• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel pyrimidine-benzimidazole hybrids with antibacterial and antifungal properties and potential inhibition of SARS-CoV-2 main protease and spike glycoprotein

    2022-01-19 07:58:08ShrukKhnMyurKleFlkSiddiquiNitinNem
    Digital Chinese Medicine 2021年2期

    Shruk Khn, Myur Kle, Flk Siddiqui, Nitin Nem

    a. Department of Pharmaceutical Chemistry, MUP’s College of Pharmacy (B Pharm), Washim, Maharashtra 444504, India

    b. Department of Pharmaceutical Chemistry, Government College of Pharmacy, Aurangabad, Maharashtra 431003, India

    c. Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s (SVKM’s) Institute of Pharmacy, Dhule, Maharashtra 424001, India

    Keywords SARS-CoV-2 inhibitor COVID-19 Molecular docking Pyrimidine-benzimidazole Bacteria Antifungal

    ABSTRACT

    1 Introduction

    Coronavirus disease 2019 (COVID-19)[1]induced by the novel severe acute respiratory syndrome-related coronavirus (SARS-CoV-2) has been declared by the World Health Organization (WHO) as a pandemic[2].Coronaviruses have triggered two other epidemics in addition to COVID-19, namely Middle East respiratory syndrome (MERS; 2012), and severe acute respiratory syndrome (SARS; 2002)[3]. The National Health Commission of China declared in January 20th, 2020 that SARS-CoV-2 infection is transmitted by person-to-person contact[4]. SARS-CoV-2 belongs to the same familyBetacoronaviruses, as those that caused SARS and MERS[5,6]. The novel coronavirus is a single-stranded positive-sense RNA with a diameter of 80 - 120 nm and 42 large viral RNA genomes[7].Coronaviruses are categorized as alpha- (α-COV),beta- (β-COV), gamma- (γ-COV), and delta- (δ-COV)types[8]. Six of them have infected humans, and SARS-CoV-2 is the seventh after SARS-CoV and MERS-CoV[9]. Symptoms of SARS-CoV-2 infection include fever, cough, dyspnea, myalgia, fatigue,decreased leukocyte counts, and pneumonia.Although numerous clinical trials have evaluated possible therapies for SARS-CoV-2 infection[10,11],treatment is not yet available for COVID-19[12].

    SARS-CoV-2 invades after binding to host cellular receptors[13,14]. Host cell receptors and the receptorbinding domain (RBD) of SARS-CoV-2 might be viable targets of interest in treating SARS-CoV-2 infection[15]. Nucleocapsid (N), envelope (E), membrane(M), and spike (S) proteins comprise the structural proteins of SARS-CoV-2[16,17]. The spike protein consists of an RBD that specifically binds to human angiotensin-converting enzyme-2 (hACE-2), which leads to host cell invasion[14,17]. Much investigative focus is presently directed towards developing specific novel inhibitors of the RBD or hACE-2.

    Remdesivir is an approved treatment for COVID-19[18]. Lopinavir and nelfinavir might inhibit SARSCoV-2 viral protease, and a clinical trial of favipiravir is underway for treating pneumonia induced by SARS-CoV-2[17]. Favipiravir is a purine nucleoside that disrupts viral RNA synthesis[1], and ivermectin inhibits the replication of SARS-CoV-2in vitro[19].Therefore, we used remdesivir, nelfinavir, lopinavir,favipiravir, and ivermectin along with the native ligand in the crystal structure of SARS-CoV-2 main protease, that is, N3 as reference moieties for molecular docking studies[20].

    Heterocyclic compounds provide scaffolds upon which pharmacophores can assemble to yield potent and selective drugs[21]. Among these, benzimidazole heterocyclics have attracted attention because they are easy to synthesize and have a wide range of biological activities. The benzimidazole ring is an essential component of vitamin-B12 in the form of 5, 6-dimethyl-l-(alpha-D-ribofuranosyl) benzimidazole[22].Various benzimidazole derivatives with human and veterinary anthelmintic[23], anti-ulcer[24], cardiotonic[25], antihypertensive[26], analgesic[27], anticonvulsant[28], anticancer[29]properties have been developed[30,31]. Pyrimidines and their derivatives also have anticancer[32], anxiolytic[33], antioxidant[34], antiviral[35], antifungal[36], anticonvulsant[36], antidepressant, and antibacterial properties[37]. The United States Food and Drug Administration (USFDA) has approved many purine and pyrimidine derivatives for the management of cancer and viral diseases[38].Pyrimidine-fused bicyclic heterocyclic agents have anticancer, antiviral, and many other biological activities.

    To date, 147 pyrimidine-fused bicyclic heterocyclic drugs have been approved for clinical application or are currently being clinically administered. The USFDA has authorized 57 of them to treat various diseases, among which, 22 are currently being applied to treat various types of cancer[39]. The pyrimidine ring system is abundant in nature as substituted and ring-fused compounds and equivalents,such as cytosine, thymine, uracil, thiamine (vitamin B1) and alloxan. It is also found in various synthetic compounds, including barbiturates and the HIV medication, zidovudine. Bacimethrin, a naturally occurring thiamine antimetabolite obtained in 1961 fromBacillus megatherium, is the most basic pyrimidine antibiotic, and it acts against many bacterial infections[40]. Pyrimidine-fused bicyclic heterocyclic compounds can serve as scaffolds to find new and effective medicines for specific biological targets.

    The present study aimed to synthesize and characterize pyrimidine-linked benzimidazole hybrids with antimicrobial and antifungal activity as well as inhibitory activity against SARS-CoV-2 main protease and spike glycoprotein. We screened their antiviral inhibitory action by molecular dockingin silicoas we were unable to screen them for SARS-CoV-2 activityin vivodue to safety issues. We therefore investigated their antimicrobial and antifungal activitiesin vitroas preliminary evidence of their biological potential. Molecular dockingin silicovalidates the binding affinity of compounds for target molecules as a docking scores (kcal/mol). This allows the prediction of structural activity relationships between compounds and targets.

    2 Materials and methods

    2.1 Molecular docking

    Compounds were screened by molecular docking using the PyRx-Virtual Screening Tool[41]on a Lenovo ThinkPad with a 64-bit operating system, an Intel(R)CoreTMi5-4300M processor with a base frequency of 2.60 GHz and 4GB RAM.

    The structures of approved drugs remdesivir, lopinavir, nelfinavir, invermectin, favipiravir, and native ligand (Spatial Data File [SDF]) were downloaded from the U.S. National Library of Medicine, Pub-Chem (https://pubchem.ncbi.nlm.nih.gov/), and the structures of 1,2,3,4-tetrahydropyrimidine-2-thiols and novel pyrimidine-linked benzimidazole derivatives were sketched in ChemDraw Ultra 8.0. Energy was minimized using a universal force field (UFF)[42].We investigated the binding affinity of the derivatives for the SARS-CoV-2 main protease (PDB ID: 6LU7)and spike glycoprotein (6VSB). The crystal structures of 6LU7 (https://www.rcsb.org/structure/6LU7) and 6VSB (https://www.rcsb.org/structure/6VSB) were downloaded from the RCSB Protein Data Bank. The native ligand in 6LU7 was N-[(5-methylisoxazol-3-yl)carbonyl] alanyl-L-valyl-N~1~-((1R, 2Z)-4-(benzyloxy)-4-oxo-1-{[(3R)-2-oxopyrrolidin-3-yl] methyl} but-2-enyl)-L-leucinamide[20]. The crystal structure of 6VSB did not indicate a native ligand. Molecular docking proceeded as described[43-45]. The interacting amino acid residues in the protein were identified using BIOVIA Discovery Studio Visualizer version 19.1.0.182 87 (Dassault Systemes, Paris,France)[46].

    2.2 Design of novel pyrimidine-linked benzimidazole hybrids

    We designed derivatives by merging the 2-(chloromethyl)-1H-benzimidazole moiety with 1,2,3,4-tetrahydropyrimidine-2-thiol pyrimidine derivatives synthesized via the modified Biginelli reaction.Figure 1 shows the approach used to construct the derivatives. We then compared binding affinities of 1,2,3,4-tetrahydropyrimidine-2-thiols and novel pyrimidine-linked benzimidazole derivatives to determine the significance of merging the two moieties.

    Table 1 shows structures of the pyrimidine derivatives and final novel derivatives obtained by merging benzimidazole with pyrimidine.

    2.3 Laboratory procedures

    2.3.1 Synthesis of 2-(chloromethyl)-1H-benzimidazoleThis procedure is described in the Supplementary material. The yield was 85%. A yellowish-brown product recrystallized from dioxane; m.p., 152 - 154 °C[compared with the literature: 147.8 - 148.2 °C][47]. Care was taken while handling 2-(chloromethyl)-1Hbenzimidazole because it is a powerful skin and mucous membrane irritant[48]. Figure 2 shows the reaction scheme for the synthesis of this compound.

    2.3.2 Synthesis of pyrimidine derivativesThe modified Biginelli reaction proceeded as described and detailed in the Supplementary material[49]and generated 1,2,3,4-tetrahydropyrimidine-2-thiol from ethyl acetoacetate, aldehyde, and thiourea[37,50]at 75% - 95% yield (Figure 3).

    Figure 1 Synthesis of pyrimidine-linked benzimidazole scaffold

    Table 1 Structures of 1,2,3,4-tetrahydropyrimidine-2-thiols and novel pyrimidine-linked benzimidazole derivatives

    Figure 2 Synthesis of 2-(chloromethyl)-1H-benzimidazole

    2.3.3 Merging 2-(chloromethyl)-1H-benzimidazole and 1,2,3,4-tetrahydropyrimidine-2-thiols to synthesize pyrimidine-linked benzimidazole derivativesWe condensed 2-(chloromethyl)-1H-benzimidazole(1.66 g, 0.01 mol and 1,2,3,4-tetrahydropyrimidine-2-thiol (0.01 mol) by heating with potassium hydroxide(KOH) and H2O : acetone (2 : 1) at 50 - 60 °C for 45 min.The reaction mixture was chilled to room temperature, decanted into ice-cold water, filtered, and recrystallized from ethanol (Figure 4). The yield was 90% - 95%.

    2.4 Calculation of Lipinski rule of five

    Figure 3 Synthesis of 1,2,3,4-tetrahydropyrimidine-2-thiols via modified Biginelli reaction

    Figure 4 Synthesis of novel pyrimidine-linked benzimidazole derivatives

    We applied the Lipinski rule of five that defines the ability of new molecular entities to be useful drugs. In terms of drug development, the rule states that weak absorption or permeation is more likely when the criteria of > 5 H-bond donors, 10 H-bond acceptors, molecular weight > 500, and a measured LogP(MLogP) > 5 are met[51-54]. The properties of all derivatives were calculated using the SwissADME online tool(http://www.swissadme.ch/index.php).

    2.5 Biological activity

    Various concentrations of derivatives were prepared in DMSO to assess their antibacterial and antifungal activities against standard strains (Table 2) using broth dilution. Bacteria were maintained, and drugs were diluted in nutrient Mueller Hinton broth. The broth was inoculated with 108colony-forming units (CFU)per milliliter of test strains (Institute of MicrobialTechnology, Chandigarh, India) determined by turbidity. Stock solutions of synthesized derivates(2 mg/mL) were serially diluted for primary and secondary screening. The primary screen included 1 000, 500, and 250 μg/mL of synthesized derivatives,then those with activity were further screened at 200,100, 50, 25, 12.5, and 6.250 μg/mL. A control without antibiotic was subcultured (before inoculation) by spreading one loopful evenly over a quarter of a plate of medium suitable for growing test organisms and incubated at 37 °C overnight. The lowest concentrations of derivatives that inhibited bacterial or fungal growth were taken as minimal inhibitory concentrations (MICs). These were compared with the amount of control growth before incubation(original inoculum) to determine MIC accuracy[55-57].The standards for antibacterial activity were gentamycin, ampicillin, chloramphenicol,ciprofloxacin, and norfloxacin served, and those for antifungal activity were nystatin and griseofulvin.

    Table 2 Bacterial and fungal strains for activity assay

    3 Results

    3.1 Molecular docking

    Table 3 shows details of the SARS-CoV-2 main protease and spike glycoprotein according to PDB Xray structure validation reports.

    Table 4 shows details of the derivatives, their binding affinity (kcal/mol), number of hydrogen bonds formed with targets and active amino acid residues involved in interactions. Data for compounds 1a - 1h (1,2,3,4-tetrahydropyrimidine-2-thiols), are provided in Supplementary material.

    Table 5 shows the two- and three-dimensional(2D and 3D) binding positions of the derivatives.These enabled us to predict which atoms and/or groups in a ligand are involved in interactions with amino acid residues in target derivatives. Details of 2D and 3D-docking of compounds 1a - 1h are provided in the Supplementary material.

    Table 3 Crystal structures of SARS-CoV-2 main protease (Mpro) and spike glycoprotein used for molecular docking

    Table 4 Details of the synthesized derivatives

    Table 4 Continued

    Table 4 Continued

    Table 6 shows changes in the number of hydrogen bonds formed and binding affinity before and after merging with benzimidazole.

    3.2 Chemistry

    Spectral characterization revealed the formation of pyrimidine-linked benzimidazole derivatives. The chemistry, melting points, physical properties, and IR spectra are provided in the Supplementary material.

    3.2.1 2-(chloromethyl)-1H-benzimidazoleMolecular formula, C8H7ClN2; molecular weight, 166.61;appearance, yellowish brown; soluble in ethanol,acetone, benzene; elemental analysis, C, 57.67; H,4.23; Cl, 21.28; N, 16.81; LogP, 2.11; yield, 90%; m.p.,152 - 154 °C; IR: aromatic, 933 and 842 cm-1; halogen, 642 cm-1; NH bending, 1 600 cm-1; NH stretching,3 300 - 3 400 cm-1; CH bending, 700 and 842 cm-1; CH stretching, 3 084 cm-1; C = C, 1 650 cm-1.

    3.2.2 Ethyl 1,2,3,4-tetrahydro-2-mercapto-6-methylpyrimidine-5-carboxylate (1a)Molecular formula,C8H14N2O2,S; molecular weight, 198.24; appearance,light pink powder; soluble in ethanol, acetone,benzene; m/e ratio, 198.05 (100.0%), 199.05 (9.6%),200.04 (4.5%); elemental analysis, C, 48.47; H, 5.08; N,14.13; O, 16.14; S, 16.17; LogP, 1.66; yield, 80%; m.p.,213 - 215 °C; IR: NH bending, 1 600 cm-1; NH stretching, 3 315 cm-1; CH bending, 960 cm-1; CH stretching,3 030 cm-1; ester group, 1 710 cm-1; SH stretching,2 524 cm-1; C-S stretching, 680 cm-1; aromatic,690 cm-1.

    3.2.3 Ethyl-1,2,3,4-tetrahydro-2-mercapto-6-methyl-4-phenylpyrimidine-5-carboxylate (1b)Molecular formula, C14H18N2O2S; molecular weight, 274.34;appearance, milky white crystals; soluble in ethanol,acetone, benzene; m/e ratio, 274.08 (100.0%), 275.08(16.2%), 276.07 (4.5%), 276.08 (1.7%); elemental analysis, C, 61.29; H, 5.14; N, 10.21; O, 11.66; S, 11.69;LogP, 3.76; yield 85%; m.p., 203 - 205 °C; IR: NH bending 1 654 cm-1; NH stretching, 3 332 cm-1; CH bending, 869 cm-1; CH stretching, 3 180 cm-1; ester group, 1 700 cm-1; aromatic, 700 cm-1; SH stretching,2 582 cm-1; C-S stretching 692 cm-1.

    3.2.4 Ethyl-1,2,3,4-tetrahydro-4-(2-hydroxyphenyl)-2-mercapto-6-methylpyrimidine-5-carboxylate (1c)

    Molecular formula, C14H18N2O3S; molecular weight,290.34; appearance, prismatic white crystals; solublein ethanol, acetone, benzene; m/e ratio, 290.07(100.0%), 291.08 (15.4%), 292.07 (4.6%), 292.08(1.8%), 291.07 (1.5%; elemental analysis, C, 57.92; H,4.86; N, 9.65; O, 16.53; S, 11.04; LogP, 3.37; yield, 77%;m.p., 201 - 203 °C; IR: NH bending, 1 581 cm-1; NH stretching, 3 300 cm-1; CH bending, 756 cm-1; CH stretching, 3 003 cm-1; ester group, 1 751 cm-1;hydroxy group, 3 600 cm-1; aromatic o-disubstituted,730 cm-1; SH stretching, 2 600 cm-1; C-S stretching,650 cm-1.

    Table 5 2D and 3D docking positions of drugs targeting SARS-CoV-2 main protease and RBD of spike glycoprotein

    Table 5 Continued

    3.2.5 Ethyl-1,2,3,4-tetrahydro-4-(3-hydroxyphenyl)-2-mercapto-6-methylpyrimidine-5-carboxylate (1d)

    Molecular formula, C14H18N2O3S; molecular weight,290.34; appearance, light brown powder; soluble in ethanol, acetone, benzene; m/e ratio, 290.07(100.0%), 291.08 (15.4%), 292.07 (4.6%), 292.08(1.8%), 291.07 (1.5%); elemental analysis, C, 57.92; H,4.86; N, 9.65; O, 16.53; S, 11.04; LogP, 3.37; yield, 79%;m.p., 179 - 181 °C; IR: -NH bending, 1 610 cm-1; NH stretching, 3 319 cm-1; CH bending, 866 cm-1; CHstretching 3 150 cm-1; ester group 1 700 cm-1; hydroxy group, 3 600 cm-1aromatic m-disubstituted, 680 and 788 cm-1; SH stretching, 2 500 cm-1; C-S stretching,630 cm-1.

    Table 6 Affinity and hydrogen bonds formed after pyrimidine-linked benzimidazole hybrids bound to SARSCoV-2 main protease

    3.2.6 Ethyl-1,2,3,4-tetrahydro-4-(4-hydroxyphenyl)-2-mercapto-6-methylpyrimidine-5-carboxylate (1e)

    Molecular formula, C14H14N2O3S; molecular weight,290.34; appearance, off-white powder; soluble in ethanol, acetone, benzene; m/e ratio, 290.07(100.0%), 291.08 (15.4%), 292.07 (4.6%), 292.08(1.8%), 291.07 (1.5%); elemental analysis, C, 57.92; H,4.86; N, 9.65; O, 16.53; S, 11.04; LogP, 3.37; yield, 85%;m.p., 225 - 227 °C; IR: NH bending, 1 581 cm-1; NH stretching 3 400 cm-1; SH bending, 825 cm-1; SH stretching 3 016 and 3 196 cm-1; ester group 1 689 cm-1;hydroxy group 3 502 cm-1aromatic p-disubstituted,825 cm-1; SH stretching, 2 561 cm-1; C-S stretching,642 cm-1.

    3.2.7 Ethyl-4-(2-chlorophenyl)-1,2,3,4-tetrahydro-2-mercapto-6-methylpyrimidine-5-carboxylate (1f)

    Molecular formula, C14H17ClN2O2S; molecular weight, 308.78; appearance, yellowish white sticky product; soluble in ethanol, acetone, benzene; m/e ratio, 308.04 (100.0%), 310.04 (32.6%), 309.04 (16.9%),311.04 (5.9%), 310.03 (4.5%), 312.03 (1.5%), 310.05(1.1%); elemental analysis, C, 54.46; H, 4.24; Cl, 11.48;N, 9.07; O, 10.36; S, 10.38; LogP, 4.31; yield, 87%; m.p.192 - 194 °C; IR: NH bending, 1 580 cm-1; NH stretching, 3 350 cm-1; CH bending, 767 cm-1; CH stretching, 3 100 cm-1; ester group, 1 724 cm-1; halogen group, 646 cm-1; aromatic o-disubstituted, 767 cm-1;SH stretching, 2 349 cm-1; C-S stretching, 646 cm-1.

    3.2.8 Ethyl-1,2,3,4-tetrahydro-2-mercapto-4-(4-methoxyphenyl)-6-methylpyrimidine-5-carboxylate (1g)

    Molecular formula, C15H20N2O3S; molecular weight,304.36; appearance, white crystals; soluble in ethanol, acetone, benzene; m/e ratio, 304.09(100.0%), 305.09 (18.1%), 306.08 (4.5%), 306.09(2.1%); elemental analysis, C, 59.19; H, 5.30; N, 9.20;O, 15.77; S, 10.54; LogP, 3.63; yield, 92%; m.p., -199 -201 °C; IR: NH bending, 1 581 cm-1; NH stretching,3 319 cm-1; CH bending, 767 cm-1; CH stretching,3 150 cm-1; ester group, 1 710 cm-1; ether group,1 186 cm-1; aromatic p-disubstituted, 790 cm-1; SH stretching, 2 500 cm-1; C-S stretching, 653 cm-1.

    3.2.9 Ethyl-4-cinnamyl-1,2,3,4-tetrahydro-2-mercapto-6-methylpyrimidine-5-carboxylate (1h)Molecular formula, C17H22N2O2S; molecular weight, 314.4;appearance, white crystals; soluble in ethanol,acetone, benzene; m/e ratio, 314.11 (100.0%), 315.11(20.0%), 316.10 (4.5%), 316.12 (1.6%); Elemental Analysis, C, 64.94; H, 5.77; N, 8.91; O, 10.18; S, 10.20;LogP, 4.55; yield, 82%; m.p., 200 - 202 °C; IR, NH bending, 1 595 cm-1; NH stretching, 3 400 cm-1; CH bending, 852 cm-1; CH stretching, 3 150 cm-1; ester group, 1 703 cm-1; C = C, 1 670 cm-1; aromatic, monosubstituted, 700 and 770 cm-1; SH stretching,2 600 cm-1; SH stretching, 661 cm-1.

    3.2.10 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-6-methylpyrimidine-5-carboxylate (2a)Molecular formula, C16H20N4O2S; molecular weight, 328.39; appearance, yellowish brown;soluble in ethanol, acetone, benzene; m/e ratio,328.10 (100.0%), 329.10 (19.7%), 330.10 (5.3%), 330.11(1.5%); elemental analysis, C, 58.52; H, 4.91; N, 17.06;O, 9.74; S, 9.76; LogP, 3.07; yield, 91%; m.p., 172 -174 °C; IR: NH bending, 1 546 cm-1; NH stretching,3 313 cm-1; CH bending, 750 cm-1; CH stretching,3 034 cm-1; ester group, 1 700 cm-1; C = C, 1 600 cm-1;aromatic, 750 cm-1; -C-S-C, 750 cm-1; C-S stretching,680 cm-1.

    3.2.11 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-6-methyl-4-phenylpyrimidine-5-carboxylate (2b)Molecular formula, C22H24N4O2S;molecular weight, 404.48; appearance, yellowish brown; soluble in ethanol, acetone, benzene; m/e ratio, 404.13 (100.0%), 405.13 (26.1%), 406.13 (5.5%),406.14 (2.8%), 407.13 (1.1%); elemental analysis, C,65.33; H, 4.98; N, 13.85; O, 7.91; S, 7.93; LogP, 5.17;yield, 93%; m.p., 142 - 144 °C; IR, NH bending,1 600 cm-1; NH stretching, 3 313 cm-1; CH bending,842 cm-1; CH stretching, 3 061 cm-1; ester group,1 700 cm-1; C= C, 1 600 cm-1; aromatic, 700 and 742 cm-1;C = N group, 1 644 cm-1; -C-S-C, 742 cm-1; C-S stretching, 700 cm-1.

    3.2.12 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-4-(2-hydroxyphenyl)-6-methylpyrimidine-5-carboxylate (2c)Molecular formula,C22H24N4O3S; molecular weight, 420.48; appearance,yellowish brown; soluble in ethanol, acetone,benzene; m/e ratio, 420.13 (100.0%), 421.13 (24.1%),422.12 (4.5%), 422.13 (3.9%), 421.12 (2.3%), 423.12(1.1%); elemental analysis, C, 62.84; H, 4.79; N, 13.32;O, 11.41; S, 7.63; LogP, 4.78; yield, 95%; m.p., 152 -154 °C; IR: NH bending, 1 593 cm-1; NH stretching,3 313 cm-1; CH bending, 700 cm-1; CH stretching,3 055 cm-1; ester group, 1 764 cm-1; C = C, 1 600 cm-1;aromatic o-disubstituted, 700 and 746 cm-1; C = N group, 1 670 cm-1; C-S-C, 746 cm-1; C-S stretching,600 cm-1.

    3.2.13 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-4-(3-hydroxyphenyl)-6-methylpyrimidine-5-carboxylate (2d)Molecular formula,C22H24N4O3S; molecular weight, 420.48; appearance,yellowish brown; soluble in ethanol, acetone,benzene; m/e ratio, 420.13 (100.0%), 421.13 (24.1%),422.12 (4.5%), 422.13 (3.9%), 421.12 (2.3%), 423.12(1.1%); elemental analysis, C, 62.84; H, 4.79; N, 13.32;O, 11.41; S, 7.63; LogP, 4.78; yield, 95%; m.p., 223 -225 °C; IR: NH bending, 1 595 cm-1; NH stretching,3 300 cm-1; CH bending, 700 cm-1; CH stretching,3 050 cm-1; ester group, 1 700 cm-1; C = C, 1 600 cm-1;aromatic m-disubstituted, 700 and 742 cm-1; C = N group, 1 595 cm-1; -C-S-C, 742 cm-1; C-S stretching,700 cm-1.

    3.2.14 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-4-(4-hydroxyphenyl)-6-methylpyrimidine-5-carboxylate (2e)Molecular formula,C22H24N4O3S; molecular weight, 420.48; appearance,yellowish brown; soluble in ethanol, acetone,benzene; m/e ratio, 420.13 (100.0%), 421.13 (24.1%),422.12 (4.5%), 422.13 (3.9%), 421.12 (2.3%), 423.12(1.1%); elemental analysis, C, 62.84; H, 4.79; N, 13.32;O, 11.41; S, 7.63; LogP, 4.78; yield, 96%; m.p., 138 -140 °C; IR: NH bending, 1 598 cm-1; NH stretching,3 400 cm-1; CH bending, 850 cm-1; CH stretching,3 062 cm-1; ester group, 1 700 cm-1; C = C, 1 598 cm-1;aromatic p-disubstituted, 742 cm-1; C-S-C, 742 cm-1;C-S stretching, 690 cm-1.

    3.2.15 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-4-(2-chlorophenyl)-1,2,3,4-tetrahydro-6-methylpyrimidine-5-carboxylate (2f)Molecular formula,C22H23ClN4O2S; molecular weight, 438.93;appearance, yellowish brown; soluble in ethanol,acetone, benzene; m/e ratio, 438.09 (100.0%), 440.09(37.0%), 439.10 (24.1%), 441.09 (9.5%), 440.10 (3.2%),439.09 (2.3%), 442.08 (1.4%); elemental analysis, C,60.20; H, 4.36; Cl, 8.08; N, 12.76; O, 7.29; S, 7.31; LogP, 5.73; yield, 90%; m.p., 106 - 108 °C; IR: NH bending,1 571 cm-1; NH stretching, 3 298 cm-1; CH bending,700 cm-1; CH stretching, 2 950 cm-1; ester group,1 700 cm-1; C = C, 1 470 cm-1; C = N group, 1 691 cm-1;halogen, 700 cm-1; aromatic o-disubstituted, 752 cm-1;-C-S-C, 752 cm-1; C-S stretching, 650 cm-1.

    3.2.16 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-4-(2-methoxyphenyl)-6-methylpyrimidine-5-carboxylate (2g)Molecular formula,C23H26N4O3S; molecular weight, 434.51; appearance,yellowish brown; soluble in ethanol, acetone,benzene; m/e ratio, 434.14 (100.0%), 435.14 (27.2%),436.14 (5.1%), 436.15 (3.7%), 437.14 (1.2%); elemental analysis, C, 63.58; H, 5.10; N, 12.89; O, 11.05; S, 7.38;LogP, 5.04; yield, 92%; m.p., 148 - 150 °C; IR: NH bending, 1 590 cm-1; NH stretching, 3 300 cm-1; CH bending, 833 cm-1; CH stretching, 3 150 cm-1; ester group, 1 699 cm-1; ether, 1 184 cm-1; C = C, 1 450 cm-1;C = N group, 1 680 cm-1; aromatic p-disubstituted,800 cm-1; C-S-C, 744 cm-1; C-S stretching, 650 cm-1.

    3.2.17 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-4-cinnamyl-1,2,3,4-tetrahydro-6-methylpyrimidine-5-carboxylate (2h)Molecular formula, C25H28N4O2S;molecular weight, 444.55; appearance, yellowish brown; solubility, ethanol, acetone, benzene; m/e ratio, 444.16 (100.0%), 445.17 (27.4%), 446.16 (5.2%),446.17 (4.0%), 445.16 (2.3%), 447.16 (1.2%); elemental analysis, C, 67.54; H, 5.44; N, 12.60; O, 7.20; S, 7.21;LogP, 5.04; yield, 90%; m.p., 180 - 182 °C; IR: NH bending, 1 564 cm-1; NH stretching, 3 250 cm-1; CH bending, 850 cm-1; CH stretching, 3 059 cm-1; ester group, 1 700 cm-1; C = C, 1 480 cm-1; C = N group,1 680 cm-1; aromatic mono-substituted, 694 cm-1; -CS-C, 746 cm-1; C-S stretching, 694 cm-1.

    3.3 Antimicrobial and antifungal activity

    The antimicrobial susceptibility of all synthesized pyrimidine-linked benzimidazole derivatives was tested. Table 7 shows the MIC and minimum fungicidal concentrations (MFCs). The MIC of derivative 2a againstE. coliwas 62.5 μg/mL, which was much more potent than ampicillin, whereas derivatives 2c, 2e, and 2f were equipotent at a MIC of 100 μg/mL.Pseudomonas aeruginosawas sensitive to all synthesized derivatives at 62.5, 100, and 250 μg/mL,but not to ampicillin.Staphylococcus aureuswas sensitive to derivatives 2a, 2b, 2d, 2e, and 2g at 200,100, 100, 100, and 200 μg/mL, respectively, indicating that they were more potent than ampicillin, which was active at 250 μg/mL. The MICs of derivatives 2b and 2f were both 100 μg/mL, and these compounds were equipotent againstS. pyogenes. Derivatives 2b,2c, 2d, 2e, and 2f exerted more effective fungicidal activity againstC. albicanscompared with griseofulvin with MICs of 250 and 500 μg/mL,respectively.

    We used nystatin and griseofulvin as the standard antifungals againstA. niger,C. albicans, andA.clavatus. Table 7 shows the MFCs. Derivatives 2b, 2c,2d, 2e, and 2f exerted fungicidal activity against,C. albicanswas sensitive at a MIC of 250 μg/mL compared with griseofulvin at 500 μg/mL.

    Table 7 Minimum inhibitory and fungicidal concentrations of standard drugs and synthesized derivatives(μg/mL)

    3.4 Lipinski rule of five

    None of the derivatives violated the rule of 5,indicating good absorption or permeation of the derivatives (Table 8).

    4 Discussion

    We applied molecular docking to compare the ability of pyrimidine-linked benzimidazole hybrids to inhibit SARS-CoV-2 main protease and the RBD of spike glycoprotein with approved drugs and native ligands. The binding affinity of several derivatives was similar to that of approved drugs. The formation of a hydrogen bonds with target molecules results in inhibition, but binding affinity can be increased by van der Waals forces, Pi-Pi, and hydrophobic interactions. Thus, optimal inhibitors should comprise ligands that form hydrogen bonds with targets. For example, the binding affinity of remdesivir for the main protease is - 7 kcal/mol,which is much lower than that of approved drugs, but it forms about eight hydrogen bonds with target,which confers better inhibitory activity than these drugs. This could explain why it has been accepted for clinical trials for the management of COVID-19.Our novel derivatives also formed hydrogen bonds with their targets, indicating inhibitory potencytowards the SARS-CoV-2 main protease.

    Table 8 Lipinski rule of five for all synthesized derivatives

    The binding affinity of our novel derivatives for the RBD of the SARS-CoV-2 spike glycoprotein was as good that that of the approved drugs. The binding affinity of ivermectin for the RBD of SARS-CoV-2 spike glycoprotein is - 9.1 kcal/mol and it forms four hydrogen bonds. It interacts with Cys-C at 379, Glu-A at 988, Val-C at 382, Pro-A at 987, Val-A at 991, Val-B at 991, and Lys-C at 378. The binding affinity of remdesivir is - 6.3 kcal/mol and it forms five hydrogen bonds with the RBD. It interacts with Asn-B at 542,Thr-B at 547, Asp-C at 745, Leu-C at 981, Thr-B at 549, Lys-B at 386, and Leu-C at 981. Favipiravir forms four hydrogen bonds with the RBD and its binding affinity is - 5.2 kcal/mol. It interacts with Asp-A at 994,Phe-C at 970, Arg-C at 995, Thr-C at 998, and Gly-C at 999. Ivermectin, remdesivir, and favipiravir are currently applied to treat SARS-CoV-2 infection. Several of our derivatives have good binding affinity and formed up to four hydrogen bonds with the RBD of the SARS-CoV-2 spike glycoprotein.

    Antimicrobial screening revealed that compounds with an aromatic ring at the R position were more potent than ampicillin, which is the standard antimicrobial againstP. aeruginosa,S. aureus, andS. pyogenes.This might be attributed to the polar effect of the aromatic rings. Derivatives without substitution at the R position were more potent than ampicillin againstE. coliandS. aureus, which might have been due to being smaller and having a low molecular weight. Compounds with phenyl, hydroxy phenyl,and chlorophenyl substitutions at the R position were more active than griseofulvin againstC. albicans.

    The drug-likeliness of ligands was assessed using Lipinski's rule of five in order to determine the pharmacokinetic characteristics of the synthesized ligands. All ligands were recognized as drug-like compounds and without any structural caution the physicochemical filter was passed through. The virtual screening method has the advantage of being able to produce ligands with high predicted binding affinities for completely new protein sequences. Here from the binding affinity, we can choose few potential ligands for the further optimization and development of novel anti-SARS-CoV-2 drugs. Compound 2c, 2d, 2e,2f, 2g, and 2h exhibited good binding affinity with main protease and RBD of spike glycoprotein, also formed enough number of hydrogen bonds. We can choose these ligands for further optimization and validation, in order to search for more novel compounds for the treatment of COVID-19.

    We determined changes in the binding affinity of pyrimidines after combining them with benzimidazole to predict the contributions of functional groups. The numbers of hydrogen bonds also changed, indicating the significance of merging benzimidazole with pyrimidine.

    The docking scores of almost all derivatives indicated that binding affinity increased when merged with benzimidazole. Compound 1a formed four hydrogen bonds and 2a formed only one with the SARS-CoV-2 main protease. Compounds 2c, 2d, 2e,2f, and 2 g had better binding affinity and formed more hydrogen bonds than compound 2b, indicating that synthesized derivatives with different substituted benzaldehydes, preferably at the ortho and meta positions, would generate more potent derivatives. The binding affinity of compound 2h increased and it formed two hydrogen bonds, indicating that increasing the chain length of the R group increases potency. We speculated that substitution with cinnamaldehyde will increase binding affinity as well as the number of hydrogen bonds. The information rendered by molecular docking study improved understanding of the structural requirements for developing more novel blockers of SARS-CoV-2 main protease and inhibitors of the RBD of spike glycoprotein.Figure 5 shows the predicted pharmacophore features of each compound.

    Figure 5 Predicted pharmacophore features of novel derivatives for further optimization

    5 Conclusion

    We could not assess the ability of our derivatives to inhibit SARS-CoV-2in vitrodue to safety reasons.However, we investigated their antimicrobial and antifungal properties as preliminary biological evidence. We found that pyrimidine-linked benzimidazole derivatives at specific concentrations were more effective than the standard ampicillin against gram-positive and gram-negative bacteria.Some derivatives were more active at higher concentrations than standard drugs. Gram-negative abcteriaE. coliandP. aeruginosawere more sensitive to the novel derivatives than gram-positive bacteriaS. aureusandS. pyogenes.C. albicanswas sensitive to the derivatives at a MFC of 250 μg/mL.

    The molecular docking method was used to examine whether any possible ligands had potential interactions with the main protease and RBD of spike glycoprotein. Despite certain disadvantages, such as the use ofin vitroconditions rather thanin vivoconditions, molecular docking enables researchers to make more accurate decisions in a smaller duration.We developed eight of derivatives that had binding affinity and potential anti SARS-CoV-2 activities that exceeded those of currently approved drugs for treating COVID-19 infection. However, understanding the pharmacophore features of the SARS-CoV-2 main protease and the RBD of spike glycoprotein provides much scope to generate more potent derivatives. Optimizing the properties of these derivatives in modelsin vivoandin vitro, will lead to more effective options to fight SARS-CoV-2 infection. Because of the critical global COVID-19 situation, we believe that extensive investigation is imperative to acquire a deeper understanding of SARS-CoV-2 and generate effective agents to treat and prevent infection worldwide.At present, a single lead could be a game changer.

    Competing interests

    The authors declare no conflict of interest.

    日韩三级伦理在线观看| 99久久精品热视频| 精品一区在线观看国产| 亚洲精品成人av观看孕妇| 精品一区二区三卡| 欧美日韩综合久久久久久| 欧美精品人与动牲交sv欧美| 亚洲精品视频女| 男的添女的下面高潮视频| 国产有黄有色有爽视频| 80岁老熟妇乱子伦牲交| 人妻一区二区av| 亚洲中文av在线| 九草在线视频观看| 大陆偷拍与自拍| 日本黄大片高清| 国产精品一区二区性色av| 婷婷色麻豆天堂久久| 免费高清在线观看视频在线观看| 午夜av观看不卡| 99久久精品热视频| 欧美精品国产亚洲| 国产亚洲最大av| 人人澡人人妻人| av国产久精品久网站免费入址| 五月天丁香电影| 美女视频免费永久观看网站| 欧美老熟妇乱子伦牲交| 国产极品天堂在线| 大片电影免费在线观看免费| 一本一本综合久久| 久久婷婷青草| 日产精品乱码卡一卡2卡三| 欧美另类一区| 少妇人妻精品综合一区二区| 亚洲国产毛片av蜜桃av| 纵有疾风起免费观看全集完整版| xxx大片免费视频| 国产在视频线精品| 精品视频人人做人人爽| 亚洲精品视频女| 丝袜喷水一区| 精品国产露脸久久av麻豆| 日本wwww免费看| 亚洲欧美日韩卡通动漫| 日日啪夜夜爽| 国产精品一区二区性色av| av又黄又爽大尺度在线免费看| 亚洲va在线va天堂va国产| 新久久久久国产一级毛片| 国产高清不卡午夜福利| 一级毛片 在线播放| 丰满少妇做爰视频| 午夜影院在线不卡| 亚洲精品自拍成人| 嫩草影院新地址| 欧美丝袜亚洲另类| 女性生殖器流出的白浆| 成人国产av品久久久| 国产欧美另类精品又又久久亚洲欧美| 国产老妇伦熟女老妇高清| 精品久久久噜噜| 精品熟女少妇av免费看| a级毛片免费高清观看在线播放| 人妻少妇偷人精品九色| 人妻一区二区av| 国产午夜精品久久久久久一区二区三区| av天堂久久9| 亚洲精品第二区| 国产成人精品一,二区| 人人妻人人爽人人添夜夜欢视频 | 99久国产av精品国产电影| 欧美精品高潮呻吟av久久| 精品熟女少妇av免费看| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩另类电影网站| 亚洲精华国产精华液的使用体验| 亚洲精品,欧美精品| 青青草视频在线视频观看| 婷婷色av中文字幕| 老司机影院毛片| 菩萨蛮人人尽说江南好唐韦庄| 久久午夜福利片| 在线观看人妻少妇| 日韩人妻高清精品专区| 国产高清有码在线观看视频| 黑人巨大精品欧美一区二区蜜桃 | 内射极品少妇av片p| 午夜av观看不卡| 日日爽夜夜爽网站| 在线观看一区二区三区激情| 国产免费福利视频在线观看| 男女边吃奶边做爰视频| 晚上一个人看的免费电影| 内射极品少妇av片p| 精品人妻偷拍中文字幕| 亚洲精品日本国产第一区| 青春草国产在线视频| 久久久a久久爽久久v久久| 精品酒店卫生间| 亚洲一区二区三区欧美精品| 九色成人免费人妻av| av不卡在线播放| av黄色大香蕉| 看免费成人av毛片| 婷婷色麻豆天堂久久| 精品久久久久久久久av| 午夜老司机福利剧场| 晚上一个人看的免费电影| 伦精品一区二区三区| 成人毛片a级毛片在线播放| 日本vs欧美在线观看视频 | 观看免费一级毛片| 亚洲欧美日韩东京热| 亚洲精品久久久久久婷婷小说| 日本vs欧美在线观看视频 | 91精品一卡2卡3卡4卡| 亚洲国产精品一区二区三区在线| 3wmmmm亚洲av在线观看| 精品久久久久久久久av| av国产久精品久网站免费入址| 纯流量卡能插随身wifi吗| 国产精品不卡视频一区二区| 一级毛片黄色毛片免费观看视频| 日本黄大片高清| 国产成人精品久久久久久| 日产精品乱码卡一卡2卡三| 美女国产视频在线观看| 欧美少妇被猛烈插入视频| 少妇猛男粗大的猛烈进出视频| 男人和女人高潮做爰伦理| 99热全是精品| 乱系列少妇在线播放| 一级黄片播放器| 下体分泌物呈黄色| 99热这里只有是精品在线观看| 国产91av在线免费观看| 亚州av有码| 国产成人免费观看mmmm| www.色视频.com| 国国产精品蜜臀av免费| 国产精品久久久久久av不卡| 久久精品夜色国产| av线在线观看网站| 日韩在线高清观看一区二区三区| 久久国产精品大桥未久av | 国产欧美另类精品又又久久亚洲欧美| av在线播放精品| 日韩一区二区三区影片| 久久精品熟女亚洲av麻豆精品| 你懂的网址亚洲精品在线观看| 一级a做视频免费观看| 日韩一区二区三区影片| av福利片在线观看| 偷拍熟女少妇极品色| 蜜桃久久精品国产亚洲av| 欧美日韩一区二区视频在线观看视频在线| 国产精品免费大片| 丰满乱子伦码专区| 另类精品久久| 午夜福利网站1000一区二区三区| 人人澡人人妻人| 国产在线一区二区三区精| 日本黄大片高清| 美女xxoo啪啪120秒动态图| 亚洲国产成人一精品久久久| 大陆偷拍与自拍| 国产精品欧美亚洲77777| 亚洲精品456在线播放app| 精品国产露脸久久av麻豆| 国国产精品蜜臀av免费| 成年av动漫网址| 寂寞人妻少妇视频99o| av天堂久久9| 黑人巨大精品欧美一区二区蜜桃 | 国产有黄有色有爽视频| 黄色怎么调成土黄色| 高清毛片免费看| 女人久久www免费人成看片| 七月丁香在线播放| 色视频www国产| 内射极品少妇av片p| 中国三级夫妇交换| 免费看日本二区| 国产熟女欧美一区二区| 激情五月婷婷亚洲| 精品人妻一区二区三区麻豆| 蜜臀久久99精品久久宅男| 久久午夜福利片| 国产av一区二区精品久久| av福利片在线| 国产精品嫩草影院av在线观看| 精品一区二区三卡| 欧美精品人与动牲交sv欧美| 国产高清国产精品国产三级| 久久人人爽人人片av| 欧美高清成人免费视频www| 伊人久久精品亚洲午夜| 又大又黄又爽视频免费| 欧美日韩国产mv在线观看视频| 国产爽快片一区二区三区| 国产毛片在线视频| 成人毛片a级毛片在线播放| 欧美精品国产亚洲| 男人爽女人下面视频在线观看| 国产成人一区二区在线| 久久久久久伊人网av| 亚洲综合精品二区| 女人久久www免费人成看片| 夫妻午夜视频| 狠狠精品人妻久久久久久综合| 寂寞人妻少妇视频99o| 日本av手机在线免费观看| 一个人免费看片子| 国产极品粉嫩免费观看在线 | 亚洲国产欧美日韩在线播放 | 啦啦啦啦在线视频资源| 日韩欧美 国产精品| 91在线精品国自产拍蜜月| 日本欧美视频一区| 永久免费av网站大全| 亚洲国产av新网站| 日韩av不卡免费在线播放| 天天躁夜夜躁狠狠久久av| av又黄又爽大尺度在线免费看| 啦啦啦视频在线资源免费观看| 一本大道久久a久久精品| 国产精品熟女久久久久浪| 久久精品国产a三级三级三级| 国产精品麻豆人妻色哟哟久久| 成人免费观看视频高清| 国产极品粉嫩免费观看在线 | 人人妻人人澡人人爽人人夜夜| 国产真实伦视频高清在线观看| 91久久精品国产一区二区三区| 乱系列少妇在线播放| 国产伦精品一区二区三区四那| 国内少妇人妻偷人精品xxx网站| 国产精品三级大全| 国产黄色视频一区二区在线观看| 亚洲人成网站在线观看播放| 一区二区三区精品91| 久久青草综合色| 久久久久久人妻| 老司机影院毛片| 黑人高潮一二区| 欧美日韩av久久| 免费观看a级毛片全部| 高清不卡的av网站| 两个人免费观看高清视频 | 国产69精品久久久久777片| 精品亚洲成国产av| 在现免费观看毛片| 亚洲av综合色区一区| 精品少妇黑人巨大在线播放| 在线观看免费日韩欧美大片 | 欧美少妇被猛烈插入视频| 久久精品国产亚洲网站| 18+在线观看网站| 日本午夜av视频| 亚洲婷婷狠狠爱综合网| 又黄又爽又刺激的免费视频.| 国产永久视频网站| 中国国产av一级| 国产精品伦人一区二区| 看十八女毛片水多多多| 亚洲av.av天堂| 亚洲四区av| 80岁老熟妇乱子伦牲交| 国产真实伦视频高清在线观看| 国产高清有码在线观看视频| 国产又色又爽无遮挡免| 精品久久国产蜜桃| 日日啪夜夜爽| 精品久久久久久久久亚洲| 午夜激情福利司机影院| 在线观看av片永久免费下载| 国产精品久久久久成人av| 国产一区二区三区综合在线观看 | 又粗又硬又长又爽又黄的视频| 国产深夜福利视频在线观看| 欧美日韩视频精品一区| 青春草国产在线视频| 成人毛片60女人毛片免费| 99久久综合免费| 亚洲在久久综合| av一本久久久久| 99热这里只有是精品50| 少妇人妻 视频| 国产精品久久久久久精品古装| 国内少妇人妻偷人精品xxx网站| 天堂俺去俺来也www色官网| 一级毛片黄色毛片免费观看视频| 一二三四中文在线观看免费高清| 国产伦在线观看视频一区| 97在线视频观看| 一个人免费看片子| 色吧在线观看| 新久久久久国产一级毛片| 26uuu在线亚洲综合色| 青春草国产在线视频| 美女大奶头黄色视频| 春色校园在线视频观看| 国产有黄有色有爽视频| 国产在视频线精品| 一级毛片黄色毛片免费观看视频| 欧美日韩国产mv在线观看视频| 免费大片黄手机在线观看| 成人漫画全彩无遮挡| 两个人免费观看高清视频 | 久久久久久久久久成人| 偷拍熟女少妇极品色| av视频免费观看在线观看| 国产亚洲91精品色在线| 亚洲第一av免费看| 亚洲精品乱久久久久久| 在线观看一区二区三区激情| 各种免费的搞黄视频| 久热久热在线精品观看| 午夜av观看不卡| 麻豆精品久久久久久蜜桃| 亚洲av欧美aⅴ国产| 国产精品久久久久成人av| 黑丝袜美女国产一区| 在线观看免费高清a一片| 不卡视频在线观看欧美| 欧美性感艳星| 欧美+日韩+精品| 国产高清国产精品国产三级| kizo精华| 一级二级三级毛片免费看| 男人添女人高潮全过程视频| 久久人人爽人人爽人人片va| 美女中出高潮动态图| 国产一区亚洲一区在线观看| 国产精品麻豆人妻色哟哟久久| 日日撸夜夜添| 少妇精品久久久久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 国产日韩一区二区三区精品不卡 | 黄色日韩在线| 成人无遮挡网站| 亚洲av二区三区四区| 久久国产亚洲av麻豆专区| 欧美老熟妇乱子伦牲交| 女人精品久久久久毛片| 男人爽女人下面视频在线观看| 久久久国产欧美日韩av| 亚洲伊人久久精品综合| 丝袜喷水一区| 亚洲av福利一区| 国产日韩欧美在线精品| 久久久久视频综合| 美女中出高潮动态图| 中文精品一卡2卡3卡4更新| 精品亚洲成国产av| xxx大片免费视频| 日本欧美视频一区| 午夜久久久在线观看| 一级毛片aaaaaa免费看小| 一边亲一边摸免费视频| 久久这里有精品视频免费| 少妇的逼好多水| 夜夜爽夜夜爽视频| 97在线视频观看| 赤兔流量卡办理| 丰满乱子伦码专区| 色5月婷婷丁香| 亚洲国产精品一区三区| 亚洲在久久综合| 最近中文字幕高清免费大全6| 亚洲,欧美,日韩| 观看美女的网站| 免费看光身美女| 91在线精品国自产拍蜜月| 亚洲欧美日韩东京热| 免费观看性生交大片5| 久久鲁丝午夜福利片| 国产av国产精品国产| www.av在线官网国产| 免费观看性生交大片5| 黄色配什么色好看| videossex国产| 人体艺术视频欧美日本| 五月天丁香电影| 边亲边吃奶的免费视频| 久久精品国产亚洲网站| 少妇人妻一区二区三区视频| 免费黄网站久久成人精品| 国产极品粉嫩免费观看在线 | 人妻 亚洲 视频| 亚洲精品国产成人久久av| 亚洲精品一二三| 国产综合精华液| 亚洲在久久综合| 中文字幕av电影在线播放| 色94色欧美一区二区| 成人无遮挡网站| 国产精品久久久久久久电影| 国产片特级美女逼逼视频| 天天操日日干夜夜撸| 日韩 亚洲 欧美在线| 日日啪夜夜撸| 国产一级毛片在线| 亚洲怡红院男人天堂| 高清在线视频一区二区三区| 中文精品一卡2卡3卡4更新| 在线观看免费视频网站a站| 激情五月婷婷亚洲| 久久精品国产亚洲av涩爱| av国产精品久久久久影院| 性高湖久久久久久久久免费观看| 能在线免费看毛片的网站| 天堂中文最新版在线下载| 国产精品久久久久久精品电影小说| 日韩一本色道免费dvd| 青春草国产在线视频| av免费观看日本| 亚洲精品乱码久久久v下载方式| 亚洲av.av天堂| 欧美一级a爱片免费观看看| 男女边吃奶边做爰视频| 欧美激情国产日韩精品一区| 91精品国产国语对白视频| 亚洲av二区三区四区| 最近手机中文字幕大全| 国内少妇人妻偷人精品xxx网站| 麻豆乱淫一区二区| 国产精品偷伦视频观看了| 成年人午夜在线观看视频| 插逼视频在线观看| 精品一区在线观看国产| 欧美成人午夜免费资源| 色网站视频免费| 免费观看性生交大片5| tube8黄色片| 少妇丰满av| 三级国产精品片| 日韩欧美 国产精品| 日韩免费高清中文字幕av| 成年人免费黄色播放视频 | 亚洲精品成人av观看孕妇| 交换朋友夫妻互换小说| 一本大道久久a久久精品| 色94色欧美一区二区| 国精品久久久久久国模美| 国产精品人妻久久久久久| 在线观看三级黄色| 黑人巨大精品欧美一区二区蜜桃 | 人人妻人人看人人澡| 国产亚洲午夜精品一区二区久久| 久久av网站| 国产av国产精品国产| 国产有黄有色有爽视频| 午夜激情福利司机影院| 国产欧美日韩综合在线一区二区 | 最新中文字幕久久久久| 国产色爽女视频免费观看| 国产精品欧美亚洲77777| 欧美人与善性xxx| 亚洲婷婷狠狠爱综合网| 91久久精品电影网| 天天操日日干夜夜撸| 成年人午夜在线观看视频| 只有这里有精品99| 自线自在国产av| 99热网站在线观看| 日韩一区二区视频免费看| 人人澡人人妻人| 免费av不卡在线播放| 成年人午夜在线观看视频| 自拍偷自拍亚洲精品老妇| 亚洲美女搞黄在线观看| 啦啦啦在线观看免费高清www| 亚洲人成网站在线观看播放| 91久久精品国产一区二区成人| 国产av码专区亚洲av| 久久久久精品性色| av免费观看日本| 丝袜喷水一区| 亚洲av电影在线观看一区二区三区| 五月开心婷婷网| 色婷婷久久久亚洲欧美| 日本av免费视频播放| 晚上一个人看的免费电影| 国产精品国产三级国产av玫瑰| 久热这里只有精品99| 国产黄片视频在线免费观看| 熟女电影av网| 日韩一区二区三区影片| 少妇人妻久久综合中文| 两个人免费观看高清视频 | 国产免费福利视频在线观看| 国产69精品久久久久777片| 少妇人妻久久综合中文| 午夜免费男女啪啪视频观看| 亚洲成人手机| 伊人亚洲综合成人网| 国产精品蜜桃在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 一本久久精品| 免费高清在线观看视频在线观看| 久久精品国产鲁丝片午夜精品| 国产精品三级大全| 大香蕉久久网| 99久久精品国产国产毛片| 只有这里有精品99| 91成人精品电影| 激情五月婷婷亚洲| 欧美最新免费一区二区三区| 狂野欧美激情性bbbbbb| 视频区图区小说| 99热这里只有是精品50| 少妇裸体淫交视频免费看高清| 日韩熟女老妇一区二区性免费视频| 大香蕉97超碰在线| 少妇人妻一区二区三区视频| 日本欧美视频一区| 亚洲精品久久午夜乱码| 久久人妻熟女aⅴ| 免费看av在线观看网站| 国产欧美另类精品又又久久亚洲欧美| 国产精品99久久久久久久久| 99久国产av精品国产电影| 国产一区二区三区av在线| 丝袜喷水一区| 人人妻人人添人人爽欧美一区卜| 亚洲欧美一区二区三区黑人 | 亚州av有码| 欧美+日韩+精品| 2021少妇久久久久久久久久久| 国产亚洲5aaaaa淫片| 伊人久久国产一区二区| 中国国产av一级| 在线天堂最新版资源| 国产视频内射| 亚州av有码| 不卡视频在线观看欧美| 国产片特级美女逼逼视频| 看非洲黑人一级黄片| h视频一区二区三区| 国精品久久久久久国模美| 日韩欧美 国产精品| 狠狠精品人妻久久久久久综合| 有码 亚洲区| 三级经典国产精品| 亚洲精品成人av观看孕妇| 色婷婷av一区二区三区视频| 日韩在线高清观看一区二区三区| 一本久久精品| 久久国产乱子免费精品| 欧美97在线视频| 黄色毛片三级朝国网站 | 亚洲精品国产av蜜桃| 国产精品三级大全| 欧美最新免费一区二区三区| 国产精品一二三区在线看| 免费不卡的大黄色大毛片视频在线观看| 伦精品一区二区三区| 日韩亚洲欧美综合| 观看av在线不卡| 国产欧美日韩精品一区二区| 在线观看免费高清a一片| 男人舔奶头视频| 91成人精品电影| 综合色丁香网| 欧美精品一区二区大全| 成年av动漫网址| 久久ye,这里只有精品| 亚洲经典国产精华液单| 99久久精品国产国产毛片| 日本午夜av视频| 久热这里只有精品99| 成人无遮挡网站| 91aial.com中文字幕在线观看| 成人综合一区亚洲| 国精品久久久久久国模美| 日韩一本色道免费dvd| 久久久久久久大尺度免费视频| 午夜激情久久久久久久| 成人免费观看视频高清| 人妻系列 视频| 国产一区亚洲一区在线观看| 黄色一级大片看看| 亚洲欧美日韩另类电影网站| 亚洲精品乱久久久久久| 国产成人精品福利久久| 中文乱码字字幕精品一区二区三区| 国内揄拍国产精品人妻在线| 80岁老熟妇乱子伦牲交| 最近手机中文字幕大全| 美女主播在线视频| 亚洲人成网站在线观看播放| 我要看黄色一级片免费的| 这个男人来自地球电影免费观看 | 男的添女的下面高潮视频| 亚洲国产精品国产精品| 丰满迷人的少妇在线观看| 人妻夜夜爽99麻豆av| 国产在线一区二区三区精| 少妇裸体淫交视频免费看高清| 成人毛片a级毛片在线播放| 极品少妇高潮喷水抽搐| 国产黄片视频在线免费观看| 91午夜精品亚洲一区二区三区| 久久久a久久爽久久v久久| 免费观看无遮挡的男女| 国产精品国产三级专区第一集| 国产色婷婷99| 99九九在线精品视频 | 久久久久久久亚洲中文字幕| 中文字幕av电影在线播放| 蜜臀久久99精品久久宅男| 大又大粗又爽又黄少妇毛片口| 亚洲成人手机|