• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cross correlation mediated by distant Majorana zero modes with no overlap

    2022-01-23 06:35:10LupeiQin秦陸培WeiFeng馮偉andXinQiLi李新奇
    Chinese Physics B 2022年1期
    關(guān)鍵詞:新奇

    Lupei Qin(秦陸培), Wei Feng(馮偉), and Xin-Qi Li(李新奇)

    Center for Joint Quantum Studies and Department of Physics,School of Science,Tianjin University,Tianjin 300072,China

    Keywords: Majorana zero modes,cross correlation,Andreev currents

    1. Introduction

    The nonlocal nature of the Majorana zero modes(MZMs) and the obeying non-Abelian braiding statistics promise a sound potential for topological quantum computation.[1-4]Throughout the past decade, the search for reliable MZMs has become a major theme in condensed matter physics.[5-11]In order to identify the Majorana zero modes (MZMs), rich transport phenomena have been proposed, such as the fractional Josephson effects,[12-15]peculiar noise behaviors,[16-25]and the famous Majorana quantized conductance 2e2/h.[20,22,26-28]Recent interests also include the nonlocal transport conductances[29-37]and the proposals to distinguish the nonlocal MZMs from the topologically trivial Andreev states.[38-43]

    The most direct evidences of the genuinely nonlocal nature of the MZMs should be the Majorana teleportation[44-46]and/or the cross correlation of two remote Majoranas (γ1andγ2).[16-21]Both the phenomena of Majorana teleportation and nonlocal cross correlation are rather transparent by using the low energy effective Hamiltonian description, especially within the framework of“second quantization”in terms of the occupation-number-states|0〉and|1〉of the MZMs associated regular fermion (thefquasiparticle). Consider injecting an electron from outside into the superconductor through,for instance, the left MZMγ1. The occupation of the nonlocalfquasiparticle should allow for extracting a particle (either an electron or a hole) through the other distant right-side MZMγ2, thus expecting the so-called teleportation phenomenon.The same reason allows us to expect nonlocal cross correlation between the currents in the distant leads. More specifically, consider a two-lead (three-terminal) setup.[16-18,33-37]Can we find nonlocal cross correlation between the currents in different leads? A few studies showed that the cross correlation vanishes at the limit?M→0.[16-18]

    Fig. 1. Schematic circuit diagram for the Andreev reflection (AR) and inverse AR processes in the two-lead (three-terminal) device under consideration. In the AR process, taking the left lead as example, two electrons in the lead enter the superconductor,successively and coherently,and form a Cooper pair. The two electrons are of energy in resonance with (have Lorentzian centers at) ?M and -?M, respectively, as seen in Eqs. (3) and(4) in the text. The inverse AR process splits a Cooper pair and generates the excitation of an f quasiparticle in the superconductor, meanwhile,sends an electron back into the lead. In the plot,we only show the left-side current and the local Andreev process, while the right-side current and the crossed Andreev process can be similarly understood. In the diagram we also schematically show the net branch circuit currentsIL andIR, flowing back to the leads.

    In this work,applying the master equation approach(and using the occupation-number-state representation), we show that it is possible by extracting component currents from the total lead-currents to expose the intrinsic nonlocal cross correlation between them, even at the limit?M→0, owing to the nonlocal nature of the MZMs associatedfquasiparticle.Moreover, the component currents extracted from the total ones are nothing but the branch circuit currents flowing back to the individual leads from the superconductor,which are measurable in experiment, as schematically shown in Fig. 1. By combining together with the evidence of the zero-bias-peak of conductance(ZBPC),this nonlocal cross correlation should allow us to definitely confirm the existence of the nonlocal MZMs. This is the most important issue at present stage in the Majorana community.

    2. Master equation approach

    For completeness,we briefly outline the Majorana master equation(MME)approach based on Refs.[47,48],which deals with a pair of MZMs embedded in a two-lead(three-terminal)nonlocal transport setup. The low-energy effective description for a pair of MZMs can be commonly formulated by the HamiltonianHM= i?Mγ1γ2,where?Mis the coupling energy of the MZMsγ1andγ2. The Majorana operators are related to the regular complex fermion through the transformation ofγ1=f+f?andγ2=-i(f-f?). Through using the complex fermion representation, for a two-lead setup of transport, the tunnel-coupling of the MZMs to the leads is given by[19]

    The master equation approach to quantum transport simply follows the theoretical treatment of quantum dissipation,where the system-of-interest is coupled to an environment usually via energy exchange, but not involving the particle exchange. For quantum transport, the system-of-interest is the central device, while the environment is the transport leads.In the transport problem,particle exchange/tunneling between the leads and the central device is seemingly causing certain difficulty to describe the central device by using the density matrix. However, after introducing the occupied and unoccupied probabilities of states,the fundamental requirement of Trρ=1 is guaranteed for the density matrix operatorρ. The transport master equation is thus well justified and has been applied broadly in practice.

    where the broadening is given byΓ= ∑α(Γeα+Γhα)/2.This type of generalization in terms of the Lorentzian spectral function properly accounts for the level broadening effect, which directly follows the spirit of the self-consistent Born approximation[51]and works perfectly well for transport through single-level systems(such as the single-level quantum dot). This generalization makes the transport master equation applicable under small bias voltage,while it is well known that the usual Born-Markov-Lindblad master equation is applicable only under large bias limit(with voltage much larger than the level broadening widths). Here,in the Majorana case,the subgapfquasiparticle is simply a single-level system within the low-energy effective description. The only unique feature is the presence of the Andreev-process associated counterrotating-wave terms,which results in the two terms in the second round brackets in Eq.(2),while the two Lindblad terms in the first round brackets in Eq.(2)describe the normal tunneling process. We finally mention that,for the two types of process, the energy conservation is manifested differently in the rate expressions,i.e.,by the different centers of the Lorentzian spectral functionsδ(ω ??M),see also illustration in Fig.1.

    3. Transient current and its decomposition

    The MME can be straightforwardly solved using the number-state basis{|0〉,|1〉}of the complex fermion (thefparticle). Let us denote the solution of the density matrix asρ=p0|0〉〈0|+p1|1〉〈1|. As an example,the left-lead current,

    3.1. Unoccupied initial condition

    Let us consider firstly the time-dependent solution under the initial condition of empty occupation of thefparticle state(nf=0),which reads

    Here, the three transport coefficients (and the associated currents)correspond to,respectively,the local AR at the left lead,the crossed AR between the two leads,and the electron transmission from the left to the right lead. More explicitly,substituting Eqs. (3) and (4) into Eq. (9), we identify the transport coefficients as

    3.2. Occupied initial condition

    In this subsection we briefly show the results for the initial condition of occupied state of thefparticle(nf=1). The time-dependent solution of the master equation reads

    Fig. 2. Schematic diagram for transient contribution to the branch circuit currentIL, owing to the decay of the initial-occupation-channels. (a) The process contributing to I(2)L (B)given by Eq.(15)for the unoccupied initial condition,while I(1)L (B)given by Eq.(12)is not relevant to the branch circuit current. (b) The process contributing to I(2)L (B) given by Eq. (17) for the occupied initial condition, while I(1)L (B) is similarly not relevant to the branch circuit current.

    4. Cross correlation of Andreev current fluctuations

    As pointed out at the beginning of the previous section,within the formulation of rate equation(under the Markovian approximation),the total current,eitherILorIR,is not time dependent even in the transient process of the occupation probabilityp1(t).However,as analyzed later in detail,we know that the individual components of the current are time dependent and can show transient behaviors. Therefore, we may consider the cross correlation between the currentsILandIR, by deducting, from the total currentsILandIR, the components of the electron-electron and hole-hole transmission between

    Finally,we obtain the current-fluctuation-correlator as

    Here, we introduced the cross-correlation-factorCLR, which characterizes the essential correlation property,by noting that the time dependent behavior is relatively simple,and it simply leads to a Lorentzian lineshape~(ω2+4Γ2)-1in frequency domain.The most important point we would like to emphasize here is thatCLR/=0,even when the Majorana coupling energy?M→0.

    We notice that in Refs.[16-18]it was found that the cross correlation between the total currents in the different leads vanishes at the limit?M→0. Here, despite using the totaloccupation-probability-description based master equation approach,we have successfully isolated the component currents(i.e., the branch circuit currents) from the total ones, and found nonzero cross correlation even at the limit?M→0.In the occupation-number-state representation, the picture of nonzero cross correlation appears clear. Owing to the nonlocal nature of the MZMs associatedfquasiparticle,it is natural to expect that the disturbance at one side should influence the electron-hole excitation at the other side, leading thus to the nonlocal crossed AR process. In certain sense,the nonlocalfparticle is quite similar as the single-level electron in a quantum dot which,obviously,can correlate the currents in the two leads of transport. In the Majorana case, the left-side sum of the crossed AR and local AR currents, i.e., the branch circuit current considered in this work,is similarly correlated with the branch circuit current on the right side,through the nonlocalfparticle.

    This current,generated by the inverse AR process,is negative.We then haveδIL<0 and arrive at the negative correlation as shown in Fig.3(a),by noting that the steady state current〈IL〉ˉρis positive.

    Fig.3. Cross correlation factor CLR as a function of the equally biased voltage considered in Ref.[17],i.e.,μL=μR=eV with respect to the chemical potential of the superconductor(?F =0). In(a)and(b),results for the ideal(?M =0) and nonideal (?M /=0) Majorana cases are shown, together with the symmetric(ΓL=ΓR)and asymmetric(ΓL/=ΓR)coupling to the leads.

    Fig.4. Cross correlation factor CLR as a function of the anti-symmetrically biased voltage,i.e., μL =-μR =eV with respect to the chemical potential of the superconductor.Other parametric explanation is the same as in Fig.3.

    For the bias voltage dependence, the reason of the symmetric feature is relatively simple. That is, changing the bias voltage from positive to negative, the Andreev process is reversed. Then,the directions of both currents are reversed and the correlation of the current fluctuations keeps the sign unchanged. In Fig.3,the effect of asymmetry of coupling to the leads is also shown, for both the ideal (?M=0) and nonideal(?M/=0)cases.

    5. Summary and discussion

    Instead of the cross correlation between the total lead currents in a two-lead (three-terminal) Majorana device, we have analyzed the cross correlation of the Andreev-processassociated branch circuit currents. Despite applying a master equation approach,which deals with the total occupation probability of the MZMs associatedfquasiparticle,we have been able to successfully extract out the component currents from the total ones and computed the cross correlation by means of the quantum jump technique. Importantly, we found that the cross correlation does not vanish even when the Majorana coupling energy?M→0,owing to the nonlocality nature of the MZMs. For different setup of bias voltage,we also found intriguing results of both negative and positive correlations and carried out simple physical understanding.

    The proposed cross correlation can be measured as the usual power spectrum of current fluctuations, e.g., the noise spectrum calculated in Refs.[16-18],with the only difference by replacing the currents in the transport leads with the branch circuit currents flowing back from the superconductor to the individual leads,as schematically shown in Fig.1. The branch circuit currents are accessible,making thus the proposed cross correlation measurable in experiment. Combining with the evidence of the zero-bias-peak of conductance, the nonlocal cross correlation predicted in this work can help to confirm the nonlocal MZMs.

    At present stage,the urgent challenge for Majorana confirmation is to distinguish the MZMs from the accidental nearzero-energy Andreev bound states.It seems that this challenge largely exists in the single-lead local conductance measurement,since both states would result in similar zero-bias-peak feature in the tunneling conductance. The difficulty seems improved in the two-lead cross correlation measurement. The key conclusion of this work is the nonvanishing cross correlation at the limit?M→0,i.e.,with no spatial overlap between the two Majorana modes. We emphasize that the result will be drastically different for the case of Andreev bound states.This can be understood by applying the simplest model for the realization of a pair of Andreev bound states, following Ref.[43],where four MZMs are considered to form two regular fermions(f1andf2)at the two ends of a quantum wire.It is clear that the sub-gap state transport cannot support any cross correlation in the two-lead measurement,owing to the absence of any transmission channel between the left and right sides because of no coupling between thef1andf2quasiparticles(Andreev bound states). For the case of Andreev bound states,there exists only local Andreev process associated with, respectively,the localf1andf2quasiparticles,which makes the Andreev-bound-state difficult to be ruled out in the single-lead local measurement for Majoarana confirmation. However, in the two-lead transport measurement, both cases have qualitatively different results,say,zero or nonzero cross correlation.

    Finally,from the result of Eq.(25),we see that the behavior of time dependence is relatively simple. The exponentially decaying function in time domain does not involve any quantum coherent oscillations. In practice, in order to be able to measure such type of quantum oscillations(e.g.,the Rabi oscillations of a qubit),the measurement speed should be faster than the quantum oscillations, which sets thus a requirement for the bandwidth of the measurement circuit.However,in our present case,the absence of quantum oscillations would relax the requirement for fast speed of measurement.Actually,from Eq.(25),we know that the transient process is slow,since the sub-gap state transport requires (Γ,eV)?Δ, i.e., the tunnel coupling rate and bias voltage much smaller than the proximity effect induced superconducting gap. This slow transient process will make its measurement not more difficult than the measurements of current correlation functions in other contexts.

    Acknowledgements

    This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303304) and the National Natural Science Foundation of China (Grant Nos. 11675016, 11974011, and 61905174).

    猜你喜歡
    新奇
    新奇的包
    新奇建筑欣賞
    快樂語文(2019年9期)2019-06-22 10:00:44
    新奇體驗(yàn)
    海峽姐妹(2019年4期)2019-06-18 10:38:50
    新奇博物館
    新奇玩意兒
    新奇視界
    新奇視界
    新奇視界
    新奇視界
    新奇視界
    97精品久久久久久久久久精品| 在线观看国产h片| av不卡在线播放| 欧美日韩亚洲高清精品| 国产精品久久久av美女十八| 日本欧美视频一区| 精品国产一区二区三区四区第35| 肉色欧美久久久久久久蜜桃| 在线观看三级黄色| 99久久精品国产国产毛片| 久久精品国产a三级三级三级| 亚洲久久久国产精品| 一级,二级,三级黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利影视在线免费观看| 夜夜爽夜夜爽视频| 久久久亚洲精品成人影院| 国产亚洲欧美精品永久| 最近的中文字幕免费完整| 亚洲第一av免费看| 亚洲av欧美aⅴ国产| av又黄又爽大尺度在线免费看| 嫩草影院入口| 国产精品麻豆人妻色哟哟久久| 99视频精品全部免费 在线| 精品国产一区二区久久| 国语对白做爰xxxⅹ性视频网站| 天天躁夜夜躁狠狠躁躁| 老司机影院毛片| 精品国产一区二区久久| 一本大道久久a久久精品| 亚洲少妇的诱惑av| 大话2 男鬼变身卡| 丰满乱子伦码专区| 热re99久久精品国产66热6| 免费看不卡的av| 亚洲激情五月婷婷啪啪| 久久影院123| 最近2019中文字幕mv第一页| 国产成人一区二区在线| 少妇被粗大猛烈的视频| 国产成人a∨麻豆精品| 熟妇人妻不卡中文字幕| 国产有黄有色有爽视频| 少妇的逼好多水| 亚洲欧美中文字幕日韩二区| 国产精品国产av在线观看| 男女啪啪激烈高潮av片| 久久综合国产亚洲精品| 成年av动漫网址| www.av在线官网国产| 日本黄大片高清| 天天操日日干夜夜撸| 色婷婷久久久亚洲欧美| 国产亚洲欧美精品永久| 天堂8中文在线网| 亚洲四区av| 免费黄色在线免费观看| 亚洲图色成人| 亚洲欧美成人精品一区二区| 国产精品一区二区在线观看99| 亚洲精品自拍成人| 日日撸夜夜添| 9色porny在线观看| 久久国内精品自在自线图片| 国产精品久久久久久精品古装| 天天影视国产精品| 久久久久国产网址| 91午夜精品亚洲一区二区三区| 搡女人真爽免费视频火全软件| 欧美国产精品一级二级三级| 丝袜美足系列| 黄网站色视频无遮挡免费观看| 久久久a久久爽久久v久久| 99国产精品免费福利视频| 日韩一本色道免费dvd| av片东京热男人的天堂| 黑人高潮一二区| 欧美另类一区| 美女福利国产在线| 欧美xxxx性猛交bbbb| 久久精品国产a三级三级三级| 久久这里有精品视频免费| 欧美最新免费一区二区三区| 久久精品人人爽人人爽视色| 国产精品熟女久久久久浪| 国产 精品1| 国产成人欧美| 另类精品久久| 中文字幕亚洲精品专区| 99视频精品全部免费 在线| 我的女老师完整版在线观看| 热99国产精品久久久久久7| 欧美97在线视频| 精品人妻偷拍中文字幕| 黄色怎么调成土黄色| 中文字幕免费在线视频6| 亚洲人成77777在线视频| 亚洲伊人久久精品综合| 午夜激情av网站| 久久毛片免费看一区二区三区| 日韩人妻精品一区2区三区| av天堂久久9| 亚洲精品456在线播放app| 久久久国产精品麻豆| 国产一区二区在线观看av| 高清欧美精品videossex| 国产淫语在线视频| 成人黄色视频免费在线看| 国精品久久久久久国模美| 亚洲精品一区蜜桃| 母亲3免费完整高清在线观看 | 人人妻人人澡人人看| 成人无遮挡网站| 国产xxxxx性猛交| 91午夜精品亚洲一区二区三区| 9色porny在线观看| 日日啪夜夜爽| 欧美精品人与动牲交sv欧美| av在线播放精品| av黄色大香蕉| 这个男人来自地球电影免费观看 | 免费av中文字幕在线| 三级国产精品片| 欧美激情国产日韩精品一区| 国产成人免费观看mmmm| 人妻系列 视频| 久久久久精品人妻al黑| 亚洲国产欧美在线一区| 如何舔出高潮| 99视频精品全部免费 在线| 国产成人精品婷婷| 欧美 日韩 精品 国产| 亚洲成人av在线免费| 午夜激情久久久久久久| 久久久久久久国产电影| 母亲3免费完整高清在线观看 | 国语对白做爰xxxⅹ性视频网站| 青春草视频在线免费观看| 亚洲精品久久久久久婷婷小说| 久久精品久久精品一区二区三区| 日韩视频在线欧美| av福利片在线| 国产片特级美女逼逼视频| 日韩成人伦理影院| 少妇的丰满在线观看| 最近2019中文字幕mv第一页| 大香蕉久久网| 一边亲一边摸免费视频| 九九爱精品视频在线观看| 午夜福利在线观看免费完整高清在| 亚洲欧洲日产国产| av线在线观看网站| 国产精品国产三级专区第一集| 久久韩国三级中文字幕| 午夜免费男女啪啪视频观看| 国产成人免费观看mmmm| 天堂俺去俺来也www色官网| 亚洲经典国产精华液单| 国产亚洲最大av| 国产爽快片一区二区三区| 你懂的网址亚洲精品在线观看| 国国产精品蜜臀av免费| 三上悠亚av全集在线观看| 成年美女黄网站色视频大全免费| 亚洲色图综合在线观看| 久久久精品免费免费高清| 欧美人与性动交α欧美精品济南到 | 国产国拍精品亚洲av在线观看| 少妇熟女欧美另类| 欧美xxⅹ黑人| 免费观看无遮挡的男女| 午夜免费男女啪啪视频观看| 免费播放大片免费观看视频在线观看| 99热6这里只有精品| 女人久久www免费人成看片| 女人精品久久久久毛片| av国产久精品久网站免费入址| 久久久久久人人人人人| 亚洲第一av免费看| 久久精品国产自在天天线| 日韩免费高清中文字幕av| 高清毛片免费看| 亚洲性久久影院| 久久久久久人人人人人| 国产成人精品一,二区| 精品国产一区二区三区久久久樱花| 日日撸夜夜添| 2021少妇久久久久久久久久久| 精品视频人人做人人爽| 美女大奶头黄色视频| 男女高潮啪啪啪动态图| 99热这里只有是精品在线观看| 91精品三级在线观看| 日本av免费视频播放| 日韩成人av中文字幕在线观看| 亚洲图色成人| 欧美精品一区二区免费开放| 亚洲综合精品二区| 黄色一级大片看看| 亚洲av电影在线观看一区二区三区| 国产乱人偷精品视频| 国产黄色免费在线视频| 好男人视频免费观看在线| 少妇被粗大的猛进出69影院 | 黑人猛操日本美女一级片| 久久久久精品性色| 国产亚洲av片在线观看秒播厂| 日本-黄色视频高清免费观看| 日韩av免费高清视频| 建设人人有责人人尽责人人享有的| 久久国产精品大桥未久av| 亚洲精品国产色婷婷电影| 亚洲美女搞黄在线观看| 成人手机av| 我要看黄色一级片免费的| 18禁国产床啪视频网站| 国产亚洲欧美精品永久| 狠狠精品人妻久久久久久综合| 男的添女的下面高潮视频| 少妇猛男粗大的猛烈进出视频| 秋霞伦理黄片| 亚洲av成人精品一二三区| 少妇人妻精品综合一区二区| 最近最新中文字幕大全免费视频 | 中文字幕另类日韩欧美亚洲嫩草| 高清不卡的av网站| 色5月婷婷丁香| 中国三级夫妇交换| 九九爱精品视频在线观看| 日韩av在线免费看完整版不卡| 好男人视频免费观看在线| 18禁国产床啪视频网站| 日韩大片免费观看网站| 亚洲图色成人| 亚洲天堂av无毛| 国产精品久久久久久精品电影小说| 亚洲中文av在线| 91久久精品国产一区二区三区| 97在线人人人人妻| 又大又黄又爽视频免费| 婷婷成人精品国产| av网站免费在线观看视频| 好男人视频免费观看在线| 欧美激情 高清一区二区三区| 日韩三级伦理在线观看| 国产爽快片一区二区三区| 18在线观看网站| av电影中文网址| 精品人妻熟女毛片av久久网站| 亚洲内射少妇av| 亚洲国产精品国产精品| 美女主播在线视频| 在线观看www视频免费| 国产成人精品无人区| 99久久综合免费| 亚洲精华国产精华液的使用体验| 国产精品免费大片| 精品亚洲成a人片在线观看| 欧美日韩视频精品一区| 黄色视频在线播放观看不卡| 最近最新中文字幕大全免费视频 | 国产永久视频网站| 亚洲精品日本国产第一区| 90打野战视频偷拍视频| 视频中文字幕在线观看| 日韩在线高清观看一区二区三区| 亚洲国产欧美在线一区| 丝袜喷水一区| 一级毛片 在线播放| 国产精品蜜桃在线观看| 亚洲av中文av极速乱| 国内精品宾馆在线| 欧美日韩一区二区视频在线观看视频在线| 王馨瑶露胸无遮挡在线观看| videosex国产| 观看美女的网站| 成人午夜精彩视频在线观看| 亚洲内射少妇av| 乱码一卡2卡4卡精品| 欧美bdsm另类| 国产精品蜜桃在线观看| 免费观看a级毛片全部| 久久久久国产精品人妻一区二区| av网站免费在线观看视频| 亚洲综合精品二区| videosex国产| 美女福利国产在线| 伦理电影大哥的女人| 美女xxoo啪啪120秒动态图| 成年动漫av网址| 日韩大片免费观看网站| 国产亚洲精品第一综合不卡 | 美女中出高潮动态图| 日本wwww免费看| 999精品在线视频| 视频在线观看一区二区三区| 51国产日韩欧美| 肉色欧美久久久久久久蜜桃| 丰满少妇做爰视频| 欧美日韩综合久久久久久| 亚洲欧美日韩卡通动漫| 国产在线免费精品| 亚洲,一卡二卡三卡| 深夜精品福利| 人人妻人人添人人爽欧美一区卜| 欧美+日韩+精品| 国产色婷婷99| 亚洲成国产人片在线观看| 午夜精品国产一区二区电影| 最黄视频免费看| 妹子高潮喷水视频| 国产 一区精品| 麻豆精品久久久久久蜜桃| 国产女主播在线喷水免费视频网站| 一区二区三区乱码不卡18| 精品酒店卫生间| 亚洲精品久久午夜乱码| 国产一区二区三区综合在线观看 | 最近中文字幕2019免费版| 免费观看无遮挡的男女| 性高湖久久久久久久久免费观看| 91精品国产国语对白视频| 亚洲精品美女久久久久99蜜臀 | 国产av精品麻豆| 国产精品久久久久久av不卡| 国产成人精品在线电影| 精品国产国语对白av| 女性生殖器流出的白浆| 国产精品久久久久久av不卡| 免费高清在线观看日韩| 一区二区三区乱码不卡18| 国产成人精品在线电影| 亚洲国产最新在线播放| 国产精品久久久久久久电影| 热re99久久国产66热| 捣出白浆h1v1| 亚洲色图综合在线观看| 五月开心婷婷网| 91在线精品国自产拍蜜月| 高清视频免费观看一区二区| 日本av手机在线免费观看| 人妻一区二区av| 成人漫画全彩无遮挡| 国产精品人妻久久久久久| 国产亚洲午夜精品一区二区久久| 少妇被粗大的猛进出69影院 | 国产亚洲av片在线观看秒播厂| 亚洲美女视频黄频| 精品亚洲成a人片在线观看| 国产一区二区在线观看av| 亚洲美女搞黄在线观看| 亚洲国产精品专区欧美| 一个人免费看片子| 大片电影免费在线观看免费| 日韩欧美一区视频在线观看| 久久ye,这里只有精品| 久久毛片免费看一区二区三区| 欧美国产精品一级二级三级| kizo精华| 日韩成人av中文字幕在线观看| 欧美+日韩+精品| 免费大片18禁| 亚洲久久久国产精品| 观看美女的网站| 91精品三级在线观看| 黄色怎么调成土黄色| 亚洲精品美女久久久久99蜜臀 | 高清在线视频一区二区三区| kizo精华| 国产深夜福利视频在线观看| 岛国毛片在线播放| 一级a做视频免费观看| 成年av动漫网址| 亚洲一区二区三区欧美精品| 咕卡用的链子| 久久精品国产亚洲av涩爱| 九色成人免费人妻av| 久久久精品区二区三区| 国产一区二区激情短视频 | 日韩一区二区视频免费看| 日韩伦理黄色片| 日韩免费高清中文字幕av| 成人午夜精彩视频在线观看| 免费播放大片免费观看视频在线观看| 国产老妇伦熟女老妇高清| 亚洲精华国产精华液的使用体验| 精品一区二区三区四区五区乱码 | 亚洲人与动物交配视频| 亚洲精品日韩在线中文字幕| 国产精品久久久久久精品古装| 日本色播在线视频| 亚洲av在线观看美女高潮| 精品久久久久久电影网| 少妇精品久久久久久久| 最近最新中文字幕免费大全7| 一区在线观看完整版| 久久青草综合色| 啦啦啦视频在线资源免费观看| 美国免费a级毛片| 自线自在国产av| 亚洲,欧美,日韩| 国产熟女午夜一区二区三区| 中国国产av一级| 女人被躁到高潮嗷嗷叫费观| 赤兔流量卡办理| 免费人妻精品一区二区三区视频| 人人妻人人添人人爽欧美一区卜| 国产69精品久久久久777片| 国产一区二区三区综合在线观看 | a级片在线免费高清观看视频| 国产一区二区三区av在线| 免费观看无遮挡的男女| 日韩精品免费视频一区二区三区 | 天天躁夜夜躁狠狠躁躁| 国产一区二区在线观看av| 亚洲精品一区蜜桃| 色吧在线观看| 男人添女人高潮全过程视频| 丰满乱子伦码专区| 国产成人一区二区在线| 免费观看无遮挡的男女| 久久久久久久久久久免费av| 久久国内精品自在自线图片| 欧美精品一区二区大全| 亚洲欧美一区二区三区国产| 91国产中文字幕| 欧美亚洲日本最大视频资源| 亚洲欧美成人综合另类久久久| 亚洲av在线观看美女高潮| 亚洲国产精品专区欧美| 午夜福利视频在线观看免费| 精品午夜福利在线看| 成年女人在线观看亚洲视频| 欧美少妇被猛烈插入视频| 免费看不卡的av| 国产精品女同一区二区软件| 黄色一级大片看看| 人妻人人澡人人爽人人| 高清黄色对白视频在线免费看| 下体分泌物呈黄色| 亚洲精品久久久久久婷婷小说| 国产亚洲一区二区精品| 精品国产乱码久久久久久小说| 欧美成人午夜免费资源| 又粗又硬又长又爽又黄的视频| 伊人久久国产一区二区| 在线观看三级黄色| 热99久久久久精品小说推荐| 校园人妻丝袜中文字幕| 免费av不卡在线播放| 一本大道久久a久久精品| 久久99一区二区三区| 亚洲欧美一区二区三区国产| 免费观看a级毛片全部| 自线自在国产av| 亚洲成国产人片在线观看| 男人添女人高潮全过程视频| 久久午夜综合久久蜜桃| 99国产精品免费福利视频| 日日摸夜夜添夜夜爱| 国产男女超爽视频在线观看| www日本在线高清视频| 日韩一本色道免费dvd| 免费看av在线观看网站| 日韩不卡一区二区三区视频在线| 丝袜喷水一区| 欧美国产精品一级二级三级| 亚洲久久久国产精品| 卡戴珊不雅视频在线播放| 99精国产麻豆久久婷婷| 国产精品久久久久久精品电影小说| 1024视频免费在线观看| 精品99又大又爽又粗少妇毛片| 99热网站在线观看| h视频一区二区三区| 久久影院123| 久久久久国产网址| 亚洲欧美清纯卡通| 一级,二级,三级黄色视频| 欧美3d第一页| www.色视频.com| 国产又爽黄色视频| 青春草亚洲视频在线观看| 成年人免费黄色播放视频| 9191精品国产免费久久| 国产女主播在线喷水免费视频网站| 天堂俺去俺来也www色官网| 久久精品国产自在天天线| 涩涩av久久男人的天堂| 国产亚洲最大av| 日韩,欧美,国产一区二区三区| av国产久精品久网站免费入址| 亚洲av日韩在线播放| 人妻系列 视频| 国产麻豆69| 国产xxxxx性猛交| 制服人妻中文乱码| 国产白丝娇喘喷水9色精品| 欧美人与性动交α欧美软件 | 欧美成人精品欧美一级黄| 色婷婷av一区二区三区视频| 在线观看免费视频网站a站| 国产精品女同一区二区软件| 九九在线视频观看精品| 男人爽女人下面视频在线观看| 久久99精品国语久久久| 老熟女久久久| 午夜久久久在线观看| 亚洲成av片中文字幕在线观看 | 热99国产精品久久久久久7| 婷婷色麻豆天堂久久| 午夜精品国产一区二区电影| 五月玫瑰六月丁香| 亚洲国产精品999| 美女内射精品一级片tv| 1024视频免费在线观看| 狠狠精品人妻久久久久久综合| 超色免费av| 好男人视频免费观看在线| 久久人人爽av亚洲精品天堂| 国产又爽黄色视频| 精品一区二区三区四区五区乱码 | 久久久精品94久久精品| 熟妇人妻不卡中文字幕| 亚洲av日韩在线播放| 久久久精品94久久精品| 丝瓜视频免费看黄片| 超色免费av| 久久国内精品自在自线图片| 免费看不卡的av| 大码成人一级视频| 久久久久久人妻| 观看av在线不卡| 亚洲人与动物交配视频| 欧美最新免费一区二区三区| 久久99热这里只频精品6学生| 亚洲精品一二三| 伦理电影免费视频| 秋霞伦理黄片| 午夜久久久在线观看| 免费人成在线观看视频色| 久久久久视频综合| 亚洲国产毛片av蜜桃av| 亚洲av.av天堂| 高清毛片免费看| 精品一区二区免费观看| 男人舔女人的私密视频| 26uuu在线亚洲综合色| 18禁观看日本| 国产精品免费大片| 国产一区二区激情短视频 | 成年女人在线观看亚洲视频| 国产1区2区3区精品| 国产女主播在线喷水免费视频网站| 中文字幕制服av| 大片电影免费在线观看免费| 久久久久国产网址| 国产成人aa在线观看| 欧美bdsm另类| 国产精品国产av在线观看| 精品卡一卡二卡四卡免费| 亚洲精品视频女| 亚洲国产精品国产精品| 久久午夜综合久久蜜桃| 精品熟女少妇av免费看| 婷婷成人精品国产| 国产男女内射视频| 看十八女毛片水多多多| 一二三四在线观看免费中文在 | 午夜精品国产一区二区电影| 97在线视频观看| 国产高清不卡午夜福利| 国产精品国产三级国产专区5o| 七月丁香在线播放| 午夜福利,免费看| 欧美 亚洲 国产 日韩一| 制服诱惑二区| 亚洲三级黄色毛片| 一二三四中文在线观看免费高清| 母亲3免费完整高清在线观看 | 热99久久久久精品小说推荐| av电影中文网址| 如日韩欧美国产精品一区二区三区| 亚洲国产毛片av蜜桃av| 日日摸夜夜添夜夜爱| 这个男人来自地球电影免费观看 | 久久久久久久国产电影| 多毛熟女@视频| 亚洲人成77777在线视频| 欧美成人午夜精品| 精品午夜福利在线看| 成年人免费黄色播放视频| 久久久久国产精品人妻一区二区| 日本vs欧美在线观看视频| 欧美激情国产日韩精品一区| 国产精品一区www在线观看| 亚洲综合色惰| 国产成人一区二区在线| 下体分泌物呈黄色| 亚洲av.av天堂| 久久鲁丝午夜福利片| 水蜜桃什么品种好| 亚洲综合色惰| 国产一区二区三区综合在线观看 | 少妇人妻 视频| 色5月婷婷丁香| 五月天丁香电影| 菩萨蛮人人尽说江南好唐韦庄| 中国美白少妇内射xxxbb| 日本欧美国产在线视频| 日韩伦理黄色片| 18+在线观看网站| 久久国内精品自在自线图片| 成人国产麻豆网|