• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on classification diagnosis model of psoriasis based on deep residual network

    2022-01-19 07:58:08LIPengYIDINGChngsongLIShengMINHui
    Digital Chinese Medicine 2021年2期
    關(guān)鍵詞:面向全國(guó)細(xì)分共生

    LI Peng, YI N, DING Chngsong*, LI Sheng, MIN Hui

    a. School of Informatics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China

    b. The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China

    c. Key Laboratory of Medical Information Research, Central South University, College of Hunan Province, Changsha, Hunan 410013, China

    d. Software Institute, Hunan College of Information, Changsha, Hunan 410200, China

    ABSTRACT

    Keywords Psoriasis Deep residual network Data enhancement Cross-entropy Adam algorithm Recall

    1 Introduction

    Psoriasis is a chronic recurrent disease characterized by excessive proliferation of epidermal cells and immune inflammation[1]. The disease is characterized by a long course, stubborn, common and ugly appearance, and invasion of a variety of organs in the later stages, and is listed as one of the world’s top ten persistent diseases by the World Health Organization[2].

    Although several current studies have analyzed and summarized the medication rules of famous traditional Chinese medicine doctors for the treatment of psoriasis[3], the diagnosis of psoriasis is rarely discussed. In fact, according to statistics, there are approximately seven million psoriasis patients in China[4].However, only a small number have been diagnosed,mainly owing to a lack of diagnostic ability of grassroots doctors or hospitals. At the “Popular Science Activities of World Psoriasis Day” held in 2018, experts considered that artificial intelligence (AI) technology combined with big data can provide patients with more intuitive auxiliary diagnosis of psoriasis[5-8].

    Psoriasis cannot be completely cured. Basically every patient will relapse and need long-term followup treatment. The diagnosis and treatment of psoriasis, including its four major types, psoriasis vulgaris,joint psoriasis, purulent psoriasis, and erythroderma psoriasis, is very difficult. While diagnosing the disease, we should consider not only the appearance factors, but also the cardiovascular, psychological,gastrointestinal, autoimmune, and other aspects comprehensively. Accurately and quickly diagnosing suspected psoriasis patients and the psoriasis variant they are afflicted with poses a major problem[9]. The diagnosis involves a typical image classification problem, and convolutional neural networks (CNNs) used in deep learning are the primary method to deal with such medical image problems. Deep residual networks (ResNet) are known as one of the most representative CNN models[10]. In the 2015 ImageNet computer vision recognition challenge, ResNet emerged as the champion in all three major challenges: image classification, image location, and image detection.The system error rate of the visual computing group is as low as 3.57%, which can greatly improve computer vision problems. Currently, the group is being widely used in large-scale image data in various applications. This paper proposes a classification diagnosis model of psoriasis based on deep residual network. A ResNet-34 model was trained to classify and diagnose psoriasis, which effectively improved the recognition rate.

    2 Classification and diagnosis of psoriasis in ResNet

    2.1 ResNet principle

    Theoretically, it is generally believed that with greater CNN depth (more parameters), its nonlinear expression ability grows stronger, more complex feature pattern extraction can be performed, and better results can be obtained. However, a large number of studies[10,11]have shown that with an increasing number of layers and a deeper network,the result can worsen because the deeper the network, the lower the accuracy of classification, that is, the performance starts degrading. To solve this problem, HE et al.[10]proposed the famous deep residual network in 2016. ResNet is composed of stacked residual units (as shown in Figure 1). It is easy to optimize and can improve the accuracy by increasing the depth. The internal residual block uses jump connections (short circuit mechanism) to alleviate the gradient disappearance or gradient diffusion caused by increasing depth in deep neural networks.

    In the deep residual network shown in Figure 1,relu[12]represents the activation function of the network. The residual unitF(x) can be expressed as:

    F(x)=H(x)-x(1)

    Here,xrepresents the input value;H(x) represents the feature learned when the input isx. In the two-layer network shown in Figure 1, the optimal output is inputx, therefore, for the network without identity mapping, it needs to be optimized toH(x)=x; however, for the network with identity mapping, that is, a residual block, if the optimal output isx, then only the residual unitF(x) needs to be optimized to 0. The optimization of the latter is simpler and more effective than the former. The principle is as follows.

    Equation (3) can be rewritten as follows, that is,we can obtain the learning characteristics from shallowpto deepQ:

    According to the principle of back propagation[14],it is assumed that the error is ε and the partial derivative with respect toxpcan be obtained as follows:

    2.2 Classification and diagnosis process of psoriasis based on ResNet-34

    A flow chart of psoriasis classification diagnosis based on ResNet-34 is shown in Figure 2. Doctors or the suspected patients themselves take photos of the diseased parts and upload them to an application system or APP. The system or APP calls ResNet-34,which has been trained in advance and deployed to classify and diagnose the uploaded images, and output the conclusion (presence or absence of psoriasis) and the type of psoriasis in case of confirmed diagnosis.

    3 Technical details

    3.1 Psoriasis image preprocessing

    Due to the complexity of psoriasis, the location of the disease is also diverse. The pictures captured by the doctors or patients of the diseased parts are easily affected by factors such as illumination, camera equipment, and device pixels. As a result, there is massive noise and inconsistency of image formats in the obtained image data of psoriasis patients, which is not convenient for further processing. In this study,we preprocessed the sample images from three aspects: data enhancement, image size adjustment,and image format coding, to meet the input requirements of ResNet-34 and prepare for its training.

    Figure 2 Classification and diagnosis process of psoriasis using ResNet-34

    3.1.1 Data enhancement of psoriasis imagesThe acquisition of psoriasis data also involves significant cost. Therefore, if the limited existing data can somehow be enhanced, also called data amplification, it can provide a value equivalent to more data but without a substantial increase in size[13]. It is also an effective way to enlarge the data size. For the ResNet-34 training process, we hope that with a larger scale and higher quality of data, the generalization ability of the trained ResNet-34 can be improved. However, it is mostly difficult to cover all the possible scenarios while collecting data. For example, for illumination conditions, when collecting psoriasis image data, it is difficult for us to control the proportion of light. Therefore, when training the model, we need to add the data pertaining to illumination change and generate various training data dynamically to achieve better outcomes, reduce expenditure, and improve the model robustness.Therefore, it is necessary to enhance the data effectively in the particular case of psoriasis diagnosis. For image data, the commonly used data enhancement methods include rotation, translation,scaling, and edge filling. The core code used for data enhancement of psoriasis images is given below.

    Core code for data enhancement:#First import the keras library 1. from keras.preprocessing.image import ImageDataGenerator,2. img_to_array, load_img 3. pic_path = r‘./yinxiebing.jpg’ #create image path 4. augmentation_path = r‘./data_augmentation' #save path#Define the ImageDataGenerator and explain what actions are used to generate new images:5. data_gen = ImageDataGenerator(rotation_range = 30, #rotate width_shift_range = 0.1, #translation height_shift_range = 0.1, //zoom zoom_range = 0.2, #edge fill fill_mode = ‘nearest’)6. img = load_img(pic_path) #the address to load the picture 7. x = img_to_array(img) #convert to array format to ImageDataGenerator 8. x = x.reshape((1,) + x.shape)9. n = 1 10. for batch in data_gen.flow(x, batch_size = 1,save_to_dir = augmentation_path, save_prefix =‘train’,save_format = ‘jpeg’):11. n + = 1 12. if n > 10: #According to the operation defined by ImageDataGenerator, randomly select several types to generate 10 images.13 break

    3.1.2 Size adjustment of psoriasis imagesThis process involves uniformly adjusting the size of the pictures, which facilitates the use of ResNet-34 model for deep learning. In this study, considering the new psoriasis pictures generated after data augmentation as an example, the core code to adjust the size of psoriasis pictures is given below.

    Image resizing core code:1. from PIL import Image #use PIL library to change image size 2. import os #using os library to read file path 3. img_path = r'./data_augmentation' #read psoriasis pictures

    4. resize_path = r'./resize_image' #put the image after resizing into the resize_image folder 5. for i in os.listdir(img_path):6. im = Image.open(os.path.join(img_path,i))7. out = im.resize((224, 224)) #the size after resizing is 224 × 224 8. if not os.path.exists(resize_path):9. os.makedirs(resize_path)10. out.save(os.path.join(resize_path, i))

    3.1.3 TFRecord codeAs the ResNet-34 model can only accept numerical data as input, we also need to encode the images, that is, convert them to the TFRecord format. TFRecord is the standard format officially recommended by TensorFlow and helps store image data and tags into binary files, making it convenient to quickly copy, move, read, and store them in TensorFlow[14]. When training ResNet-34, by setting up a queue system, the psoriasis data in TFRecord format can be loaded into the queue in advance. The queue will automatically realize the random or orderly data in and out of the stack, and the independence between the queuing system and model training can accelerate the ResNet-34 reading and training. The following is the core code for converting psoriasis images into the TFRecord format.

    Core code for converting image data into TFRecord format:1. import os 2. from PIL import Image 3. import tensorflow as tf 4. cwd = r“./brand_picture/” #image path, two groups of tags are in this directory 5. file_path = r“./” #TFRecord file save path 6. bestnum = 1 000 #number of pictures stored in each TFRecord 7. num = 0 #which picture 8. recordfilenum = 0 #number of TFRecord files 9. classes = [] #put labels into classes 10. for i in os.listdir(cwd):11. classes.append(i)12. ftrecordfilename = (“traindata_63.TFRecords-%.3d”% reco-rdfilenum) #TFRecords format file name 13. writer =tf.python_io.TFRecordWriter(os.path.join(file_path,ftrecordfilename))

    14. for index, name in enumerate(classes):15. class_path = os.path.join(cwd, name)16. for img_name in os.listdir(class_path):17. num = num + 1 18. if num > bestnum: #over 1 000, write the next TFRecord 19. num = 1 20. recordfilenum + = 1 21. ftrecordfilename =(“traindata_63.TFRecords-%.3d”% recordfilenum)22. writer =tf.python_io.TFRecordWriter(os.path.join(file_path,ftrecordfilename))23. img_path = os.path.join(class_path,img_name)#address of each picture 24. img = Image.open(img_path, ‘r’)25. img_raw = img.tobytes() #convert pictures to binary format 26. example = tf.train.Example(27. features = tf.train.Features(feature = {‘label’:tf.train.Feature(int64_list =tf.train.Int64List(value = [index])),‘img_raw’: tf.train.Feature(bytes_list =tf.train.BytesList(value = [img_raw])),}))28. writer.write(example.SerializeToString())#serialize to string 29. write.close()

    3.2 Construction of ResNet-34

    Figure 3 ResNet-34 structure for psoriasis classification diagnosis

    3.3 Model training

    ResNet-34 solves the problems of information loss in traditional convolution by changing the learning objective, that is, from learning the complete output to only the residual. It protects the integrity of information by passing the input directly to the output. In the ResNet-34 model proposed in this paper, we use cross-entropy as the loss function to evaluate the accuracy of the model, use the adaptive moment estimation (Adam) algorithm as the optimization strategy in the training process, and use the Softmax function to realize the multiclassification diagnosis of psoriasis[15]. We will elaborate in detail below.

    3.3.1 Loss functionThe loss function is used to estimate the inconsistency between the predicted and real value of ResNet-34. It is a non-negative real value function. The smaller the loss function, the better the robustness of ResNet-34. In this study, we used cross-entropy as the loss function. Crossentropy can measure the difference between two different probability distributions in the same random variable, which is expressed as the difference between the real probability distribution and the predicted probability distribution of psoriasis. The smaller the cross-entropy, better the prediction effect of ResNet-34. The calculation formula is as follows:

    3.3.2 OptimizerIn this study, we used the Adam[16]algorithm to train ResNet-34. The Adam algorithm is an optimization algorithm that combines the Momentum[17]and RMSProp[18]algorithms in deep learning models. In the initial stage of training, we first initialized the cumulant and square cumulant of gradient:

    Then, in the t-round training, we calculated the parameter update of momentum algorithm and RMSProp algorithm:

    Through Equation (9), we can get the correction value of the parameter gradient cumulant in the first iteration. Next, the weight and bias of the model can be updated according to the combination of Momentum and RMSProp algorithms:

    In the Adam algorithm, parameter β1corresponds to β value in the Momentum algorithm, which is generally taken as 0.9; parameter β2corresponds to βvalue in the RMSProp algorithm, which is generally taken as 0.999, while ε is a smooth term, which is generally taken as 10-8, while the learning rateα needs to be slightly adjusted during training. To sum up, the pseudo code of the Adam algorithm can be expressed as follows:

    1. Initializevdw=0,vdb=0,sdw=0,sdb=0;

    2. In the t-th iteration, calculatedwanddbwith the mini batch gradient descent method;

    因此,2017年陽(yáng)光印網(wǎng)推出了“300+1合伙人計(jì)劃”,面向全國(guó)招募供應(yīng)商合伙人。所謂“300+1合伙人計(jì)劃”是指,原本只是與陽(yáng)光印網(wǎng)開(kāi)展接單生產(chǎn)的供應(yīng)廠商,通過(guò)資本合作等方式,成為陽(yáng)光印網(wǎng)控股廠商中的一員,進(jìn)而實(shí)現(xiàn)全面的共生共贏。這些供應(yīng)廠商將在其細(xì)分領(lǐng)域和所覆蓋的地域里,扮演陽(yáng)光印網(wǎng)優(yōu)勢(shì)穩(wěn)定供應(yīng)點(diǎn)的角色。

    3. Calculate the weighted average of the Momentum index;

    4. Update with RMSProp;

    5. Calculate the deviation correction of Momentum and RMSProp;

    6. Update the weights.

    3.4 Classification diagnosis

    After the ResNet-34 training, we used the Softmax function, mainly used in multi-classification processes, to realize the classification diagnosis of psoriasis. It maps the output of multiple neurons to the (0, 1) interval as probability to understand, to realize multi-classification. The output of ResNet-34 model has five values, representing the four common psoriasis types (vulgaris, arthritic, purulent, and erythroderma) and normal condition (no disease).Therefore, for each sample, according to the definition of the Softmax function, the probability that it belongs to the categoryiis as follows:

    4 Experiment

    4.1 Data sources

    From January 2017 to December 2019, we collected data of psoriasis patients from the affiliated hospitals of Hunan University of Chinese Medicine, and used them as the dataset for constructing the classification diagnosis model. The dataset contained the data of patients with four common types of psoriasis. All data types were images, sized 224 × 224. A total of 30 000 data samples were screened.

    4.2 Experimental setup

    We performed the experiment on an 8-core 16 thread computer (Intel Core i9-9960x @ 3.10GHz CPU, 16G memory), with Ubuntu 16.04 LTS 64-bit operating system. In the ResNet-34 model, relu function was selected as the activation function, and the psoriasis classification and diagnosis model based on deep residual network was implemented using Tensor-Flow and Anaconda platforms. In addition, to avoid model over fitting, we used k-fold cross validation(k = 10 in the paper) on 30 000 psoriasis data samples to evaluate the predictive performance of ResNet-34,and selected the best performance of the super parameters to obtain the final model.

    4.3 Evaluation index and comparison object

    In this study, the multi-classification problem was transformed into a binary classification problem for experimental evaluation. The transformation method used one vs. the rest method: one class is marked as a positive example and the remaining classes are marked as counter-examples. As the output of ResNet-34 in this study involved five possible types of results (four for psoriasis, one for normal), only five classifiers were constructed to realize the problem conversion. Then, the precision, recall,F1-score, and ROC curve were used to evaluate the performance of psoriasis classification diagnosis based on ResNet-34.Assuming that psoriasis patients represent positive cases and normal people represent counterexamples, the following confusion matrix can be used to measure the performance of ResNet-34.

    Here,TPindicates that the positive example is predicted to be a positive example, that is, the real case;FNmeans that the positive example is predicted to be a negative example, that is, a false counter example;FPis a prediction of a counter example as a positive example, that is, a false positive example; andTNis a prediction of a counter example as a counter example, that is, a true counter example. According to Table 1, precision, recall, andF1-score can be defined as:

    For the task of psoriasis diagnosis, it is necessary to focus on the recall instead of precision because most cases involve a positive case (no disease) and small number of counter cases (disease). The sample proportion of the two groups is very different. For example, in 100 records, 10 cases of psoriasis were found, out of which six were false positives and four were accurately identified. Although the precision was reduced to 94%, the recall increased from 0 to 100%. Although the disease was misreported occasionally, there was no omission of people with psoriasis.

    Table 1 Performance indicators of psoriasis classification based on confusion matrix

    The receiver operating characteristic (ROC) curve is used to describe the tradeoff between true positive and false positive rates. The true positive and false positive rates are defined as follows:

    In addition, we compared the performance of ResNet-34 and VGG19 in psoriasis diagnosis to evaluate the superiority of this model. The implementation of VGG19 is described in reference.

    4.4 Result analysis

    Figure 4 shows the comparative recall rates of ResNet-34 and VGG19 for classification diagnosis on the psoriasis dataset. As evident from Figure 4, the recall rates of both the methods increase by varying degrees with an increase in the psoriasis dataset size.However, on the whole, the recall rate of this method is always higher than that of VGG19. On average, the recall rate of this method is approximately 9.5%higher than that of VGG19. The reasons are as follows: (1) compared with VGG19, ResNet-34 has greater depth and can extract better and richer features of psoriasis; (2) ResNet-34 can effectively solve the performance degradation problem caused by the increasing network depth by introducing the concept of residual blocks and adding identity mapping connection into the network structure.

    Figure 4 Comparison of recall (ResNet-34 vs. VGG19)

    Figure 5 shows the comparativeF1-scores of the two methods for the classification diagnosis of psoriasis. It is visible that theF1-scores of the two methods show a rising trend with an increase in the scale of psoriasis dataset. However, the performance of the proposed method is always better than that of VGG19. The reasons are as follows: (1) we used a variety of techniques, such as data enhancement and TFRecord encoding to clean the original psoriasis images, which minimized the impact of noise data on the diagnosis model; (2) we used the Adam algorithm to train the model, which reduced the training time and further ensured the accuracy of diagnosis.

    Finally, to comprehensively evaluate the specificity and sensitivity of ResNet-34 and VGG19 in the classification and diagnosis of psoriasis, their ROC curves were drawn and compared, as shown in Figure 6. For each test sample, ResNet-34 and VGG19 received a “score” value for each classification, which indicated the likelihood of the sample to belong to a positive (or negative) case. To draw the ROC curve,we required a series of values pertaining to true positive and false positive rates. In this study, we achieved this objective by performing the following steps:

    Figure 5 Comparison of F1-scores (ResNet-34 vs.VGG19)

    (1) Sort the “score” value from high to low and use it as the threshold;

    (2) For each threshold, the test samples, whose“score” value is greater than or equal to this threshold, are considered as positive cases, while others are negative examples. This step helped form a set of forecast data;

    (3) The ROC curve can be obtained by connecting the observed data values.

    Figure 6 ROC-AUC comparison (ResNet-34 vs.VGG19)

    In Figure 6, the area under the ROC curve is called AUC. The classifier with a larger AUC value (area) has better performance. In Figure 5, the AUC values below the red and black lines represent the classification performances of VGG19 and ResNet-34, respectively. The AUC value of the latter is clearly higher than that of the former, which shows that ResNet-34 performs better than VGG19, and can be applied to psoriasis classification diagnosis task in real environment.

    5 Conclusion

    Psoriasis is a type of skin disease and is very difficult to cure. Owing to the various causes of the disease,accurately classifying and diagnosing psoriasis is difficult. In this paper, a psoriasis classification diagnosis model based on deep residual network is proposed. A 34-layer residual network was designed to achieve an accurate diagnosis of psoriasis. The final experimental results also verify the effectiveness of the proposed model. In the next step, we will continue to analyze the symptoms, syndrome types,and medication rules of psoriasis, build the knowledge map of the integrated diagnosis,treatment, and medication of psoriasis, and further propose a psoriasis medication recommendation model based on graph convolution neural network,to provide better a decision support system for doctors' diagnosis and treatment.

    Acknowledgements

    We thank for the funding support from the Key Research and Development Plan of China(No. 2017YFC1703306), Youth Project of Natural Science Foundation of Hunan Province (No.2019JJ50453), Project of Hunan Health Commission(No. 202112072217), Open Fund Project of Hunan University of Traditional Chinese Medicine(No. 2018JK02), and General Project of Education Department of Hunan Province (No. 19C1318).

    Competing interests

    The authors declare no conflict of interest.

    猜你喜歡
    面向全國(guó)細(xì)分共生
    《今天》雜志(面向全國(guó)發(fā)行的大型綜合期刊)
    今天(2023年23期)2023-10-09 09:02:48
    《今天》雜志(面向全國(guó)發(fā)行的大型綜合期刊)投稿須知
    今天(2023年14期)2023-09-23 08:16:58
    《今天》雜志(面向全國(guó)發(fā)行的大型綜合期刊)
    今天(2023年11期)2023-08-04 05:15:50
    人與熊貓 和諧共生
    共生
    深耕環(huán)保細(xì)分領(lǐng)域,維爾利為環(huán)保注入新動(dòng)力
    面向全國(guó)征稿 面向國(guó)內(nèi)外發(fā)行 歡迎訂閱《中央社會(huì)主義學(xué)院學(xué)報(bào)》
    優(yōu)生共生圈培養(yǎng)模式探索
    優(yōu)生共生圈培養(yǎng)模式探索
    1~7月,我國(guó)貨車(chē)各細(xì)分市場(chǎng)均有增長(zhǎng)
    成在线人永久免费视频| 国产免费男女视频| 好男人电影高清在线观看| 国产精品久久久人人做人人爽| 久久久国产精品麻豆| 久久精品成人免费网站| 老司机福利观看| 黑人操中国人逼视频| 国产欧美日韩一区二区三区在线| 另类亚洲欧美激情| 亚洲一码二码三码区别大吗| 欧美日韩亚洲国产一区二区在线观看 | 亚洲欧美激情综合另类| 日日夜夜操网爽| 侵犯人妻中文字幕一二三四区| 亚洲国产精品sss在线观看 | 久久国产精品男人的天堂亚洲| 久久精品人人爽人人爽视色| 日本wwww免费看| 国产精品一区二区免费欧美| 久久婷婷成人综合色麻豆| 久久中文看片网| 精品福利永久在线观看| 多毛熟女@视频| 久久久久国产精品人妻aⅴ院 | 色综合欧美亚洲国产小说| 少妇猛男粗大的猛烈进出视频| 欧美亚洲日本最大视频资源| 亚洲精品粉嫩美女一区| 极品人妻少妇av视频| 国产99久久九九免费精品| 精品国产超薄肉色丝袜足j| 亚洲精品一二三| 色精品久久人妻99蜜桃| 中文字幕最新亚洲高清| 亚洲精品国产区一区二| 日韩欧美三级三区| 久久午夜亚洲精品久久| 精品少妇久久久久久888优播| 天堂俺去俺来也www色官网| 国产高清激情床上av| 男女下面插进去视频免费观看| 国产成人欧美在线观看 | 男女下面插进去视频免费观看| 国产97色在线日韩免费| 韩国av一区二区三区四区| av线在线观看网站| 午夜福利在线免费观看网站| 99热网站在线观看| 欧美性长视频在线观看| 久久精品国产亚洲av香蕉五月 | 一边摸一边做爽爽视频免费| 欧美黄色片欧美黄色片| 欧美日韩视频精品一区| 啦啦啦在线免费观看视频4| 亚洲国产欧美日韩在线播放| 国产男女超爽视频在线观看| 十分钟在线观看高清视频www| 一本综合久久免费| 日韩 欧美 亚洲 中文字幕| 男女免费视频国产| 丰满人妻熟妇乱又伦精品不卡| 国产精品99久久99久久久不卡| 久久狼人影院| 69av精品久久久久久| 大片电影免费在线观看免费| 在线观看66精品国产| 他把我摸到了高潮在线观看| 麻豆av在线久日| 国内久久婷婷六月综合欲色啪| 国产精品99久久99久久久不卡| 80岁老熟妇乱子伦牲交| 国产欧美日韩一区二区精品| 中文字幕av电影在线播放| 天天躁夜夜躁狠狠躁躁| 黄频高清免费视频| 夫妻午夜视频| 国产精品99久久99久久久不卡| 国产野战对白在线观看| 久久精品国产清高在天天线| 久久精品成人免费网站| 亚洲成国产人片在线观看| 国产成人精品久久二区二区免费| 亚洲少妇的诱惑av| 交换朋友夫妻互换小说| 欧美大码av| 久久久久久免费高清国产稀缺| www.999成人在线观看| 青草久久国产| 看黄色毛片网站| av线在线观看网站| 久久久久久久久久久久大奶| 人人澡人人妻人| 每晚都被弄得嗷嗷叫到高潮| 女人久久www免费人成看片| 别揉我奶头~嗯~啊~动态视频| 日日摸夜夜添夜夜添小说| 亚洲 国产 在线| 久久精品人人爽人人爽视色| 老司机午夜福利在线观看视频| 欧美激情久久久久久爽电影 | 人人妻,人人澡人人爽秒播| 亚洲九九香蕉| 丰满人妻熟妇乱又伦精品不卡| 欧美成人午夜精品| 十八禁网站免费在线| 一区在线观看完整版| 亚洲 欧美一区二区三区| 91字幕亚洲| 日韩视频一区二区在线观看| 国产精品永久免费网站| 久久久久久人人人人人| 男女下面插进去视频免费观看| svipshipincom国产片| 亚洲三区欧美一区| 亚洲精品美女久久av网站| 日本wwww免费看| 欧美乱色亚洲激情| 在线免费观看的www视频| 成人手机av| 99精品在免费线老司机午夜| 亚洲国产毛片av蜜桃av| 国产精品久久久久久人妻精品电影| 久久ye,这里只有精品| 身体一侧抽搐| 老司机影院毛片| 精品欧美一区二区三区在线| 婷婷成人精品国产| 国产亚洲精品久久久久5区| 777米奇影视久久| 国产精品1区2区在线观看. | 国产精品 欧美亚洲| 午夜两性在线视频| 国产精品.久久久| 最新在线观看一区二区三区| 亚洲专区国产一区二区| 91成年电影在线观看| 国产成人欧美在线观看 | 超色免费av| 久久青草综合色| 亚洲 国产 在线| 丝袜美腿诱惑在线| 多毛熟女@视频| 亚洲精品中文字幕在线视频| 亚洲av第一区精品v没综合| 成人18禁在线播放| 成人国产一区最新在线观看| 国产精品久久久久久人妻精品电影| 精品第一国产精品| 亚洲美女黄片视频| 亚洲精品粉嫩美女一区| 欧美成人免费av一区二区三区 | 午夜亚洲福利在线播放| 国产片内射在线| 美女视频免费永久观看网站| 久久精品国产亚洲av高清一级| 国产精品一区二区在线不卡| 精品亚洲成a人片在线观看| 欧美精品人与动牲交sv欧美| 国产成人av激情在线播放| 18禁观看日本| 亚洲黑人精品在线| 人人妻人人添人人爽欧美一区卜| 国产日韩欧美亚洲二区| 久久九九热精品免费| 久久 成人 亚洲| 亚洲欧美色中文字幕在线| 老鸭窝网址在线观看| 国产aⅴ精品一区二区三区波| 每晚都被弄得嗷嗷叫到高潮| av网站免费在线观看视频| 国产高清国产精品国产三级| 免费看a级黄色片| 亚洲国产欧美一区二区综合| 人人澡人人妻人| 999久久久国产精品视频| 少妇裸体淫交视频免费看高清 | 黄色毛片三级朝国网站| av欧美777| 中文欧美无线码| 一级毛片高清免费大全| 精品人妻在线不人妻| 久久午夜亚洲精品久久| 免费在线观看视频国产中文字幕亚洲| 亚洲成av片中文字幕在线观看| 夜夜夜夜夜久久久久| 午夜激情av网站| 岛国毛片在线播放| 色综合欧美亚洲国产小说| 999久久久精品免费观看国产| 午夜福利在线免费观看网站| 国产日韩一区二区三区精品不卡| 国产成人系列免费观看| 在线观看日韩欧美| 亚洲色图av天堂| 欧美日本中文国产一区发布| 国产精品久久电影中文字幕 | 久久精品成人免费网站| 美国免费a级毛片| 国产不卡一卡二| 青草久久国产| 欧美人与性动交α欧美软件| 国产一区二区激情短视频| 老司机福利观看| 黄色 视频免费看| 久久人妻福利社区极品人妻图片| 两个人看的免费小视频| 国产一区有黄有色的免费视频| 少妇裸体淫交视频免费看高清 | 香蕉久久夜色| 日韩三级视频一区二区三区| 国产高清videossex| 亚洲精品在线观看二区| 香蕉国产在线看| 午夜福利影视在线免费观看| 在线天堂中文资源库| av网站在线播放免费| 亚洲熟女毛片儿| 精品国产一区二区三区久久久樱花| www.熟女人妻精品国产| 欧美av亚洲av综合av国产av| 欧美日韩视频精品一区| 女同久久另类99精品国产91| 亚洲性夜色夜夜综合| 多毛熟女@视频| 嫩草影视91久久| 亚洲av熟女| 啦啦啦在线免费观看视频4| 精品一品国产午夜福利视频| 十分钟在线观看高清视频www| 精品国产亚洲在线| 老鸭窝网址在线观看| 成人精品一区二区免费| 人妻一区二区av| 亚洲成国产人片在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产主播在线观看一区二区| 日本vs欧美在线观看视频| 麻豆成人av在线观看| 成人亚洲精品一区在线观看| 亚洲在线自拍视频| 国产蜜桃级精品一区二区三区 | 成年人午夜在线观看视频| 国产精品影院久久| 亚洲精品美女久久久久99蜜臀| 亚洲欧美一区二区三区黑人| 国产极品粉嫩免费观看在线| 精品久久久久久电影网| 真人做人爱边吃奶动态| 少妇 在线观看| 一进一出好大好爽视频| 久久精品亚洲av国产电影网| 老司机福利观看| 精品久久久精品久久久| 精品亚洲成a人片在线观看| 美女高潮到喷水免费观看| 99精品久久久久人妻精品| 91老司机精品| 国产99白浆流出| 日本黄色日本黄色录像| 成年人黄色毛片网站| 亚洲成人手机| 免费看a级黄色片| 国产精品自产拍在线观看55亚洲 | 一边摸一边做爽爽视频免费| 人妻一区二区av| 一进一出抽搐动态| 亚洲av片天天在线观看| 91成人精品电影| 欧美日韩亚洲综合一区二区三区_| 欧美黄色淫秽网站| 国产精品国产高清国产av | 日本vs欧美在线观看视频| 一本综合久久免费| 日韩 欧美 亚洲 中文字幕| 久久精品成人免费网站| 啦啦啦在线免费观看视频4| 国产日韩欧美亚洲二区| 欧美精品人与动牲交sv欧美| 久久 成人 亚洲| 少妇被粗大的猛进出69影院| 午夜福利在线观看吧| 99精品久久久久人妻精品| 一二三四在线观看免费中文在| 99精国产麻豆久久婷婷| 亚洲中文日韩欧美视频| 深夜精品福利| 久久国产精品人妻蜜桃| 中亚洲国语对白在线视频| 国产成人免费无遮挡视频| 国产蜜桃级精品一区二区三区 | 日韩精品免费视频一区二区三区| 两人在一起打扑克的视频| 日韩中文字幕欧美一区二区| 麻豆av在线久日| 老司机亚洲免费影院| 亚洲av成人av| 熟女少妇亚洲综合色aaa.| 18禁观看日本| 国产极品粉嫩免费观看在线| 久久久久久久国产电影| 国产精品成人在线| 久久久精品区二区三区| 1024视频免费在线观看| 亚洲国产精品合色在线| 亚洲av第一区精品v没综合| 99久久99久久久精品蜜桃| 天堂动漫精品| 黄色怎么调成土黄色| 久久天堂一区二区三区四区| www.精华液| 搡老岳熟女国产| 免费不卡黄色视频| 免费看a级黄色片| 18禁黄网站禁片午夜丰满| 身体一侧抽搐| 欧美色视频一区免费| av免费在线观看网站| 最近最新中文字幕大全免费视频| 757午夜福利合集在线观看| 香蕉丝袜av| 美女福利国产在线| 女性生殖器流出的白浆| 91精品国产国语对白视频| 1024香蕉在线观看| 久久久久精品国产欧美久久久| 国产不卡一卡二| 国产单亲对白刺激| 精品久久久久久,| 亚洲欧美激情综合另类| 新久久久久国产一级毛片| 99久久国产精品久久久| 黑人巨大精品欧美一区二区蜜桃| 精品熟女少妇八av免费久了| 天天躁夜夜躁狠狠躁躁| 国产精品秋霞免费鲁丝片| 久久久久久人人人人人| 一进一出抽搐动态| 国产深夜福利视频在线观看| 99香蕉大伊视频| 亚洲精品在线美女| 国产av又大| 在线观看www视频免费| 亚洲精品自拍成人| 亚洲欧美激情在线| 两性夫妻黄色片| 少妇 在线观看| 亚洲五月天丁香| 下体分泌物呈黄色| 亚洲一区二区三区欧美精品| 精品少妇一区二区三区视频日本电影| 国产精品久久久久久人妻精品电影| 国产精品乱码一区二三区的特点 | 国产午夜精品久久久久久| 久久人人爽av亚洲精品天堂| 亚洲熟妇中文字幕五十中出 | 女人被躁到高潮嗷嗷叫费观| bbb黄色大片| 999久久久国产精品视频| 99精品久久久久人妻精品| 丝袜在线中文字幕| 欧美日韩视频精品一区| 午夜精品国产一区二区电影| 精品无人区乱码1区二区| 91字幕亚洲| 一进一出抽搐动态| 十八禁高潮呻吟视频| 热99re8久久精品国产| 大型黄色视频在线免费观看| 老司机午夜十八禁免费视频| 无遮挡黄片免费观看| 欧美丝袜亚洲另类 | 日韩免费av在线播放| 亚洲人成电影免费在线| www.自偷自拍.com| 免费不卡黄色视频| 久久国产精品男人的天堂亚洲| 91麻豆av在线| 国产成人系列免费观看| 午夜久久久在线观看| 国产又色又爽无遮挡免费看| 夫妻午夜视频| 免费在线观看完整版高清| 久久久久久久久免费视频了| 国产午夜精品久久久久久| 久久 成人 亚洲| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲,欧美精品.| 国产精品亚洲av一区麻豆| av不卡在线播放| av在线播放免费不卡| 最近最新中文字幕大全免费视频| 热re99久久国产66热| 国产精品九九99| 成人18禁在线播放| 国产真人三级小视频在线观看| 精品久久久久久电影网| 欧美亚洲日本最大视频资源| 母亲3免费完整高清在线观看| 日韩免费高清中文字幕av| 国产午夜精品久久久久久| 黄片播放在线免费| 精品视频人人做人人爽| 精品无人区乱码1区二区| 精品国产超薄肉色丝袜足j| 人成视频在线观看免费观看| 欧美日韩国产mv在线观看视频| 99re6热这里在线精品视频| 法律面前人人平等表现在哪些方面| 天天影视国产精品| 久久久国产成人免费| 精品少妇一区二区三区视频日本电影| 日本a在线网址| netflix在线观看网站| 国产三级黄色录像| 人人妻人人添人人爽欧美一区卜| 亚洲视频免费观看视频| 久久久久久亚洲精品国产蜜桃av| 久久香蕉精品热| 精品国产一区二区三区久久久樱花| svipshipincom国产片| 韩国精品一区二区三区| 一级,二级,三级黄色视频| svipshipincom国产片| 成人av一区二区三区在线看| 免费人成视频x8x8入口观看| 少妇猛男粗大的猛烈进出视频| 精品一品国产午夜福利视频| 日本wwww免费看| 999久久久精品免费观看国产| 欧美在线一区亚洲| 亚洲精品av麻豆狂野| 国产91精品成人一区二区三区| 精品午夜福利视频在线观看一区| av线在线观看网站| 69av精品久久久久久| 亚洲一区中文字幕在线| 久久国产精品大桥未久av| 两性午夜刺激爽爽歪歪视频在线观看 | 叶爱在线成人免费视频播放| 欧美 亚洲 国产 日韩一| 亚洲国产精品一区二区三区在线| 国产亚洲精品久久久久久毛片 | 精品亚洲成a人片在线观看| 精品午夜福利视频在线观看一区| 久久精品国产综合久久久| 成在线人永久免费视频| 欧美不卡视频在线免费观看 | 9色porny在线观看| 成人亚洲精品一区在线观看| 色婷婷久久久亚洲欧美| 在线观看午夜福利视频| 少妇粗大呻吟视频| 两人在一起打扑克的视频| av在线播放免费不卡| 91大片在线观看| 日韩三级视频一区二区三区| 亚洲专区字幕在线| 免费看十八禁软件| 天天躁夜夜躁狠狠躁躁| 自拍欧美九色日韩亚洲蝌蚪91| 他把我摸到了高潮在线观看| 啦啦啦在线免费观看视频4| 久久中文字幕一级| 又紧又爽又黄一区二区| 一进一出抽搐动态| 精品一区二区三卡| 国产在线精品亚洲第一网站| 视频区欧美日本亚洲| 一本大道久久a久久精品| 电影成人av| 天堂俺去俺来也www色官网| 国产精品美女特级片免费视频播放器 | 日日摸夜夜添夜夜添小说| 国产有黄有色有爽视频| 又紧又爽又黄一区二区| 视频区图区小说| 天天影视国产精品| 国产精品一区二区免费欧美| 国产av精品麻豆| 一边摸一边抽搐一进一出视频| 久久性视频一级片| 国产亚洲精品第一综合不卡| 国产人伦9x9x在线观看| 90打野战视频偷拍视频| 欧美日韩精品网址| 欧美人与性动交α欧美精品济南到| 乱人伦中国视频| 免费久久久久久久精品成人欧美视频| 精品人妻熟女毛片av久久网站| 午夜日韩欧美国产| 久久亚洲真实| 国产欧美日韩一区二区三区在线| 欧美成人免费av一区二区三区 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲熟妇中文字幕五十中出 | 巨乳人妻的诱惑在线观看| 最新美女视频免费是黄的| 久久精品人人爽人人爽视色| 老熟妇乱子伦视频在线观看| 别揉我奶头~嗯~啊~动态视频| 波多野结衣av一区二区av| 伦理电影免费视频| 人人妻人人澡人人爽人人夜夜| 在线十欧美十亚洲十日本专区| 日韩大码丰满熟妇| 亚洲 国产 在线| 校园春色视频在线观看| 国产一区二区三区综合在线观看| 欧美国产精品va在线观看不卡| 久久九九热精品免费| 国产野战对白在线观看| 成人18禁高潮啪啪吃奶动态图| 欧美日韩中文字幕国产精品一区二区三区 | 18在线观看网站| 亚洲 国产 在线| 亚洲精品国产一区二区精华液| 天堂√8在线中文| 欧美人与性动交α欧美软件| 成年人黄色毛片网站| 亚洲成人免费av在线播放| 制服人妻中文乱码| 亚洲av电影在线进入| 国产精品免费视频内射| 久久这里只有精品19| 超色免费av| 欧美亚洲日本最大视频资源| 99久久综合精品五月天人人| 一二三四社区在线视频社区8| 搡老熟女国产l中国老女人| 又大又爽又粗| 国产亚洲精品第一综合不卡| 欧美久久黑人一区二区| 99国产综合亚洲精品| 精品少妇一区二区三区视频日本电影| x7x7x7水蜜桃| 1024香蕉在线观看| av电影中文网址| 国产精品偷伦视频观看了| 免费看a级黄色片| 久久午夜综合久久蜜桃| 一个人免费在线观看的高清视频| 咕卡用的链子| 精品国产一区二区三区久久久樱花| av免费在线观看网站| 午夜老司机福利片| 国产一区有黄有色的免费视频| 国产亚洲欧美精品永久| 1024香蕉在线观看| 日韩免费高清中文字幕av| 两性夫妻黄色片| 一级a爱片免费观看的视频| 亚洲情色 制服丝袜| 国产亚洲精品久久久久5区| 国产99白浆流出| 99久久综合精品五月天人人| 啦啦啦 在线观看视频| a级毛片黄视频| bbb黄色大片| 他把我摸到了高潮在线观看| 搡老熟女国产l中国老女人| 一区二区三区精品91| 亚洲国产毛片av蜜桃av| 久久青草综合色| 欧美精品人与动牲交sv欧美| 久久精品国产a三级三级三级| av天堂久久9| 欧美乱码精品一区二区三区| 成人手机av| 啦啦啦免费观看视频1| 欧美最黄视频在线播放免费 | 制服诱惑二区| 美女午夜性视频免费| 国产成人免费无遮挡视频| 中国美女看黄片| 亚洲美女黄片视频| 精品少妇久久久久久888优播| 精品福利永久在线观看| 国产精品影院久久| 成人18禁高潮啪啪吃奶动态图| 男女之事视频高清在线观看| ponron亚洲| 亚洲精品国产色婷婷电影| 日韩欧美免费精品| 999精品在线视频| 亚洲综合色网址| 国产免费现黄频在线看| 亚洲欧美激情在线| 欧美一级毛片孕妇| 女人久久www免费人成看片| 国产精品亚洲一级av第二区| 久久草成人影院| 亚洲精品国产精品久久久不卡| 水蜜桃什么品种好| 极品人妻少妇av视频| 中文字幕人妻丝袜一区二区| 亚洲午夜精品一区,二区,三区| 很黄的视频免费| 亚洲男人天堂网一区| 手机成人av网站| 日本撒尿小便嘘嘘汇集6| 99re6热这里在线精品视频| 国产乱人伦免费视频| 日本vs欧美在线观看视频| 91精品三级在线观看| 国产精品98久久久久久宅男小说| 国产区一区二久久| 国产午夜精品久久久久久| 国产视频一区二区在线看| 99久久综合精品五月天人人| 成人亚洲精品一区在线观看| 精品国产超薄肉色丝袜足j| www.精华液| 91av网站免费观看| 亚洲全国av大片|