曾玲玲 龔羅中
群3D4()與旗傳遞4平面設(shè)計(jì)
曾玲玲a龔羅中b
(長(zhǎng)沙師范學(xué)院a.圖書館;b.數(shù)學(xué)科學(xué)學(xué)院,湖南 長(zhǎng)沙 410100)
旗傳遞設(shè)計(jì);3D4(q)群;自同構(gòu)群
⑴中每個(gè)元素恰好與中個(gè)元素關(guān)聯(lián);
⑵中任意兩元素,恰好包含在的4個(gè)元素中;
⑶中的元素?cái)?shù)等于中的元素?cái)?shù)。
本節(jié),我們先給出一些在本文中將要用到的基本結(jié)論。
[1]F.Buekenhout,A.Delandtsheer,J.Doyen,P.B. Kleidman, M.Liebeck, J. Saxl, Linear spaces with flflag-transitive automorphism groups[J].Geom. Dedic,1990,36:89–94.
[2]E.O’Reilly Regueiro,On primitivity and reduction for flag-transitive symmetric designs[J].J.Comb.Theory,Ser.A,2005,109:135–148.
[3]E.O’Reilly Regueiro,Biplanes with flag-transitive automo-rphism groups of almost simple type,with alternating or sporadic socle[J].Eur.J.Comb,2005,26:577–584.
[4]E.O’Reilly Regueiro.Biplanes with flag-transitive automo-rphism groups of almost simple type,with classical soc-le[J].J.Algebraic Comb,2007, 26:529–552.
[5]E.O’Reilly,Regueiro.Biplanes with flag-transitive automor-phism groups of almost simple type,with exceptional so-cle[J].J.Algebraic Comb,2008,27479–491.
[6]Shenglin Zhou, Huili Dong, Weidong Fang. Finite classi-cal groups and flag-transitive triplanes,[J].Discrete Math-ematics.2009,309:5183–5195.
[7]ShengLin Zhou,GHuiLi Dong.Exceptional groups of Lie type and flag-transitive triplanes[J].Sci China Math.2010,53(2):394-400.
[8]ShenglinZhou·HuiliDong. Alternatinggroupsandflag-transiti-vetriplanes[J].Des.Codes Cryptogr.2010,57:117–126.
[9]P B Kleidman.The maximal subgroups of the Steinberg triality groups3D4(q) and of their automorphism grou-ps[J].JAlgebra,1988,115:182–199.
O152.1;O157.2
A
1673-2219(2021)05-0001-02
2021-08-02
曾玲玲(1973-),女,湖南沅江人,助理館員,研究方向?yàn)閼?yīng)用數(shù)學(xué)。
龔羅中(1973-),男,湖南沅江人,博士,教授,研究方向?yàn)榇鷶?shù)組合。
(責(zé)任編校:文春生)