• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations

    2022-01-23 06:37:22JingFenZhao趙敬芬HuiWang王輝ZaiFaYang楊在發(fā)HuiGao高慧HongXiaBu歩紅霞andXiaoJuanYuan袁曉娟
    Chinese Physics B 2022年1期
    關(guān)鍵詞:王輝紅霞

    Jing-Fen Zhao(趙敬芬), Hui Wang(王輝), Zai-Fa Yang(楊在發(fā)), Hui Gao(高慧),Hong-Xia Bu(歩紅霞), and Xiao-Juan Yuan(袁曉娟)

    Keywords: silicene nanoribbons,spin filtering effect,negative differential resistance

    1. Introduction

    Silicene, as a hexagonal honeycomb monolayer nanomaterial, has been successfully synthesized on Ag(111),ZrB2(0001),and Ir(111)substrates.[1-3]Unlike graphene,silicene has a buckled structure rather than a planar one.[4]The altitude difference between two adjacent Si atoms is calculated to be about 0.5 ?A (low-buckled geometry) due to mixed hybridization of sp2and sp3instead of the entire sp2hybridization in planar graphene.[5]In the face of low-buckled structure, silicene has not only the similar outstanding electronic characteristics to graphene but also some more superior features, for instance, a stronger spin-orbit coupling,[6]a better bandgap adjustability,[7]the quantum spin hall effect,[8]an easier valley polarization,[9]etc. Specifically, the successful synthesis of silicene nanoribbons (SiNRs) offers a new opportunity towards many potential applications, for example,field-effect transistors and spintronics devices.[10]In addition,silicene owns an distinct natural advantage over graphene,that is, its superior compatibility with today’s silicon-based semiconductors.[11]

    Like graphene and graphene nanoribbons (GNRs), silicene and silicene nanoribbons(SiNRs)are also attracting increasing interest.[12-18]The silicene and SiNRs share a similar electronic structure to that of graphene and GNRs.[19-23]Therefore, two types of silicene nanoribbons can also be formed: armchair-edged silicene nanoribbons (ASiNRs) and zigzag-edged silicene nanoribbons (ZSiNRs). The two edge states of ZSiNRs are also anti-parallelly(AP)coupled,and the magnetic half-metal state can be achieved by breaking the inversion symmetry through applying a transverse electric field field. Moreover, the ZSiNRs are found to involve additional compelling properties, such as the electric-field-controlled gaps, symmetry-dependent transport properties, and highZTvalues of thermoelectric performance.[24-26]The most attractive signature of silicone and SiNRs is the potential gapless connection to the traditional silicone semiconductor based microelectronics and spintronics. To realize the magnetic modulation and spin polarized transport in ZSiNRs, extensive attention is paid to the edge modifications and substitutions in ZSiNRs.[27-33]If the silicon atoms on the edges are passivated in different methods,great changes occur in band structure,magnetic structure,edge states,and energy difference between the antiferromagnetic (AFM) and ferromagnetic (FM)states can be observed in the ZSiNRs.[27]Zhenget al.have presented a systematic study of the geometric, electronic and magnetic properties of N-or B-doped SiNRs,and their results showed that the substitution of N or B for Si is preferentially at the ribbon edge sites.[30]In this study,we theoretically design a set of boron (B)-doped ZSiNRs junctions as shown in Fig. 1 and concentrate on the influence of chemical doping combined with different edge hydrogenations. Our research shows that the electric current polarization in symmetric Bdoped ZSiNRs can reach 58%at a certain bias voltage. Additionally,the NDR behavior is achieved in asymmetric sp2-sp3edged ZSiNRs. However,the symmetric dihydrogenation exhibits spin degeneracy.These results lead to another method to control spin-polarized current and to design the silicene-based spintronic devices.

    2. Theoretical models and calculation methods

    The geometric structures of B-doped ZSiNRs with ribbon width that 5 silicon dimer lines cross from top and side view are shown in Fig.1. Generally,the bare edge of ZSiNRs is exceedingly reactive because of the hanging bonds of border Si atoms and undergoes rebuilding to reduce the total energy. Edge modification can enhance the property of ZSiNRs and thus enlarge ZSiNRs’ applications in the field of electronic devices.[34]In this study,H atoms are adopted to chemically decorate the edge state,and three different junctions are constructed,which are called H15ZSiNR-H1,H25ZSiNR-H1,and H25ZSiNR-H2, respectively. The H1and H2denote that the silicon atoms on the edges are terminated by one or two hydrogen atoms. Then=5 is the number of silicon dimer lines across the ribbon width. For the memorization purposes,these three junctions are separately denoted as M1, M2, and M3. The junctions can be divided into three blocks: the semiinfinite left electrode labeled by translucence pink shadow,the intermediate scattering section,and the semi-infinite right electrode labeled by translucence olivine shadow. Each electrode is denoted by two repeated unit cells along the transport direction, and the scattering section includes nine unit cells.Generally speaking,the magnetism of the two(left and right)electrodes can be adjusted to spin parallel (P) or antiparallel(AP) conditions via regulating the external magnetic field of electrodes.[35,36]Thus in this work we show a detailed research of the spin transport properties by boron-doped SiNR with different edge hydrogenations.

    Fig.1. Structural models for 5-ZSiNR two-probe systems from top(left)and cross section view(right). Purple(yellow)circles denote Si(H)atoms, and green circles represent that Si atom is substituted by B atom.

    The structural optimization and the spin transport properties are performed by theab initiocode package Atomistix ToolKit (ATK), which is on the basis of spin-dependent density functional theory (DFT) combined with nonequilibrium Green’s function (NEGF).[37-40]The mesh cutoff is set to be 110 Ry and thek-sampling is 1×1×100. The exchange and correlation potential adopts the Perdew-Zunger parametrization of the local spin density approximation (LSDA). A vacuum area of 10 ?A is used for forbidding the interactions between periodic images. The structural optimization is implemented by using the quasi-Newton method till the absolute value of force acting on each atom is<0.02 eV/?A. Under a certain bias (Vbias), the spin-related current through the junctions can be performed by the Landauer-B¨uttiker formula:[41]

    wherehdenotes the Planck constant,eis the elementary charge,σrepresents the spin index which areσ=↑(spin-up)andσ=↓(spin-down).μL=EF+eV/2 andμR=EF-eV/2 are the electrochemical potentials respectively corresponding to the left and right electrodes. The chemical potential of left(right) electrode will shift down (up) byeV/2 when the positive bias voltage is applied to the left electrode. The energy range [μL,μR] devoting to the total integral current is named the bias window, andTσis the spin-dependent transmission,which can be calculated from

    whereGRσandGAσrepresent the retarded and advanced Green function,ΓLσandΓRσdenote the spin-dependent coupling matrixes resulting from the coupling of the central scattering region to the left and right electrodes.

    3. Calculation results and discussion

    To further study, we calculate the spin-resolved currentvoltage(I-V)of M1-M3 in a bias range from-2.0 V to 2.0 V as given in Figs. 2(a)-2(c). We mainly consider the current quality under the P magnetism condition, that is to say, the two electrodes with identical spin orientation (the left electrode is spin polarized upward and the right one is also upward). As can be seen from Fig. 2(a), the tunneling current passes through the device is spin-polarized. This phenomenon is desired for spin filter or spin valve. The spin-down current (I↓) is greater than spin-up one (I↑) within a bias scope from-0.8 V to 0.8 V.We can see clearly that theI↓increases rapidly with the increase ofVbias,whereas theI↑maintains extremely small even on the verge of zero over a wide range of bias voltage. This result clearly indicates that the suggested junction under the P magnetism can display a spin filter effect in a low bias range. To analyze this phenomenon as shown in Fig. 3, the relevant spin filtering efficiency (SFE) is obtained from the equation SFE=[(I↓-I↑)/(I↓+I↑)]×100%.For zero bias, the SFE is calculated through this formula:SFE=[(T↓(EF)-T↑(EF)]/[(T↓(EF)+T↑(EF)]×100%, whereT↑(EF)andT↓(EF)denote the transmission coefficients of different spin states at the Fermi level(EF),respectively. We can find that the SFE at zero bias voltage can reach 32%and a high spin filter status can be maintained in the scope of positive and negative bias which is on the verge of 40%. Particularly, the SFE can be up to 58.3%atVbias=-0.5 V.But the SFE shows a downward trend when the bias is beyond this region. Yet for the M3 system as illustrated in Fig. 2(c), the currents (I↓andI↑) are both basically prohibited in low bias range from-1.0 V to 1.0 V.While it is allowed to pass through in the high bias range for both up current and down current. These results show that the spin-polarization at M3 is suppressed and therefore exhibits nonmagnetic phenomenon. In the case of M2(in Fig.2(b)),the current in spin-up state grows rapidly in the low bias region and then it falls down with the bias increasing.This phenomenon indicates the appearance of negative differential resistance(NDR)effect which has very important applications in the field of electronic technology.

    Fig. 2. Spin-dependent current for models M1-M3 under P spin configuration at various biases,with I↑referring to blue block and I↓representing red block.

    To explain the spin filter phenomenon,the band structure and the transmission spectra for junction M1 atVbias=0.2 V are calculated and presented in Fig.4,which is a most intuitive understanding of electronic structures and quantum transport behaviors for an electronic device. As can be seen from the band structure diagram of M1 (Fig. 4), the bands of spin-up state and spin-down state atEFare split. Further study shows that when a positive bias of 0.2 V is applied,the chemical potentials move downward along the left electrode and upward along the right electrode, within the bias window, theπ*(π)subband of left electrode overlaps with theπ*(π)subband of right electrode for spin-up(spin-down)state. From previously published study, it is well recognized that the transport characteristics of ZGNRs are strongly dependent on symmetry and the presence of a mirror planeσis of great concern.[42]TheI-Vproperties of ZGNRs are quite different between the cases with and without theσmirror plane.That is to say,if the width is even,the ribbon exists a symmetrical midplaneσ,whereas if width contains the odd number of silicon dimer lines, such a midplane is absent. Unlike the ZGNRs,the ZSiNRs have no definite parity relative to theσplane due to the wrinkled structure,but hasC2symmetry relative to a twofold axis when the width contains the even number of silicon dimer lines. Thus the pristine ZSiNR also shows a symmetry-dependent transport property although it has a buckled structure, where oddand even-width zigzag ribbons are found to have completely differentI-Vcharacteristics despite the similarity of their band structures. For example, bipolar spin-filter behavior is observed in even-width devices, while in the odd ones a linearI-Vcurve characteristic limits their applications in spintronic devices.[25]In this case, since the width is odd (5-ZSiNRs)thus there is noC2symmetry relative to the center axis. Thus itsπband andπ*band have no definite parity under theC2operation. Without the limitation of parity, the electronsno matter whether their spins are up or down should both traverse from the left electrode to the right electrode, finally generate a strong transmission coefficients. Paradoxically, we can see from the middle row of Fig.4 that there exists a wide transmission coefficient for spin- down electrons in the bias window.However, for the spin-up ones, as only a small transmission peak exists above theEFin the bias window,the transmission coefficient is relatively small. Consequently, the large spindown current appears.

    Fig. 4. Band structures and transmission spectra for junction M1 at Vbias =0.2 V, with area between two black dotted lines denoting bias window, and blue line and red lines representing spin-up and spin-down transmission spectra,respectively.

    In order to better analyze the above spin-resolved transport property, we show the spatial-resolved local density of states(LDOS)atEFand the transmission eigenstates of junction M1 under 0.2 V (Figs. 5 and 6). To our surprise, the magnetic properties of the device can be modulated by using B dopant, especially for up-spin electron state. As can be seen from Fig.5,the LDOS of spin-down electrons is well delocalized. This means that the spin-down electrons can pass through the intermediate scattering section and reach the right electrode,while the spin-up electrons are mainly distributed at the edges of the nanoribbon and are heavily localized. This phenomenon will lead the transmission channel to forbidden,corresponding to the small transmission coefficent in the middle row of Fig.4. To further study, the spin filtering effect is also reflected in the spin-dependent transmission eigenstates underEFas shown in Figs.6(a)-6(d). The transmission eigenstates of bothπandπ*for the spin-up electrons are highly localized. This results in a blockade of electronic transmission.Conversely, the eigenstate ofπfor the spin-down (Fig. 6(c))electron is continuously distributed along the nanoribbon. It is obviously seen that the LDOS and the transmission eigenstates of spin-down electrons are more delocalized than the spin-up ones. This indicates that the spin-down electrons dominate over the spin-up electrons, resulting in the perfect spin filtering effect.

    Fig.5. Spin-resolved LDOS at EF of junction M1 at Vbias =0.2 V,and isovalue 0.02 a.u.

    Fig. 6. Spin-dependent transmission eigenstates at EF of M1 under Vbias =0.2 V and isovalue 0.05 a.u.

    For further exploration, since the edge effect is a significant influence factor for nanoribbons, the effects of different edge hydrogenations on the transport properties are also considered by M2 and M3, and the conductivity of edgedoped junction M3 and the corresponding LDOS are discussed. When the edge silicon atom is hydrogenated with two H atoms,the band structure(Vbias=1.5 V)is obviously different from the counterpart of the M1 system as shown in Fig.7.The results show that the spin-up and spin-down bands are completely degenerate and theπandπ*bands nearEFappear slightly dispersive in contrast to the scenario in M1 case. And a 0.51-eV band gap is opened, which shows up a semiconducting character. From theI-Vcurve (Fig. 2(c)) it follows that the currents(I↓andI↑)are almost zero in the low bias region, however they are allowed to pass through the high bias range. Like the case of M1, when the positive bias of 1.5 V is applied, the chemical potentials move downward along the left electrode and upward along the right electrode,and in the bias window, theπandπ*bands for both spin-up electrons and spin-down electrons of the two electrodes overlap. Similarly, due to then=5 is also odd, thus itsπandπ*bands have no definite parity under theC2operation. Without the limitation of parity,the electrons no matter whether their spins are up or down should both traverse from the left electrode to the right one, generating strong transmission coefficients.As presented in the transmission spectrum (Fig. 7), there exist indeed more transmission coefficients entering into the bias window. For the subsequent analysis,we present in Fig.8 the spin-correlated LDOS of device M3 atEFunder 1.5 V.We can see that the LDOS of both spin-up and spin-down electrons are delocalized. This indicates that the electrons can pass through the intermidiate scattering region and reach the right electrode.This is consistent with the calculated transmission spectrum as shown in Fig.7.

    Fig. 7. Band structures and transmission spectra for junction M3 at Vbias =1.5 V,with region between two black dotted lines denoting bias window,and blue line and red line representing spin-up and spin-down transmission spectra,respectively.

    Finally,we focus on the NDR phenomenon appearing in the spin-up state of device M2 as shown in Fig.9. On the basis of Landauer-B¨uttiker equation(1),the spin-dependent current across the intermediate scattering section is determined by the transmission coefficient in the bias window. Thus the current and voltage transport characteristics can be analyzed through the transmission spectra.[43,44]Figure 9 shows the spin-up transmission spectra under three different biases. AtVbias=0.7 V(Fig.9(a)),it is found that the transmission coefficients in the bias window are relatively large. When the bias increases up to 1.0 V(Fig.9(b)),the transmission peak under the integral area becomes small. This means that the current decreases with the bias voltage increasing. As the bias reaches to 1.3 V(Fig.9(c)), more transmission coefficients enter into the bias window,and thus causing the current to increase. As a consequence,an NDR behavior appears in the spin-up state.

    Fig.8. Spin-resolved LDOS at EF of junction M3 at Vbias =1.5 V and isovalue 0.02 a.u.

    Fig.9. Transmission spectra for spin-up channels at various voltages of junction M2,with blue line denoting transmission spectrum and black dotted lines representing integral window.

    4. Conclusions

    In summary, we have investigated the spin-correlated transport properties of different edge hydrogenated zigzag silicene nanoribbons with edge-doped boron atoms by regulating the electrode magnetism in P configuration. The spin filter effect (with nearly 60% SFE) and NDR behavior can be obtained. We also find that the spin-polarization at device M3 is compressed. This is attributed mainly to the perturbation of B-doping localized at the edge. The physical mechanisms of these interesting properties are analyzed by the spin-resolved transmission spectra, the transmission eigenstates, the band structures, and the symmetry of ZSiNR electrodes. Based on the multiple spin-dependent transport properties, there are some potential applications in spintronics.

    Acknowledgements

    Project supported by the National Natural Science Foundations of China (Grant No. 11574118) and the Natural Science Foundation of Shandong Province, China (Grant No.ZR2019PEM006).

    猜你喜歡
    王輝紅霞
    本期面孔
    遼河(2022年12期)2023-01-29 13:24:58
    請(qǐng)你幫個(gè)忙
    劇作家王輝
    火花(2021年10期)2021-11-04 09:23:52
    Characterization of size effect of natural convection in melting process of phase change material in square cavity?
    《烏鴉喝水》中的“想”
    竹之韻
    A Study of Combination of English Language Teaching and Context
    大東方(2018年1期)2018-05-30 01:27:23
    The Thought on PPP in China
    讓動(dòng)作“活”起來(lái)
    弟子規(guī)
    国产亚洲最大av| 免费观看a级毛片全部| 国产亚洲欧美精品永久| 精品卡一卡二卡四卡免费| 婷婷色av中文字幕| 成人午夜精彩视频在线观看| 精品熟女少妇av免费看| 草草在线视频免费看| 人人澡人人妻人| 午夜激情av网站| 精品亚洲成国产av| 人妻制服诱惑在线中文字幕| kizo精华| 日韩精品免费视频一区二区三区 | 超色免费av| 日韩av在线免费看完整版不卡| 天堂中文最新版在线下载| 国产成人精品福利久久| 少妇高潮的动态图| 国产一区二区三区综合在线观看 | 色网站视频免费| 成年美女黄网站色视频大全免费 | 插阴视频在线观看视频| 一本大道久久a久久精品| 一区二区三区免费毛片| 久久青草综合色| 中文字幕最新亚洲高清| 狂野欧美白嫩少妇大欣赏| 国产免费又黄又爽又色| 免费观看在线日韩| 国产精品国产三级国产av玫瑰| 国产免费视频播放在线视频| 纯流量卡能插随身wifi吗| 在线播放无遮挡| 男女啪啪激烈高潮av片| 国产片内射在线| 人妻少妇偷人精品九色| h视频一区二区三区| 天堂中文最新版在线下载| 国产国语露脸激情在线看| 亚洲综合色惰| 国产精品免费大片| 国产av国产精品国产| 在线观看www视频免费| 午夜免费男女啪啪视频观看| 亚洲精品久久久久久婷婷小说| 久久久国产一区二区| 免费观看的影片在线观看| 午夜精品国产一区二区电影| 91精品三级在线观看| 亚洲精品,欧美精品| 久久久久人妻精品一区果冻| 日本黄色片子视频| 十八禁网站网址无遮挡| 美女主播在线视频| 国产成人免费无遮挡视频| 国产日韩欧美视频二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产亚洲精品第一综合不卡 | 九九久久精品国产亚洲av麻豆| 日日摸夜夜添夜夜爱| 国产精品蜜桃在线观看| 国产白丝娇喘喷水9色精品| 成人黄色视频免费在线看| 综合色丁香网| 亚洲人成网站在线播| 性高湖久久久久久久久免费观看| 国产一区二区在线观看av| 91久久精品国产一区二区成人| 晚上一个人看的免费电影| 黄色配什么色好看| 精品国产乱码久久久久久小说| 久久精品久久精品一区二区三区| 99热这里只有精品一区| 少妇高潮的动态图| 成人国产av品久久久| av有码第一页| 亚洲国产av新网站| 春色校园在线视频观看| h视频一区二区三区| 久久久亚洲精品成人影院| 国产片内射在线| 韩国av在线不卡| 亚洲欧美成人精品一区二区| 亚洲色图 男人天堂 中文字幕 | 中国国产av一级| 夜夜骑夜夜射夜夜干| 亚洲av不卡在线观看| 黄色欧美视频在线观看| 国产精品一区二区三区四区免费观看| 免费观看在线日韩| 亚洲美女视频黄频| 日日爽夜夜爽网站| 久久精品久久久久久久性| 午夜免费观看性视频| 你懂的网址亚洲精品在线观看| 男人操女人黄网站| 亚洲欧洲日产国产| 人妻人人澡人人爽人人| 国产精品久久久久久久久免| 久久亚洲国产成人精品v| 高清午夜精品一区二区三区| 看非洲黑人一级黄片| 狂野欧美激情性xxxx在线观看| 五月天丁香电影| 日本91视频免费播放| 欧美人与善性xxx| 免费高清在线观看视频在线观看| √禁漫天堂资源中文www| 久久国内精品自在自线图片| 高清毛片免费看| 久久久久久久久久成人| 交换朋友夫妻互换小说| 成人国产麻豆网| 日韩成人av中文字幕在线观看| 亚洲精品第二区| 丁香六月天网| 看十八女毛片水多多多| 只有这里有精品99| 国产一区亚洲一区在线观看| 欧美日韩视频高清一区二区三区二| 国产成人a∨麻豆精品| 男人爽女人下面视频在线观看| 丝袜在线中文字幕| 新久久久久国产一级毛片| 国产精品麻豆人妻色哟哟久久| 国产精品不卡视频一区二区| 看十八女毛片水多多多| 国产女主播在线喷水免费视频网站| 看非洲黑人一级黄片| 国产精品三级大全| 精品卡一卡二卡四卡免费| 韩国高清视频一区二区三区| 亚洲欧美色中文字幕在线| 国产探花极品一区二区| 我的老师免费观看完整版| 亚洲色图 男人天堂 中文字幕 | 成年美女黄网站色视频大全免费 | 国产探花极品一区二区| 国产精品国产三级国产av玫瑰| 欧美日韩av久久| 国产成人午夜福利电影在线观看| 免费观看a级毛片全部| av国产久精品久网站免费入址| 免费少妇av软件| 国产黄色免费在线视频| 毛片一级片免费看久久久久| 大又大粗又爽又黄少妇毛片口| 亚洲国产精品一区二区三区在线| 搡女人真爽免费视频火全软件| 99久久综合免费| 精品亚洲成a人片在线观看| 人妻夜夜爽99麻豆av| 精品久久久久久电影网| 国产精品久久久久久av不卡| 国产日韩欧美亚洲二区| videosex国产| 女人精品久久久久毛片| 黄色视频在线播放观看不卡| 91精品三级在线观看| 亚洲国产av影院在线观看| videossex国产| 成年女人在线观看亚洲视频| 欧美日韩精品成人综合77777| 久久午夜福利片| 中文字幕久久专区| 亚洲美女黄色视频免费看| 卡戴珊不雅视频在线播放| 91成人精品电影| 亚洲av欧美aⅴ国产| 黑人欧美特级aaaaaa片| 乱码一卡2卡4卡精品| 伊人亚洲综合成人网| 精品少妇久久久久久888优播| 日日啪夜夜爽| 久久热精品热| 91精品国产国语对白视频| tube8黄色片| 男女边摸边吃奶| 久久97久久精品| 少妇精品久久久久久久| 黄片无遮挡物在线观看| 插阴视频在线观看视频| 麻豆成人av视频| 日韩制服骚丝袜av| 午夜激情福利司机影院| 久久精品人人爽人人爽视色| 十分钟在线观看高清视频www| 久久久久精品性色| 黄色配什么色好看| 日本猛色少妇xxxxx猛交久久| 热re99久久精品国产66热6| 欧美日韩综合久久久久久| 精品久久久久久久久av| 自线自在国产av| 纵有疾风起免费观看全集完整版| 91久久精品国产一区二区成人| 欧美97在线视频| 如日韩欧美国产精品一区二区三区 | 亚洲欧美日韩卡通动漫| 一个人免费看片子| 国产黄频视频在线观看| 春色校园在线视频观看| 亚洲国产精品999| 日本wwww免费看| 亚洲国产精品成人久久小说| 女人久久www免费人成看片| 欧美精品国产亚洲| 亚洲国产欧美日韩在线播放| 久久人妻熟女aⅴ| 青青草视频在线视频观看| 乱人伦中国视频| 日韩人妻高清精品专区| 亚洲高清免费不卡视频| 亚洲性久久影院| 女人精品久久久久毛片| 妹子高潮喷水视频| 永久免费av网站大全| 亚洲精品久久午夜乱码| 日韩一区二区视频免费看| 少妇丰满av| 男人爽女人下面视频在线观看| 久久久久国产网址| 一级毛片电影观看| 十八禁高潮呻吟视频| 成人毛片a级毛片在线播放| 久久青草综合色| 精品一区二区三卡| 日本vs欧美在线观看视频| 久久精品夜色国产| 狠狠婷婷综合久久久久久88av| 狂野欧美激情性xxxx在线观看| 高清在线视频一区二区三区| 日本色播在线视频| 亚洲精品成人av观看孕妇| 亚洲成色77777| 伦理电影免费视频| 久久狼人影院| 日韩中字成人| 国产日韩欧美视频二区| 午夜福利网站1000一区二区三区| 中文字幕av电影在线播放| 亚洲精品乱码久久久v下载方式| 黑丝袜美女国产一区| 五月玫瑰六月丁香| 亚洲精品国产av蜜桃| 天天操日日干夜夜撸| av国产精品久久久久影院| 久久狼人影院| 日韩大片免费观看网站| 免费黄网站久久成人精品| 午夜日本视频在线| 欧美 亚洲 国产 日韩一| 亚洲久久久国产精品| 亚洲av福利一区| 九九爱精品视频在线观看| 这个男人来自地球电影免费观看 | 22中文网久久字幕| 日韩欧美精品免费久久| 久久久久国产网址| 黑人欧美特级aaaaaa片| 亚洲丝袜综合中文字幕| 国产精品国产三级国产av玫瑰| 欧美亚洲日本最大视频资源| 亚洲av中文av极速乱| 一区二区三区乱码不卡18| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲成色77777| 国产精品一区二区在线不卡| 亚洲丝袜综合中文字幕| av又黄又爽大尺度在线免费看| 亚洲av不卡在线观看| 亚洲一区二区三区欧美精品| 免费日韩欧美在线观看| 国产熟女欧美一区二区| 91精品伊人久久大香线蕉| 少妇的逼水好多| 色吧在线观看| 久久久久久人妻| 欧美亚洲 丝袜 人妻 在线| 国产精品熟女久久久久浪| 日韩熟女老妇一区二区性免费视频| 伦理电影免费视频| 大又大粗又爽又黄少妇毛片口| 菩萨蛮人人尽说江南好唐韦庄| 国产无遮挡羞羞视频在线观看| 三级国产精品欧美在线观看| 日韩免费高清中文字幕av| 日本黄色日本黄色录像| 欧美日韩视频高清一区二区三区二| 亚洲三级黄色毛片| 亚洲av.av天堂| 国产精品蜜桃在线观看| 亚洲熟女精品中文字幕| 免费黄色在线免费观看| 边亲边吃奶的免费视频| 2021少妇久久久久久久久久久| 成人免费观看视频高清| 日日爽夜夜爽网站| 成年人免费黄色播放视频| 欧美少妇被猛烈插入视频| 一个人免费看片子| 最近最新中文字幕免费大全7| 女的被弄到高潮叫床怎么办| 国产精品偷伦视频观看了| 亚洲欧美中文字幕日韩二区| 九九在线视频观看精品| 男女高潮啪啪啪动态图| 日本91视频免费播放| 欧美人与性动交α欧美精品济南到 | 午夜免费观看性视频| 亚洲精品乱久久久久久| 黑人巨大精品欧美一区二区蜜桃 | 国产精品女同一区二区软件| 欧美变态另类bdsm刘玥| 男女高潮啪啪啪动态图| 少妇被粗大的猛进出69影院 | 制服人妻中文乱码| 日韩在线高清观看一区二区三区| 国产男女内射视频| 久久国产精品男人的天堂亚洲 | 久久午夜福利片| www.av在线官网国产| 18禁在线播放成人免费| 人妻一区二区av| 黑人猛操日本美女一级片| 黄色欧美视频在线观看| xxx大片免费视频| 精品亚洲成a人片在线观看| 日韩精品有码人妻一区| 如何舔出高潮| 少妇丰满av| 美女视频免费永久观看网站| 午夜av观看不卡| 在线免费观看不下载黄p国产| 午夜福利网站1000一区二区三区| 亚洲国产色片| 天天操日日干夜夜撸| 大香蕉97超碰在线| 狠狠婷婷综合久久久久久88av| 18禁在线无遮挡免费观看视频| 伊人久久精品亚洲午夜| 天美传媒精品一区二区| 日本黄色日本黄色录像| 亚洲,一卡二卡三卡| 亚洲久久久国产精品| 亚洲国产精品一区三区| 日韩成人伦理影院| 一级二级三级毛片免费看| 99久久精品一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲少妇的诱惑av| 中国三级夫妇交换| 极品少妇高潮喷水抽搐| 97超视频在线观看视频| 又黄又爽又刺激的免费视频.| 七月丁香在线播放| 亚洲欧美色中文字幕在线| 成人国产av品久久久| 蜜桃国产av成人99| av播播在线观看一区| 韩国av在线不卡| 婷婷色麻豆天堂久久| 九色亚洲精品在线播放| freevideosex欧美| 国产69精品久久久久777片| 视频在线观看一区二区三区| 青春草国产在线视频| 亚洲av国产av综合av卡| 国产视频内射| 日本av免费视频播放| 国产乱来视频区| 最新的欧美精品一区二区| 秋霞在线观看毛片| 国产午夜精品久久久久久一区二区三区| 99热这里只有是精品在线观看| 免费高清在线观看视频在线观看| 免费看av在线观看网站| 久久精品国产自在天天线| 18禁动态无遮挡网站| 国产精品一国产av| 如何舔出高潮| 草草在线视频免费看| 乱人伦中国视频| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产a三级三级三级| 草草在线视频免费看| av线在线观看网站| 国产 一区精品| 亚洲国产精品成人久久小说| 亚洲中文av在线| a级毛片免费高清观看在线播放| 黑人巨大精品欧美一区二区蜜桃 | 边亲边吃奶的免费视频| 能在线免费看毛片的网站| 亚洲精品美女久久av网站| 男女国产视频网站| 青春草视频在线免费观看| 日韩不卡一区二区三区视频在线| 在线观看www视频免费| 午夜日本视频在线| 亚洲综合色惰| 亚洲av免费高清在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美日韩亚洲高清精品| 国产精品偷伦视频观看了| 狂野欧美激情性bbbbbb| av.在线天堂| 在线观看免费高清a一片| 99re6热这里在线精品视频| 亚洲内射少妇av| 午夜福利视频在线观看免费| 日韩中字成人| 97精品久久久久久久久久精品| 人人妻人人澡人人爽人人夜夜| 人人澡人人妻人| 成人午夜精彩视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 黑人巨大精品欧美一区二区蜜桃 | 高清黄色对白视频在线免费看| 人人妻人人添人人爽欧美一区卜| 国产色爽女视频免费观看| 日韩中字成人| 久久精品夜色国产| 国产精品一区二区在线观看99| 久久久精品94久久精品| 涩涩av久久男人的天堂| 国产精品成人在线| 2021少妇久久久久久久久久久| 伦理电影大哥的女人| 国产精品女同一区二区软件| 亚洲人成网站在线观看播放| 亚洲国产av影院在线观看| 中文字幕制服av| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久成人av| 国产成人av激情在线播放 | 亚洲欧美色中文字幕在线| 日韩不卡一区二区三区视频在线| 三级国产精品片| 亚洲av欧美aⅴ国产| 春色校园在线视频观看| 少妇高潮的动态图| 欧美性感艳星| 考比视频在线观看| 各种免费的搞黄视频| 99热这里只有精品一区| 午夜av观看不卡| 99热全是精品| 91久久精品电影网| 国内精品宾馆在线| 亚洲成人av在线免费| 黄色怎么调成土黄色| 成人综合一区亚洲| 亚洲精品乱久久久久久| 久久精品熟女亚洲av麻豆精品| 男女边吃奶边做爰视频| 亚洲第一av免费看| 中国三级夫妇交换| 精品一品国产午夜福利视频| 欧美日韩视频高清一区二区三区二| 女性生殖器流出的白浆| 国内精品宾馆在线| 免费人妻精品一区二区三区视频| 狠狠精品人妻久久久久久综合| 国产成人91sexporn| 日韩视频在线欧美| 免费大片18禁| 久久国产精品大桥未久av| 亚洲精品日本国产第一区| 国产极品天堂在线| 亚洲美女搞黄在线观看| 又粗又硬又长又爽又黄的视频| 亚洲精华国产精华液的使用体验| 高清不卡的av网站| 成年美女黄网站色视频大全免费 | 成人国产麻豆网| 午夜影院在线不卡| 99九九线精品视频在线观看视频| 久久女婷五月综合色啪小说| 简卡轻食公司| 亚洲熟女精品中文字幕| 一个人免费看片子| 在线观看国产h片| 看免费成人av毛片| 国内精品宾馆在线| 街头女战士在线观看网站| 亚洲人成网站在线播| 日韩三级伦理在线观看| 尾随美女入室| 日韩欧美精品免费久久| 午夜日本视频在线| 九九爱精品视频在线观看| xxx大片免费视频| 日日摸夜夜添夜夜添av毛片| videossex国产| 美女大奶头黄色视频| 美女视频免费永久观看网站| 一本色道久久久久久精品综合| 久久久精品免费免费高清| av国产精品久久久久影院| 日本免费在线观看一区| 秋霞在线观看毛片| 亚洲欧洲国产日韩| 日韩电影二区| 国精品久久久久久国模美| 永久网站在线| 亚洲精品中文字幕在线视频| 桃花免费在线播放| 国产精品不卡视频一区二区| 国模一区二区三区四区视频| 视频在线观看一区二区三区| 丝瓜视频免费看黄片| 午夜激情久久久久久久| 久久久久久久久久成人| 久久国内精品自在自线图片| 国产精品成人在线| 免费黄频网站在线观看国产| 丰满迷人的少妇在线观看| 伦理电影大哥的女人| a级毛片黄视频| 一区在线观看完整版| tube8黄色片| 一级二级三级毛片免费看| 国产av精品麻豆| 亚洲人与动物交配视频| 搡女人真爽免费视频火全软件| 日韩精品免费视频一区二区三区 | 我要看黄色一级片免费的| 国产黄色免费在线视频| 精品亚洲乱码少妇综合久久| 日韩强制内射视频| 国产av精品麻豆| 一边摸一边做爽爽视频免费| 99热网站在线观看| 久久亚洲国产成人精品v| 能在线免费看毛片的网站| freevideosex欧美| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧洲精品一区二区精品久久久 | av在线观看视频网站免费| 国产乱人偷精品视频| 91久久精品国产一区二区三区| 日韩熟女老妇一区二区性免费视频| 亚洲欧美中文字幕日韩二区| 最新中文字幕久久久久| 成人午夜精彩视频在线观看| 99久久综合免费| 亚洲一区二区三区欧美精品| 伊人久久国产一区二区| 狂野欧美激情性xxxx在线观看| 黑丝袜美女国产一区| 韩国av在线不卡| 亚洲av男天堂| 在线播放无遮挡| 一本久久精品| 国产精品一国产av| 亚洲三级黄色毛片| 在线观看免费高清a一片| 日韩av不卡免费在线播放| 亚洲精品乱码久久久v下载方式| 欧美另类一区| 精品国产一区二区三区久久久樱花| 亚洲五月色婷婷综合| 日韩制服骚丝袜av| 尾随美女入室| 免费日韩欧美在线观看| 精品国产乱码久久久久久小说| 精品一品国产午夜福利视频| 嫩草影院入口| 欧美日韩成人在线一区二区| 欧美精品高潮呻吟av久久| 免费观看性生交大片5| 中文天堂在线官网| 久久精品国产a三级三级三级| 国产精品一区二区在线不卡| 免费观看av网站的网址| 国产精品久久久久久精品古装| 亚洲av福利一区| 少妇高潮的动态图| 99热6这里只有精品| 十分钟在线观看高清视频www| 欧美激情国产日韩精品一区| 国产老妇伦熟女老妇高清| 久久精品久久久久久噜噜老黄| 丝瓜视频免费看黄片| 日韩三级伦理在线观看| 考比视频在线观看| 人人妻人人添人人爽欧美一区卜| 国产精品一区二区三区四区免费观看| 丝袜美足系列| 免费观看在线日韩| 狂野欧美激情性bbbbbb| 国产永久视频网站| 秋霞在线观看毛片| 免费播放大片免费观看视频在线观看| 日日啪夜夜爽| 十分钟在线观看高清视频www| 一级爰片在线观看| 精品久久久久久久久av| 亚洲人成77777在线视频| 欧美丝袜亚洲另类| 国产男女内射视频| 久久久久久久久久人人人人人人| 热re99久久精品国产66热6| 国产成人精品婷婷| 波野结衣二区三区在线| 久久精品夜色国产| 爱豆传媒免费全集在线观看| 大香蕉久久网| 少妇熟女欧美另类| xxx大片免费视频| 成人亚洲精品一区在线观看| 国产精品国产三级国产专区5o| 777米奇影视久久|