人久久 | 一本久久精品| 久久精品国产亚洲av高清一级| 超碰成人久久| 亚洲国产精品一区二区三区在线| 欧美日韩av久久| 人成视频在线观看免费观看| 午夜激情av网站| 亚洲国产欧美一区二区综合| 精品久久蜜臀av无| 国产又爽黄色视频| 欧美中文综合在线视频| 国产一卡二卡三卡精品| 黑人欧美特级aaaaaa片| 在线天堂中文资源库| 脱女人内裤的视频| 91成年电影在线观看| 王馨瑶露胸无遮挡在线观看| 午夜福利在线免费观看网站| 美国免费a级毛片| 最近中文字幕2019免费版| 搡老熟女国产l中国老女人| 成在线人永久免费视频| 中文字幕精品免费在线观看视频| 在线看a的网站| 一边摸一边抽搐一进一出视频| 人成视频在线观看免费观看| 久久人人爽人人片av| 超色免费av| 在线观看www视频免费| 亚洲美女黄色视频免费看| 蜜桃国产av成人99| 亚洲熟女精品中文字幕| 国产深夜福利视频在线观看| 国产成人欧美在线观看 | 亚洲伊人色综图| 色婷婷av一区二区三区视频| 免费少妇av软件| 美女扒开内裤让男人捅视频| 欧美老熟妇乱子伦牲交| 国产99久久九九免费精品| 亚洲精品国产精品久久久不卡| 91精品伊人久久大香线蕉| 一个人免费在线观看的高清视频 | 国产在线免费精品| 丰满少妇做爰视频| 国产伦人伦偷精品视频| 曰老女人黄片| 久久精品亚洲av国产电影网| 在线亚洲精品国产二区图片欧美| 99久久精品国产亚洲精品| av在线老鸭窝| √禁漫天堂资源中文www| 亚洲视频免费观看视频| 久久青草综合色| 欧美日韩中文字幕国产精品一区二区三区 | 两个人看的免费小视频| 大香蕉久久网| 中文字幕精品免费在线观看视频| 国产成人精品无人区| 亚洲欧美精品综合一区二区三区| 黄片大片在线免费观看| 亚洲专区中文字幕在线| 亚洲成国产人片在线观看| 国产淫语在线视频| 欧美久久黑人一区二区| 成人免费观看视频高清| 国产成+人综合+亚洲专区| 在线看a的网站| 视频区图区小说| 老司机靠b影院| 久9热在线精品视频| 悠悠久久av| 国产极品粉嫩免费观看在线| 亚洲伊人色综图| 亚洲伊人久久精品综合| 无遮挡黄片免费观看| 18禁裸乳无遮挡动漫免费视频| 日本91视频免费播放| 大码成人一级视频| 99久久人妻综合| 人人妻人人澡人人看| 91字幕亚洲| 国产麻豆69| 97在线人人人人妻| 人妻久久中文字幕网| 久久狼人影院| 国产片内射在线| 久久亚洲国产成人精品v| 黑人欧美特级aaaaaa片| 亚洲中文av在线| 99久久综合免费| 天天添夜夜摸| 欧美性长视频在线观看| 老鸭窝网址在线观看| 少妇 在线观看| 汤姆久久久久久久影院中文字幕| 国产亚洲一区二区精品| 99香蕉大伊视频| 国产精品影院久久| 国产欧美日韩综合在线一区二区| 国产精品影院久久| 老司机午夜福利在线观看视频 | 亚洲 国产 在线| 国产熟女午夜一区二区三区| 自线自在国产av| 亚洲av男天堂| 美女中出高潮动态图| 午夜成年电影在线免费观看| 黄片小视频在线播放| 50天的宝宝边吃奶边哭怎么回事| 国产成人精品在线电影| 成年人午夜在线观看视频| 欧美日韩成人在线一区二区| 欧美+亚洲+日韩+国产| 亚洲国产欧美在线一区| 美女高潮喷水抽搐中文字幕| 亚洲av片天天在线观看| 美女大奶头黄色视频| 黄网站色视频无遮挡免费观看| 一进一出抽搐动态| 日韩视频在线欧美| 黄色a级毛片大全视频| av有码第一页| 亚洲午夜精品一区,二区,三区| 久久性视频一级片| 十八禁高潮呻吟视频| 国产亚洲欧美精品永久| 人人妻人人爽人人添夜夜欢视频| 国产免费一区二区三区四区乱码| 国产精品久久久久久人妻精品电影 | 国产亚洲av高清不卡| 十八禁人妻一区二区| 嫩草影视91久久| av网站在线播放免费| 一本一本久久a久久精品综合妖精| 美女福利国产在线| 国产精品久久久久久人妻精品电影 | 国产精品影院久久| 国产精品 欧美亚洲| 19禁男女啪啪无遮挡网站| 欧美 亚洲 国产 日韩一| 久久精品成人免费网站| 99久久人妻综合| 国产亚洲午夜精品一区二区久久| www.999成人在线观看| 国产在视频线精品| 黄片大片在线免费观看| 男女午夜视频在线观看| 正在播放国产对白刺激| 免费高清在线观看日韩| 亚洲欧美日韩另类电影网站| 国产一区二区在线观看av| 久久精品aⅴ一区二区三区四区| av国产精品久久久久影院| 成年美女黄网站色视频大全免费| 国产精品一二三区在线看| 99久久精品国产亚洲精品| 国产免费av片在线观看野外av| 免费一级毛片在线播放高清视频 | 午夜激情久久久久久久| 中文字幕人妻丝袜一区二区| av不卡在线播放| 两性夫妻黄色片| 波多野结衣av一区二区av| 国产日韩一区二区三区精品不卡| 国产精品.久久久| 老司机在亚洲福利影院| 国产国语露脸激情在线看| 国产又爽黄色视频| 脱女人内裤的视频| 69av精品久久久久久 | 建设人人有责人人尽责人人享有的| 别揉我奶头~嗯~啊~动态视频 | 高清在线国产一区| 免费在线观看完整版高清| 久久久久久久精品精品| 狠狠狠狠99中文字幕| 超碰97精品在线观看| 久久久久国产一级毛片高清牌| 91精品三级在线观看| 热re99久久国产66热| 伊人亚洲综合成人网| 亚洲 国产 在线| 一级毛片电影观看| 免费高清在线观看日韩| 午夜两性在线视频| 日韩大片免费观看网站| 91精品三级在线观看| 欧美精品啪啪一区二区三区 | 少妇 在线观看| 极品人妻少妇av视频| 宅男免费午夜| 我要看黄色一级片免费的| 欧美成狂野欧美在线观看| 欧美精品高潮呻吟av久久| 精品国产乱子伦一区二区三区 | 国产一级毛片在线| 亚洲第一欧美日韩一区二区三区 | 狠狠狠狠99中文字幕| 12—13女人毛片做爰片一| 国产精品影院久久| 亚洲avbb在线观看| 国产三级黄色录像| 97精品久久久久久久久久精品| 极品人妻少妇av视频| 久久亚洲国产成人精品v| 中文字幕精品免费在线观看视频| 波多野结衣一区麻豆| 男人添女人高潮全过程视频| 99国产精品99久久久久| 色精品久久人妻99蜜桃| 精品人妻1区二区| 夫妻午夜视频| 99精国产麻豆久久婷婷| 久久久久久免费高清国产稀缺| 婷婷丁香在线五月| 免费少妇av软件| 色播在线永久视频| 在线看a的网站| 女人被躁到高潮嗷嗷叫费观| 少妇的丰满在线观看| 国产欧美亚洲国产| 久久久久国产精品人妻一区二区| 国产成人免费观看mmmm| 99国产精品免费福利视频| 手机成人av网站| 菩萨蛮人人尽说江南好唐韦庄| 国产伦理片在线播放av一区| 免费日韩欧美在线观看| bbb黄色大片| 国产av一区二区精品久久| 女人爽到高潮嗷嗷叫在线视频| 制服诱惑二区| 精品人妻在线不人妻| 99久久99久久久精品蜜桃| 两性夫妻黄色片| 久久精品熟女亚洲av麻豆精品| 精品卡一卡二卡四卡免费| 国产色视频综合| 成年动漫av网址| 丰满少妇做爰视频| 成人黄色视频免费在线看| 久热这里只有精品99| 一本综合久久免费| 国产熟女午夜一区二区三区| 欧美变态另类bdsm刘玥| 无限看片的www在线观看| 操出白浆在线播放| 国产91精品成人一区二区三区 | videos熟女内射| av国产精品久久久久影院| 亚洲一区二区三区欧美精品| 丁香六月天网| 啦啦啦中文免费视频观看日本| 视频在线观看一区二区三区| 亚洲欧美色中文字幕在线| 国产成人a∨麻豆精品| 成人手机av| 人妻 亚洲 视频|