• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel pyrimidine-benzimidazole hybrids with antibacterial and antifungal properties and potential inhibition of SARS-CoV-2 main protease and spike glycoprotein

    2022-01-19 07:58:08ShrukKhnMyurKleFlkSiddiquiNitinNem
    Digital Chinese Medicine 2021年2期

    Shruk Khn, Myur Kle, Flk Siddiqui, Nitin Nem

    a. Department of Pharmaceutical Chemistry, MUP’s College of Pharmacy (B Pharm), Washim, Maharashtra 444504, India

    b. Department of Pharmaceutical Chemistry, Government College of Pharmacy, Aurangabad, Maharashtra 431003, India

    c. Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s (SVKM’s) Institute of Pharmacy, Dhule, Maharashtra 424001, India

    Keywords SARS-CoV-2 inhibitor COVID-19 Molecular docking Pyrimidine-benzimidazole Bacteria Antifungal

    ABSTRACT

    1 Introduction

    Coronavirus disease 2019 (COVID-19)[1]induced by the novel severe acute respiratory syndrome-related coronavirus (SARS-CoV-2) has been declared by the World Health Organization (WHO) as a pandemic[2].Coronaviruses have triggered two other epidemics in addition to COVID-19, namely Middle East respiratory syndrome (MERS; 2012), and severe acute respiratory syndrome (SARS; 2002)[3]. The National Health Commission of China declared in January 20th, 2020 that SARS-CoV-2 infection is transmitted by person-to-person contact[4]. SARS-CoV-2 belongs to the same familyBetacoronaviruses, as those that caused SARS and MERS[5,6]. The novel coronavirus is a single-stranded positive-sense RNA with a diameter of 80 - 120 nm and 42 large viral RNA genomes[7].Coronaviruses are categorized as alpha- (α-COV),beta- (β-COV), gamma- (γ-COV), and delta- (δ-COV)types[8]. Six of them have infected humans, and SARS-CoV-2 is the seventh after SARS-CoV and MERS-CoV[9]. Symptoms of SARS-CoV-2 infection include fever, cough, dyspnea, myalgia, fatigue,decreased leukocyte counts, and pneumonia.Although numerous clinical trials have evaluated possible therapies for SARS-CoV-2 infection[10,11],treatment is not yet available for COVID-19[12].

    SARS-CoV-2 invades after binding to host cellular receptors[13,14]. Host cell receptors and the receptorbinding domain (RBD) of SARS-CoV-2 might be viable targets of interest in treating SARS-CoV-2 infection[15]. Nucleocapsid (N), envelope (E), membrane(M), and spike (S) proteins comprise the structural proteins of SARS-CoV-2[16,17]. The spike protein consists of an RBD that specifically binds to human angiotensin-converting enzyme-2 (hACE-2), which leads to host cell invasion[14,17]. Much investigative focus is presently directed towards developing specific novel inhibitors of the RBD or hACE-2.

    Remdesivir is an approved treatment for COVID-19[18]. Lopinavir and nelfinavir might inhibit SARSCoV-2 viral protease, and a clinical trial of favipiravir is underway for treating pneumonia induced by SARS-CoV-2[17]. Favipiravir is a purine nucleoside that disrupts viral RNA synthesis[1], and ivermectin inhibits the replication of SARS-CoV-2in vitro[19].Therefore, we used remdesivir, nelfinavir, lopinavir,favipiravir, and ivermectin along with the native ligand in the crystal structure of SARS-CoV-2 main protease, that is, N3 as reference moieties for molecular docking studies[20].

    Heterocyclic compounds provide scaffolds upon which pharmacophores can assemble to yield potent and selective drugs[21]. Among these, benzimidazole heterocyclics have attracted attention because they are easy to synthesize and have a wide range of biological activities. The benzimidazole ring is an essential component of vitamin-B12 in the form of 5, 6-dimethyl-l-(alpha-D-ribofuranosyl) benzimidazole[22].Various benzimidazole derivatives with human and veterinary anthelmintic[23], anti-ulcer[24], cardiotonic[25], antihypertensive[26], analgesic[27], anticonvulsant[28], anticancer[29]properties have been developed[30,31]. Pyrimidines and their derivatives also have anticancer[32], anxiolytic[33], antioxidant[34], antiviral[35], antifungal[36], anticonvulsant[36], antidepressant, and antibacterial properties[37]. The United States Food and Drug Administration (USFDA) has approved many purine and pyrimidine derivatives for the management of cancer and viral diseases[38].Pyrimidine-fused bicyclic heterocyclic agents have anticancer, antiviral, and many other biological activities.

    To date, 147 pyrimidine-fused bicyclic heterocyclic drugs have been approved for clinical application or are currently being clinically administered. The USFDA has authorized 57 of them to treat various diseases, among which, 22 are currently being applied to treat various types of cancer[39]. The pyrimidine ring system is abundant in nature as substituted and ring-fused compounds and equivalents,such as cytosine, thymine, uracil, thiamine (vitamin B1) and alloxan. It is also found in various synthetic compounds, including barbiturates and the HIV medication, zidovudine. Bacimethrin, a naturally occurring thiamine antimetabolite obtained in 1961 fromBacillus megatherium, is the most basic pyrimidine antibiotic, and it acts against many bacterial infections[40]. Pyrimidine-fused bicyclic heterocyclic compounds can serve as scaffolds to find new and effective medicines for specific biological targets.

    The present study aimed to synthesize and characterize pyrimidine-linked benzimidazole hybrids with antimicrobial and antifungal activity as well as inhibitory activity against SARS-CoV-2 main protease and spike glycoprotein. We screened their antiviral inhibitory action by molecular dockingin silicoas we were unable to screen them for SARS-CoV-2 activityin vivodue to safety issues. We therefore investigated their antimicrobial and antifungal activitiesin vitroas preliminary evidence of their biological potential. Molecular dockingin silicovalidates the binding affinity of compounds for target molecules as a docking scores (kcal/mol). This allows the prediction of structural activity relationships between compounds and targets.

    2 Materials and methods

    2.1 Molecular docking

    Compounds were screened by molecular docking using the PyRx-Virtual Screening Tool[41]on a Lenovo ThinkPad with a 64-bit operating system, an Intel(R)CoreTMi5-4300M processor with a base frequency of 2.60 GHz and 4GB RAM.

    The structures of approved drugs remdesivir, lopinavir, nelfinavir, invermectin, favipiravir, and native ligand (Spatial Data File [SDF]) were downloaded from the U.S. National Library of Medicine, Pub-Chem (https://pubchem.ncbi.nlm.nih.gov/), and the structures of 1,2,3,4-tetrahydropyrimidine-2-thiols and novel pyrimidine-linked benzimidazole derivatives were sketched in ChemDraw Ultra 8.0. Energy was minimized using a universal force field (UFF)[42].We investigated the binding affinity of the derivatives for the SARS-CoV-2 main protease (PDB ID: 6LU7)and spike glycoprotein (6VSB). The crystal structures of 6LU7 (https://www.rcsb.org/structure/6LU7) and 6VSB (https://www.rcsb.org/structure/6VSB) were downloaded from the RCSB Protein Data Bank. The native ligand in 6LU7 was N-[(5-methylisoxazol-3-yl)carbonyl] alanyl-L-valyl-N~1~-((1R, 2Z)-4-(benzyloxy)-4-oxo-1-{[(3R)-2-oxopyrrolidin-3-yl] methyl} but-2-enyl)-L-leucinamide[20]. The crystal structure of 6VSB did not indicate a native ligand. Molecular docking proceeded as described[43-45]. The interacting amino acid residues in the protein were identified using BIOVIA Discovery Studio Visualizer version 19.1.0.182 87 (Dassault Systemes, Paris,France)[46].

    2.2 Design of novel pyrimidine-linked benzimidazole hybrids

    We designed derivatives by merging the 2-(chloromethyl)-1H-benzimidazole moiety with 1,2,3,4-tetrahydropyrimidine-2-thiol pyrimidine derivatives synthesized via the modified Biginelli reaction.Figure 1 shows the approach used to construct the derivatives. We then compared binding affinities of 1,2,3,4-tetrahydropyrimidine-2-thiols and novel pyrimidine-linked benzimidazole derivatives to determine the significance of merging the two moieties.

    Table 1 shows structures of the pyrimidine derivatives and final novel derivatives obtained by merging benzimidazole with pyrimidine.

    2.3 Laboratory procedures

    2.3.1 Synthesis of 2-(chloromethyl)-1H-benzimidazoleThis procedure is described in the Supplementary material. The yield was 85%. A yellowish-brown product recrystallized from dioxane; m.p., 152 - 154 °C[compared with the literature: 147.8 - 148.2 °C][47]. Care was taken while handling 2-(chloromethyl)-1Hbenzimidazole because it is a powerful skin and mucous membrane irritant[48]. Figure 2 shows the reaction scheme for the synthesis of this compound.

    2.3.2 Synthesis of pyrimidine derivativesThe modified Biginelli reaction proceeded as described and detailed in the Supplementary material[49]and generated 1,2,3,4-tetrahydropyrimidine-2-thiol from ethyl acetoacetate, aldehyde, and thiourea[37,50]at 75% - 95% yield (Figure 3).

    Figure 1 Synthesis of pyrimidine-linked benzimidazole scaffold

    Table 1 Structures of 1,2,3,4-tetrahydropyrimidine-2-thiols and novel pyrimidine-linked benzimidazole derivatives

    Figure 2 Synthesis of 2-(chloromethyl)-1H-benzimidazole

    2.3.3 Merging 2-(chloromethyl)-1H-benzimidazole and 1,2,3,4-tetrahydropyrimidine-2-thiols to synthesize pyrimidine-linked benzimidazole derivativesWe condensed 2-(chloromethyl)-1H-benzimidazole(1.66 g, 0.01 mol and 1,2,3,4-tetrahydropyrimidine-2-thiol (0.01 mol) by heating with potassium hydroxide(KOH) and H2O : acetone (2 : 1) at 50 - 60 °C for 45 min.The reaction mixture was chilled to room temperature, decanted into ice-cold water, filtered, and recrystallized from ethanol (Figure 4). The yield was 90% - 95%.

    2.4 Calculation of Lipinski rule of five

    Figure 3 Synthesis of 1,2,3,4-tetrahydropyrimidine-2-thiols via modified Biginelli reaction

    Figure 4 Synthesis of novel pyrimidine-linked benzimidazole derivatives

    We applied the Lipinski rule of five that defines the ability of new molecular entities to be useful drugs. In terms of drug development, the rule states that weak absorption or permeation is more likely when the criteria of > 5 H-bond donors, 10 H-bond acceptors, molecular weight > 500, and a measured LogP(MLogP) > 5 are met[51-54]. The properties of all derivatives were calculated using the SwissADME online tool(http://www.swissadme.ch/index.php).

    2.5 Biological activity

    Various concentrations of derivatives were prepared in DMSO to assess their antibacterial and antifungal activities against standard strains (Table 2) using broth dilution. Bacteria were maintained, and drugs were diluted in nutrient Mueller Hinton broth. The broth was inoculated with 108colony-forming units (CFU)per milliliter of test strains (Institute of MicrobialTechnology, Chandigarh, India) determined by turbidity. Stock solutions of synthesized derivates(2 mg/mL) were serially diluted for primary and secondary screening. The primary screen included 1 000, 500, and 250 μg/mL of synthesized derivatives,then those with activity were further screened at 200,100, 50, 25, 12.5, and 6.250 μg/mL. A control without antibiotic was subcultured (before inoculation) by spreading one loopful evenly over a quarter of a plate of medium suitable for growing test organisms and incubated at 37 °C overnight. The lowest concentrations of derivatives that inhibited bacterial or fungal growth were taken as minimal inhibitory concentrations (MICs). These were compared with the amount of control growth before incubation(original inoculum) to determine MIC accuracy[55-57].The standards for antibacterial activity were gentamycin, ampicillin, chloramphenicol,ciprofloxacin, and norfloxacin served, and those for antifungal activity were nystatin and griseofulvin.

    Table 2 Bacterial and fungal strains for activity assay

    3 Results

    3.1 Molecular docking

    Table 3 shows details of the SARS-CoV-2 main protease and spike glycoprotein according to PDB Xray structure validation reports.

    Table 4 shows details of the derivatives, their binding affinity (kcal/mol), number of hydrogen bonds formed with targets and active amino acid residues involved in interactions. Data for compounds 1a - 1h (1,2,3,4-tetrahydropyrimidine-2-thiols), are provided in Supplementary material.

    Table 5 shows the two- and three-dimensional(2D and 3D) binding positions of the derivatives.These enabled us to predict which atoms and/or groups in a ligand are involved in interactions with amino acid residues in target derivatives. Details of 2D and 3D-docking of compounds 1a - 1h are provided in the Supplementary material.

    Table 3 Crystal structures of SARS-CoV-2 main protease (Mpro) and spike glycoprotein used for molecular docking

    Table 4 Details of the synthesized derivatives

    Table 4 Continued

    Table 4 Continued

    Table 6 shows changes in the number of hydrogen bonds formed and binding affinity before and after merging with benzimidazole.

    3.2 Chemistry

    Spectral characterization revealed the formation of pyrimidine-linked benzimidazole derivatives. The chemistry, melting points, physical properties, and IR spectra are provided in the Supplementary material.

    3.2.1 2-(chloromethyl)-1H-benzimidazoleMolecular formula, C8H7ClN2; molecular weight, 166.61;appearance, yellowish brown; soluble in ethanol,acetone, benzene; elemental analysis, C, 57.67; H,4.23; Cl, 21.28; N, 16.81; LogP, 2.11; yield, 90%; m.p.,152 - 154 °C; IR: aromatic, 933 and 842 cm-1; halogen, 642 cm-1; NH bending, 1 600 cm-1; NH stretching,3 300 - 3 400 cm-1; CH bending, 700 and 842 cm-1; CH stretching, 3 084 cm-1; C = C, 1 650 cm-1.

    3.2.2 Ethyl 1,2,3,4-tetrahydro-2-mercapto-6-methylpyrimidine-5-carboxylate (1a)Molecular formula,C8H14N2O2,S; molecular weight, 198.24; appearance,light pink powder; soluble in ethanol, acetone,benzene; m/e ratio, 198.05 (100.0%), 199.05 (9.6%),200.04 (4.5%); elemental analysis, C, 48.47; H, 5.08; N,14.13; O, 16.14; S, 16.17; LogP, 1.66; yield, 80%; m.p.,213 - 215 °C; IR: NH bending, 1 600 cm-1; NH stretching, 3 315 cm-1; CH bending, 960 cm-1; CH stretching,3 030 cm-1; ester group, 1 710 cm-1; SH stretching,2 524 cm-1; C-S stretching, 680 cm-1; aromatic,690 cm-1.

    3.2.3 Ethyl-1,2,3,4-tetrahydro-2-mercapto-6-methyl-4-phenylpyrimidine-5-carboxylate (1b)Molecular formula, C14H18N2O2S; molecular weight, 274.34;appearance, milky white crystals; soluble in ethanol,acetone, benzene; m/e ratio, 274.08 (100.0%), 275.08(16.2%), 276.07 (4.5%), 276.08 (1.7%); elemental analysis, C, 61.29; H, 5.14; N, 10.21; O, 11.66; S, 11.69;LogP, 3.76; yield 85%; m.p., 203 - 205 °C; IR: NH bending 1 654 cm-1; NH stretching, 3 332 cm-1; CH bending, 869 cm-1; CH stretching, 3 180 cm-1; ester group, 1 700 cm-1; aromatic, 700 cm-1; SH stretching,2 582 cm-1; C-S stretching 692 cm-1.

    3.2.4 Ethyl-1,2,3,4-tetrahydro-4-(2-hydroxyphenyl)-2-mercapto-6-methylpyrimidine-5-carboxylate (1c)

    Molecular formula, C14H18N2O3S; molecular weight,290.34; appearance, prismatic white crystals; solublein ethanol, acetone, benzene; m/e ratio, 290.07(100.0%), 291.08 (15.4%), 292.07 (4.6%), 292.08(1.8%), 291.07 (1.5%; elemental analysis, C, 57.92; H,4.86; N, 9.65; O, 16.53; S, 11.04; LogP, 3.37; yield, 77%;m.p., 201 - 203 °C; IR: NH bending, 1 581 cm-1; NH stretching, 3 300 cm-1; CH bending, 756 cm-1; CH stretching, 3 003 cm-1; ester group, 1 751 cm-1;hydroxy group, 3 600 cm-1; aromatic o-disubstituted,730 cm-1; SH stretching, 2 600 cm-1; C-S stretching,650 cm-1.

    Table 5 2D and 3D docking positions of drugs targeting SARS-CoV-2 main protease and RBD of spike glycoprotein

    Table 5 Continued

    3.2.5 Ethyl-1,2,3,4-tetrahydro-4-(3-hydroxyphenyl)-2-mercapto-6-methylpyrimidine-5-carboxylate (1d)

    Molecular formula, C14H18N2O3S; molecular weight,290.34; appearance, light brown powder; soluble in ethanol, acetone, benzene; m/e ratio, 290.07(100.0%), 291.08 (15.4%), 292.07 (4.6%), 292.08(1.8%), 291.07 (1.5%); elemental analysis, C, 57.92; H,4.86; N, 9.65; O, 16.53; S, 11.04; LogP, 3.37; yield, 79%;m.p., 179 - 181 °C; IR: -NH bending, 1 610 cm-1; NH stretching, 3 319 cm-1; CH bending, 866 cm-1; CHstretching 3 150 cm-1; ester group 1 700 cm-1; hydroxy group, 3 600 cm-1aromatic m-disubstituted, 680 and 788 cm-1; SH stretching, 2 500 cm-1; C-S stretching,630 cm-1.

    Table 6 Affinity and hydrogen bonds formed after pyrimidine-linked benzimidazole hybrids bound to SARSCoV-2 main protease

    3.2.6 Ethyl-1,2,3,4-tetrahydro-4-(4-hydroxyphenyl)-2-mercapto-6-methylpyrimidine-5-carboxylate (1e)

    Molecular formula, C14H14N2O3S; molecular weight,290.34; appearance, off-white powder; soluble in ethanol, acetone, benzene; m/e ratio, 290.07(100.0%), 291.08 (15.4%), 292.07 (4.6%), 292.08(1.8%), 291.07 (1.5%); elemental analysis, C, 57.92; H,4.86; N, 9.65; O, 16.53; S, 11.04; LogP, 3.37; yield, 85%;m.p., 225 - 227 °C; IR: NH bending, 1 581 cm-1; NH stretching 3 400 cm-1; SH bending, 825 cm-1; SH stretching 3 016 and 3 196 cm-1; ester group 1 689 cm-1;hydroxy group 3 502 cm-1aromatic p-disubstituted,825 cm-1; SH stretching, 2 561 cm-1; C-S stretching,642 cm-1.

    3.2.7 Ethyl-4-(2-chlorophenyl)-1,2,3,4-tetrahydro-2-mercapto-6-methylpyrimidine-5-carboxylate (1f)

    Molecular formula, C14H17ClN2O2S; molecular weight, 308.78; appearance, yellowish white sticky product; soluble in ethanol, acetone, benzene; m/e ratio, 308.04 (100.0%), 310.04 (32.6%), 309.04 (16.9%),311.04 (5.9%), 310.03 (4.5%), 312.03 (1.5%), 310.05(1.1%); elemental analysis, C, 54.46; H, 4.24; Cl, 11.48;N, 9.07; O, 10.36; S, 10.38; LogP, 4.31; yield, 87%; m.p.192 - 194 °C; IR: NH bending, 1 580 cm-1; NH stretching, 3 350 cm-1; CH bending, 767 cm-1; CH stretching, 3 100 cm-1; ester group, 1 724 cm-1; halogen group, 646 cm-1; aromatic o-disubstituted, 767 cm-1;SH stretching, 2 349 cm-1; C-S stretching, 646 cm-1.

    3.2.8 Ethyl-1,2,3,4-tetrahydro-2-mercapto-4-(4-methoxyphenyl)-6-methylpyrimidine-5-carboxylate (1g)

    Molecular formula, C15H20N2O3S; molecular weight,304.36; appearance, white crystals; soluble in ethanol, acetone, benzene; m/e ratio, 304.09(100.0%), 305.09 (18.1%), 306.08 (4.5%), 306.09(2.1%); elemental analysis, C, 59.19; H, 5.30; N, 9.20;O, 15.77; S, 10.54; LogP, 3.63; yield, 92%; m.p., -199 -201 °C; IR: NH bending, 1 581 cm-1; NH stretching,3 319 cm-1; CH bending, 767 cm-1; CH stretching,3 150 cm-1; ester group, 1 710 cm-1; ether group,1 186 cm-1; aromatic p-disubstituted, 790 cm-1; SH stretching, 2 500 cm-1; C-S stretching, 653 cm-1.

    3.2.9 Ethyl-4-cinnamyl-1,2,3,4-tetrahydro-2-mercapto-6-methylpyrimidine-5-carboxylate (1h)Molecular formula, C17H22N2O2S; molecular weight, 314.4;appearance, white crystals; soluble in ethanol,acetone, benzene; m/e ratio, 314.11 (100.0%), 315.11(20.0%), 316.10 (4.5%), 316.12 (1.6%); Elemental Analysis, C, 64.94; H, 5.77; N, 8.91; O, 10.18; S, 10.20;LogP, 4.55; yield, 82%; m.p., 200 - 202 °C; IR, NH bending, 1 595 cm-1; NH stretching, 3 400 cm-1; CH bending, 852 cm-1; CH stretching, 3 150 cm-1; ester group, 1 703 cm-1; C = C, 1 670 cm-1; aromatic, monosubstituted, 700 and 770 cm-1; SH stretching,2 600 cm-1; SH stretching, 661 cm-1.

    3.2.10 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-6-methylpyrimidine-5-carboxylate (2a)Molecular formula, C16H20N4O2S; molecular weight, 328.39; appearance, yellowish brown;soluble in ethanol, acetone, benzene; m/e ratio,328.10 (100.0%), 329.10 (19.7%), 330.10 (5.3%), 330.11(1.5%); elemental analysis, C, 58.52; H, 4.91; N, 17.06;O, 9.74; S, 9.76; LogP, 3.07; yield, 91%; m.p., 172 -174 °C; IR: NH bending, 1 546 cm-1; NH stretching,3 313 cm-1; CH bending, 750 cm-1; CH stretching,3 034 cm-1; ester group, 1 700 cm-1; C = C, 1 600 cm-1;aromatic, 750 cm-1; -C-S-C, 750 cm-1; C-S stretching,680 cm-1.

    3.2.11 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-6-methyl-4-phenylpyrimidine-5-carboxylate (2b)Molecular formula, C22H24N4O2S;molecular weight, 404.48; appearance, yellowish brown; soluble in ethanol, acetone, benzene; m/e ratio, 404.13 (100.0%), 405.13 (26.1%), 406.13 (5.5%),406.14 (2.8%), 407.13 (1.1%); elemental analysis, C,65.33; H, 4.98; N, 13.85; O, 7.91; S, 7.93; LogP, 5.17;yield, 93%; m.p., 142 - 144 °C; IR, NH bending,1 600 cm-1; NH stretching, 3 313 cm-1; CH bending,842 cm-1; CH stretching, 3 061 cm-1; ester group,1 700 cm-1; C= C, 1 600 cm-1; aromatic, 700 and 742 cm-1;C = N group, 1 644 cm-1; -C-S-C, 742 cm-1; C-S stretching, 700 cm-1.

    3.2.12 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-4-(2-hydroxyphenyl)-6-methylpyrimidine-5-carboxylate (2c)Molecular formula,C22H24N4O3S; molecular weight, 420.48; appearance,yellowish brown; soluble in ethanol, acetone,benzene; m/e ratio, 420.13 (100.0%), 421.13 (24.1%),422.12 (4.5%), 422.13 (3.9%), 421.12 (2.3%), 423.12(1.1%); elemental analysis, C, 62.84; H, 4.79; N, 13.32;O, 11.41; S, 7.63; LogP, 4.78; yield, 95%; m.p., 152 -154 °C; IR: NH bending, 1 593 cm-1; NH stretching,3 313 cm-1; CH bending, 700 cm-1; CH stretching,3 055 cm-1; ester group, 1 764 cm-1; C = C, 1 600 cm-1;aromatic o-disubstituted, 700 and 746 cm-1; C = N group, 1 670 cm-1; C-S-C, 746 cm-1; C-S stretching,600 cm-1.

    3.2.13 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-4-(3-hydroxyphenyl)-6-methylpyrimidine-5-carboxylate (2d)Molecular formula,C22H24N4O3S; molecular weight, 420.48; appearance,yellowish brown; soluble in ethanol, acetone,benzene; m/e ratio, 420.13 (100.0%), 421.13 (24.1%),422.12 (4.5%), 422.13 (3.9%), 421.12 (2.3%), 423.12(1.1%); elemental analysis, C, 62.84; H, 4.79; N, 13.32;O, 11.41; S, 7.63; LogP, 4.78; yield, 95%; m.p., 223 -225 °C; IR: NH bending, 1 595 cm-1; NH stretching,3 300 cm-1; CH bending, 700 cm-1; CH stretching,3 050 cm-1; ester group, 1 700 cm-1; C = C, 1 600 cm-1;aromatic m-disubstituted, 700 and 742 cm-1; C = N group, 1 595 cm-1; -C-S-C, 742 cm-1; C-S stretching,700 cm-1.

    3.2.14 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-4-(4-hydroxyphenyl)-6-methylpyrimidine-5-carboxylate (2e)Molecular formula,C22H24N4O3S; molecular weight, 420.48; appearance,yellowish brown; soluble in ethanol, acetone,benzene; m/e ratio, 420.13 (100.0%), 421.13 (24.1%),422.12 (4.5%), 422.13 (3.9%), 421.12 (2.3%), 423.12(1.1%); elemental analysis, C, 62.84; H, 4.79; N, 13.32;O, 11.41; S, 7.63; LogP, 4.78; yield, 96%; m.p., 138 -140 °C; IR: NH bending, 1 598 cm-1; NH stretching,3 400 cm-1; CH bending, 850 cm-1; CH stretching,3 062 cm-1; ester group, 1 700 cm-1; C = C, 1 598 cm-1;aromatic p-disubstituted, 742 cm-1; C-S-C, 742 cm-1;C-S stretching, 690 cm-1.

    3.2.15 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-4-(2-chlorophenyl)-1,2,3,4-tetrahydro-6-methylpyrimidine-5-carboxylate (2f)Molecular formula,C22H23ClN4O2S; molecular weight, 438.93;appearance, yellowish brown; soluble in ethanol,acetone, benzene; m/e ratio, 438.09 (100.0%), 440.09(37.0%), 439.10 (24.1%), 441.09 (9.5%), 440.10 (3.2%),439.09 (2.3%), 442.08 (1.4%); elemental analysis, C,60.20; H, 4.36; Cl, 8.08; N, 12.76; O, 7.29; S, 7.31; LogP, 5.73; yield, 90%; m.p., 106 - 108 °C; IR: NH bending,1 571 cm-1; NH stretching, 3 298 cm-1; CH bending,700 cm-1; CH stretching, 2 950 cm-1; ester group,1 700 cm-1; C = C, 1 470 cm-1; C = N group, 1 691 cm-1;halogen, 700 cm-1; aromatic o-disubstituted, 752 cm-1;-C-S-C, 752 cm-1; C-S stretching, 650 cm-1.

    3.2.16 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-1,2,3,4-tetrahydro-4-(2-methoxyphenyl)-6-methylpyrimidine-5-carboxylate (2g)Molecular formula,C23H26N4O3S; molecular weight, 434.51; appearance,yellowish brown; soluble in ethanol, acetone,benzene; m/e ratio, 434.14 (100.0%), 435.14 (27.2%),436.14 (5.1%), 436.15 (3.7%), 437.14 (1.2%); elemental analysis, C, 63.58; H, 5.10; N, 12.89; O, 11.05; S, 7.38;LogP, 5.04; yield, 92%; m.p., 148 - 150 °C; IR: NH bending, 1 590 cm-1; NH stretching, 3 300 cm-1; CH bending, 833 cm-1; CH stretching, 3 150 cm-1; ester group, 1 699 cm-1; ether, 1 184 cm-1; C = C, 1 450 cm-1;C = N group, 1 680 cm-1; aromatic p-disubstituted,800 cm-1; C-S-C, 744 cm-1; C-S stretching, 650 cm-1.

    3.2.17 Ethyl-2-((1H-benzo[d]imidazol-2-yl)methylthio)-4-cinnamyl-1,2,3,4-tetrahydro-6-methylpyrimidine-5-carboxylate (2h)Molecular formula, C25H28N4O2S;molecular weight, 444.55; appearance, yellowish brown; solubility, ethanol, acetone, benzene; m/e ratio, 444.16 (100.0%), 445.17 (27.4%), 446.16 (5.2%),446.17 (4.0%), 445.16 (2.3%), 447.16 (1.2%); elemental analysis, C, 67.54; H, 5.44; N, 12.60; O, 7.20; S, 7.21;LogP, 5.04; yield, 90%; m.p., 180 - 182 °C; IR: NH bending, 1 564 cm-1; NH stretching, 3 250 cm-1; CH bending, 850 cm-1; CH stretching, 3 059 cm-1; ester group, 1 700 cm-1; C = C, 1 480 cm-1; C = N group,1 680 cm-1; aromatic mono-substituted, 694 cm-1; -CS-C, 746 cm-1; C-S stretching, 694 cm-1.

    3.3 Antimicrobial and antifungal activity

    The antimicrobial susceptibility of all synthesized pyrimidine-linked benzimidazole derivatives was tested. Table 7 shows the MIC and minimum fungicidal concentrations (MFCs). The MIC of derivative 2a againstE. coliwas 62.5 μg/mL, which was much more potent than ampicillin, whereas derivatives 2c, 2e, and 2f were equipotent at a MIC of 100 μg/mL.Pseudomonas aeruginosawas sensitive to all synthesized derivatives at 62.5, 100, and 250 μg/mL,but not to ampicillin.Staphylococcus aureuswas sensitive to derivatives 2a, 2b, 2d, 2e, and 2g at 200,100, 100, 100, and 200 μg/mL, respectively, indicating that they were more potent than ampicillin, which was active at 250 μg/mL. The MICs of derivatives 2b and 2f were both 100 μg/mL, and these compounds were equipotent againstS. pyogenes. Derivatives 2b,2c, 2d, 2e, and 2f exerted more effective fungicidal activity againstC. albicanscompared with griseofulvin with MICs of 250 and 500 μg/mL,respectively.

    We used nystatin and griseofulvin as the standard antifungals againstA. niger,C. albicans, andA.clavatus. Table 7 shows the MFCs. Derivatives 2b, 2c,2d, 2e, and 2f exerted fungicidal activity against,C. albicanswas sensitive at a MIC of 250 μg/mL compared with griseofulvin at 500 μg/mL.

    Table 7 Minimum inhibitory and fungicidal concentrations of standard drugs and synthesized derivatives(μg/mL)

    3.4 Lipinski rule of five

    None of the derivatives violated the rule of 5,indicating good absorption or permeation of the derivatives (Table 8).

    4 Discussion

    We applied molecular docking to compare the ability of pyrimidine-linked benzimidazole hybrids to inhibit SARS-CoV-2 main protease and the RBD of spike glycoprotein with approved drugs and native ligands. The binding affinity of several derivatives was similar to that of approved drugs. The formation of a hydrogen bonds with target molecules results in inhibition, but binding affinity can be increased by van der Waals forces, Pi-Pi, and hydrophobic interactions. Thus, optimal inhibitors should comprise ligands that form hydrogen bonds with targets. For example, the binding affinity of remdesivir for the main protease is - 7 kcal/mol,which is much lower than that of approved drugs, but it forms about eight hydrogen bonds with target,which confers better inhibitory activity than these drugs. This could explain why it has been accepted for clinical trials for the management of COVID-19.Our novel derivatives also formed hydrogen bonds with their targets, indicating inhibitory potencytowards the SARS-CoV-2 main protease.

    Table 8 Lipinski rule of five for all synthesized derivatives

    The binding affinity of our novel derivatives for the RBD of the SARS-CoV-2 spike glycoprotein was as good that that of the approved drugs. The binding affinity of ivermectin for the RBD of SARS-CoV-2 spike glycoprotein is - 9.1 kcal/mol and it forms four hydrogen bonds. It interacts with Cys-C at 379, Glu-A at 988, Val-C at 382, Pro-A at 987, Val-A at 991, Val-B at 991, and Lys-C at 378. The binding affinity of remdesivir is - 6.3 kcal/mol and it forms five hydrogen bonds with the RBD. It interacts with Asn-B at 542,Thr-B at 547, Asp-C at 745, Leu-C at 981, Thr-B at 549, Lys-B at 386, and Leu-C at 981. Favipiravir forms four hydrogen bonds with the RBD and its binding affinity is - 5.2 kcal/mol. It interacts with Asp-A at 994,Phe-C at 970, Arg-C at 995, Thr-C at 998, and Gly-C at 999. Ivermectin, remdesivir, and favipiravir are currently applied to treat SARS-CoV-2 infection. Several of our derivatives have good binding affinity and formed up to four hydrogen bonds with the RBD of the SARS-CoV-2 spike glycoprotein.

    Antimicrobial screening revealed that compounds with an aromatic ring at the R position were more potent than ampicillin, which is the standard antimicrobial againstP. aeruginosa,S. aureus, andS. pyogenes.This might be attributed to the polar effect of the aromatic rings. Derivatives without substitution at the R position were more potent than ampicillin againstE. coliandS. aureus, which might have been due to being smaller and having a low molecular weight. Compounds with phenyl, hydroxy phenyl,and chlorophenyl substitutions at the R position were more active than griseofulvin againstC. albicans.

    The drug-likeliness of ligands was assessed using Lipinski's rule of five in order to determine the pharmacokinetic characteristics of the synthesized ligands. All ligands were recognized as drug-like compounds and without any structural caution the physicochemical filter was passed through. The virtual screening method has the advantage of being able to produce ligands with high predicted binding affinities for completely new protein sequences. Here from the binding affinity, we can choose few potential ligands for the further optimization and development of novel anti-SARS-CoV-2 drugs. Compound 2c, 2d, 2e,2f, 2g, and 2h exhibited good binding affinity with main protease and RBD of spike glycoprotein, also formed enough number of hydrogen bonds. We can choose these ligands for further optimization and validation, in order to search for more novel compounds for the treatment of COVID-19.

    We determined changes in the binding affinity of pyrimidines after combining them with benzimidazole to predict the contributions of functional groups. The numbers of hydrogen bonds also changed, indicating the significance of merging benzimidazole with pyrimidine.

    The docking scores of almost all derivatives indicated that binding affinity increased when merged with benzimidazole. Compound 1a formed four hydrogen bonds and 2a formed only one with the SARS-CoV-2 main protease. Compounds 2c, 2d, 2e,2f, and 2 g had better binding affinity and formed more hydrogen bonds than compound 2b, indicating that synthesized derivatives with different substituted benzaldehydes, preferably at the ortho and meta positions, would generate more potent derivatives. The binding affinity of compound 2h increased and it formed two hydrogen bonds, indicating that increasing the chain length of the R group increases potency. We speculated that substitution with cinnamaldehyde will increase binding affinity as well as the number of hydrogen bonds. The information rendered by molecular docking study improved understanding of the structural requirements for developing more novel blockers of SARS-CoV-2 main protease and inhibitors of the RBD of spike glycoprotein.Figure 5 shows the predicted pharmacophore features of each compound.

    Figure 5 Predicted pharmacophore features of novel derivatives for further optimization

    5 Conclusion

    We could not assess the ability of our derivatives to inhibit SARS-CoV-2in vitrodue to safety reasons.However, we investigated their antimicrobial and antifungal properties as preliminary biological evidence. We found that pyrimidine-linked benzimidazole derivatives at specific concentrations were more effective than the standard ampicillin against gram-positive and gram-negative bacteria.Some derivatives were more active at higher concentrations than standard drugs. Gram-negative abcteriaE. coliandP. aeruginosawere more sensitive to the novel derivatives than gram-positive bacteriaS. aureusandS. pyogenes.C. albicanswas sensitive to the derivatives at a MFC of 250 μg/mL.

    The molecular docking method was used to examine whether any possible ligands had potential interactions with the main protease and RBD of spike glycoprotein. Despite certain disadvantages, such as the use ofin vitroconditions rather thanin vivoconditions, molecular docking enables researchers to make more accurate decisions in a smaller duration.We developed eight of derivatives that had binding affinity and potential anti SARS-CoV-2 activities that exceeded those of currently approved drugs for treating COVID-19 infection. However, understanding the pharmacophore features of the SARS-CoV-2 main protease and the RBD of spike glycoprotein provides much scope to generate more potent derivatives. Optimizing the properties of these derivatives in modelsin vivoandin vitro, will lead to more effective options to fight SARS-CoV-2 infection. Because of the critical global COVID-19 situation, we believe that extensive investigation is imperative to acquire a deeper understanding of SARS-CoV-2 and generate effective agents to treat and prevent infection worldwide.At present, a single lead could be a game changer.

    Competing interests

    The authors declare no conflict of interest.

    99九九在线精品视频 | freevideosex欧美| 我的女老师完整版在线观看| 18禁在线无遮挡免费观看视频| 欧美日韩av久久| 在线观看人妻少妇| 黄色日韩在线| 亚洲天堂av无毛| 日韩人妻高清精品专区| 自拍欧美九色日韩亚洲蝌蚪91 | 精品一区二区三卡| 精品国产露脸久久av麻豆| 美女脱内裤让男人舔精品视频| av线在线观看网站| 欧美日韩国产mv在线观看视频| 午夜免费鲁丝| 日本爱情动作片www.在线观看| 免费观看无遮挡的男女| 久久6这里有精品| 国产高清有码在线观看视频| 午夜91福利影院| 简卡轻食公司| 麻豆精品久久久久久蜜桃| 欧美日韩亚洲高清精品| 精品亚洲成a人片在线观看| 国产一区有黄有色的免费视频| 中文字幕久久专区| 国产一区有黄有色的免费视频| 久久精品熟女亚洲av麻豆精品| 秋霞伦理黄片| 人体艺术视频欧美日本| 久久久久视频综合| 高清不卡的av网站| 性色av一级| 亚洲人成网站在线观看播放| 亚洲精品久久久久久婷婷小说| 欧美精品国产亚洲| 男人爽女人下面视频在线观看| 又爽又黄a免费视频| 精品酒店卫生间| 最黄视频免费看| 亚洲精品久久午夜乱码| 狠狠精品人妻久久久久久综合| 伦精品一区二区三区| 2022亚洲国产成人精品| 国产亚洲最大av| 午夜激情福利司机影院| 国产伦在线观看视频一区| 91午夜精品亚洲一区二区三区| 一边亲一边摸免费视频| 久久久久国产精品人妻一区二区| 国产伦理片在线播放av一区| 街头女战士在线观看网站| 国产精品三级大全| 国产精品99久久99久久久不卡 | 日韩成人伦理影院| 久久精品国产自在天天线| av在线播放精品| 嘟嘟电影网在线观看| 99国产精品免费福利视频| 日韩av在线免费看完整版不卡| 国产精品三级大全| 99热这里只有是精品在线观看| 欧美高清成人免费视频www| 这个男人来自地球电影免费观看 | 在线免费观看不下载黄p国产| 亚洲精品久久午夜乱码| 亚洲精品国产av成人精品| 精品亚洲成a人片在线观看| 国产熟女欧美一区二区| 精品午夜福利在线看| 色婷婷久久久亚洲欧美| 国产精品不卡视频一区二区| 亚洲美女黄色视频免费看| 欧美性感艳星| 丝瓜视频免费看黄片| 亚洲在久久综合| 如日韩欧美国产精品一区二区三区 | 男人舔奶头视频| 一级片'在线观看视频| 曰老女人黄片| 日韩精品免费视频一区二区三区 | 国产日韩欧美在线精品| freevideosex欧美| 黄色怎么调成土黄色| 久热久热在线精品观看| 成人亚洲精品一区在线观看| 成人国产av品久久久| 97精品久久久久久久久久精品| 两个人免费观看高清视频 | 18禁动态无遮挡网站| 国产在线免费精品| 各种免费的搞黄视频| 亚洲综合精品二区| 国产色婷婷99| 这个男人来自地球电影免费观看 | 色视频www国产| 色5月婷婷丁香| 亚洲精品日韩av片在线观看| 在线观看免费高清a一片| av线在线观看网站| 久久免费观看电影| 午夜免费鲁丝| 又黄又爽又刺激的免费视频.| 在线看a的网站| 大片电影免费在线观看免费| 亚洲av综合色区一区| 看免费成人av毛片| 菩萨蛮人人尽说江南好唐韦庄| 人妻人人澡人人爽人人| 免费看不卡的av| 久久99精品国语久久久| 亚洲高清免费不卡视频| 在线观看免费视频网站a站| 男女边摸边吃奶| 成人漫画全彩无遮挡| 免费看日本二区| 尾随美女入室| 日日撸夜夜添| 久久精品国产亚洲网站| 不卡视频在线观看欧美| 久久久久久伊人网av| 一区二区三区免费毛片| 国产精品麻豆人妻色哟哟久久| 看十八女毛片水多多多| 又大又黄又爽视频免费| videos熟女内射| 嫩草影院新地址| 国产视频内射| 亚洲av在线观看美女高潮| 免费黄网站久久成人精品| 国产精品蜜桃在线观看| 国产在线一区二区三区精| 中文字幕久久专区| 午夜免费男女啪啪视频观看| 熟女av电影| 亚洲精品乱久久久久久| 久久久精品94久久精品| 美女福利国产在线| 久久青草综合色| 日本黄色日本黄色录像| 少妇的逼水好多| 国产在线视频一区二区| 美女大奶头黄色视频| 日本wwww免费看| 噜噜噜噜噜久久久久久91| 久久午夜福利片| 热re99久久精品国产66热6| 少妇 在线观看| 欧美丝袜亚洲另类| 国产成人精品一,二区| 国产精品.久久久| 国产精品久久久久久久电影| av免费观看日本| 99热国产这里只有精品6| 久久免费观看电影| 一区在线观看完整版| xxx大片免费视频| 少妇丰满av| 国产精品福利在线免费观看| 免费观看av网站的网址| av福利片在线观看| 交换朋友夫妻互换小说| 国产精品偷伦视频观看了| 精品熟女少妇av免费看| 在线天堂最新版资源| 精品亚洲成国产av| 久久久久久久大尺度免费视频| 麻豆乱淫一区二区| 免费少妇av软件| 久久亚洲国产成人精品v| 欧美一级a爱片免费观看看| 精品99又大又爽又粗少妇毛片| 久热久热在线精品观看| 美女中出高潮动态图| 人人妻人人澡人人爽人人夜夜| 边亲边吃奶的免费视频| 中文欧美无线码| 777米奇影视久久| 一二三四中文在线观看免费高清| 高清欧美精品videossex| 亚洲精品第二区| 女的被弄到高潮叫床怎么办| 日本黄色片子视频| av在线老鸭窝| tube8黄色片| 尾随美女入室| 国产精品久久久久久久电影| 99国产精品免费福利视频| 国产又色又爽无遮挡免| 久久国产精品男人的天堂亚洲 | 两个人免费观看高清视频 | 一区二区av电影网| 日本色播在线视频| 国产免费福利视频在线观看| 精华霜和精华液先用哪个| 欧美精品国产亚洲| 欧美少妇被猛烈插入视频| 日日爽夜夜爽网站| 亚洲成人手机| 国精品久久久久久国模美| 黄色毛片三级朝国网站 | 日韩一区二区三区影片| 一区二区三区免费毛片| 国产亚洲精品久久久com| 高清欧美精品videossex| 国产乱来视频区| 亚洲av不卡在线观看| 自线自在国产av| 一级av片app| 极品少妇高潮喷水抽搐| 亚洲第一av免费看| 久久毛片免费看一区二区三区| 蜜桃在线观看..| 在线观看免费视频网站a站| 精品亚洲乱码少妇综合久久| 亚洲国产欧美日韩在线播放 | 黑人巨大精品欧美一区二区蜜桃 | 久久精品久久久久久久性| 欧美xxxx性猛交bbbb| 欧美成人午夜免费资源| 另类亚洲欧美激情| 国产精品99久久久久久久久| 国产在线男女| 在线观看免费视频网站a站| 成人美女网站在线观看视频| 99热这里只有精品一区| 国产欧美日韩一区二区三区在线 | 最新中文字幕久久久久| 国产精品一区二区性色av| 久久国产精品大桥未久av | 老司机亚洲免费影院| 亚洲精品一区蜜桃| 久久精品国产a三级三级三级| 蜜桃久久精品国产亚洲av| 欧美丝袜亚洲另类| 热99国产精品久久久久久7| 欧美日韩国产mv在线观看视频| 色视频在线一区二区三区| 欧美少妇被猛烈插入视频| 精品久久久久久久久av| 亚洲精品色激情综合| 国产成人91sexporn| 国产 一区精品| 欧美日韩视频精品一区| 亚洲精品日韩av片在线观看| 亚洲熟女精品中文字幕| av播播在线观看一区| 久久99蜜桃精品久久| 91aial.com中文字幕在线观看| 在线观看av片永久免费下载| 国产精品一区二区性色av| 免费大片18禁| 97超视频在线观看视频| 亚洲欧洲精品一区二区精品久久久 | 黑人巨大精品欧美一区二区蜜桃 | 久久这里有精品视频免费| 亚洲第一av免费看| 青春草视频在线免费观看| 国产色爽女视频免费观看| 成人美女网站在线观看视频| 午夜影院在线不卡| 亚洲第一av免费看| 精品人妻一区二区三区麻豆| 极品少妇高潮喷水抽搐| 日日啪夜夜爽| 国产一区有黄有色的免费视频| 免费少妇av软件| 男人添女人高潮全过程视频| 成年女人在线观看亚洲视频| 黑人巨大精品欧美一区二区蜜桃 | 国产淫语在线视频| 欧美97在线视频| 午夜免费观看性视频| 国产av一区二区精品久久| 另类亚洲欧美激情| 蜜桃在线观看..| 国产伦在线观看视频一区| 成年人免费黄色播放视频 | 国产成人午夜福利电影在线观看| 久久这里有精品视频免费| 午夜免费观看性视频| 少妇被粗大的猛进出69影院 | 亚洲欧美日韩卡通动漫| 久久久久人妻精品一区果冻| 综合色丁香网| 中文字幕av电影在线播放| 亚洲成人手机| 日韩欧美精品免费久久| 99久久精品国产国产毛片| 亚洲国产精品成人久久小说| 国产视频内射| 国产成人aa在线观看| 熟女人妻精品中文字幕| 麻豆精品久久久久久蜜桃| 丁香六月天网| 成年女人在线观看亚洲视频| 国产精品人妻久久久久久| 欧美日本中文国产一区发布| 亚洲经典国产精华液单| 永久网站在线| 2022亚洲国产成人精品| 精品熟女少妇av免费看| 久久人妻熟女aⅴ| 精品熟女少妇av免费看| 日韩av不卡免费在线播放| 91午夜精品亚洲一区二区三区| 亚洲激情五月婷婷啪啪| 日本av免费视频播放| 视频区图区小说| 久久久久久久久久久久大奶| 国产 一区精品| 99久久中文字幕三级久久日本| 一本色道久久久久久精品综合| 99热网站在线观看| 亚洲国产欧美在线一区| 91久久精品国产一区二区三区| 久久ye,这里只有精品| 亚洲,一卡二卡三卡| 国产在视频线精品| 亚洲欧美一区二区三区国产| 亚洲精品中文字幕在线视频 | 国产色爽女视频免费观看| 91成人精品电影| 亚洲人成网站在线观看播放| 精品酒店卫生间| 大话2 男鬼变身卡| 国产精品无大码| 伦理电影免费视频| 下体分泌物呈黄色| 乱码一卡2卡4卡精品| 人人妻人人爽人人添夜夜欢视频 | 男的添女的下面高潮视频| 少妇丰满av| 久久久久久久精品精品| 麻豆成人午夜福利视频| 精品久久久噜噜| 日韩熟女老妇一区二区性免费视频| 国产男女超爽视频在线观看| 欧美精品一区二区大全| 日本色播在线视频| 久久久久视频综合| 免费观看无遮挡的男女| 亚洲人与动物交配视频| 中文字幕免费在线视频6| 久久这里有精品视频免费| 亚洲av男天堂| 国产av国产精品国产| 99久国产av精品国产电影| 国产亚洲av片在线观看秒播厂| 大陆偷拍与自拍| 久久人人爽人人爽人人片va| 久久99热6这里只有精品| 久久久精品免费免费高清| 国产精品无大码| 免费观看无遮挡的男女| av在线老鸭窝| 久久久亚洲精品成人影院| 国国产精品蜜臀av免费| 久久精品久久精品一区二区三区| 婷婷色综合www| 国产精品一二三区在线看| 国产深夜福利视频在线观看| 日韩电影二区| 国产精品.久久久| 久久久亚洲精品成人影院| 日本wwww免费看| 美女xxoo啪啪120秒动态图| 美女cb高潮喷水在线观看| 国产视频内射| 国产欧美日韩精品一区二区| 最新的欧美精品一区二区| 久久综合国产亚洲精品| 老司机亚洲免费影院| 国产一级毛片在线| 成人美女网站在线观看视频| www.av在线官网国产| 男女边摸边吃奶| 69精品国产乱码久久久| 黑人猛操日本美女一级片| 日韩欧美精品免费久久| 性色av一级| 成人美女网站在线观看视频| 国产成人精品无人区| 国产精品免费大片| 国产美女午夜福利| 亚洲无线观看免费| 在线观看免费日韩欧美大片 | 亚洲欧美日韩另类电影网站| 亚洲人成网站在线播| 色5月婷婷丁香| 肉色欧美久久久久久久蜜桃| 国产熟女午夜一区二区三区 | 亚洲欧美一区二区三区黑人 | 99久久精品一区二区三区| 波野结衣二区三区在线| 国产真实伦视频高清在线观看| 少妇的逼好多水| 午夜福利影视在线免费观看| 久久久久久久国产电影| 亚洲无线观看免费| 久久热精品热| av又黄又爽大尺度在线免费看| 国产成人免费无遮挡视频| 日本黄色片子视频| 另类亚洲欧美激情| 三级国产精品欧美在线观看| 国产成人91sexporn| 中文字幕av电影在线播放| 日韩亚洲欧美综合| 国产在线一区二区三区精| 亚洲国产日韩一区二区| 久久久午夜欧美精品| 2018国产大陆天天弄谢| 国产免费一区二区三区四区乱码| 婷婷色av中文字幕| 两个人免费观看高清视频 | 亚洲欧美成人综合另类久久久| 久久影院123| 大片免费播放器 马上看| 亚洲成人一二三区av| 美女中出高潮动态图| 你懂的网址亚洲精品在线观看| www.色视频.com| 久久97久久精品| 97精品久久久久久久久久精品| 青春草视频在线免费观看| 日本免费在线观看一区| 爱豆传媒免费全集在线观看| 国产美女午夜福利| 色5月婷婷丁香| 国产极品粉嫩免费观看在线 | 国产色婷婷99| 男女免费视频国产| 久久久久久久精品精品| 精品久久久噜噜| 亚洲精品乱码久久久久久按摩| av免费在线看不卡| 亚洲成人手机| 如何舔出高潮| 国产欧美亚洲国产| 少妇被粗大猛烈的视频| 久久人人爽av亚洲精品天堂| 欧美xxxx性猛交bbbb| 久久这里有精品视频免费| 亚洲精品视频女| av天堂久久9| 免费看日本二区| 欧美激情极品国产一区二区三区 | 特大巨黑吊av在线直播| 日本-黄色视频高清免费观看| 久久午夜综合久久蜜桃| 久久久久久久久久久丰满| 22中文网久久字幕| 黄色毛片三级朝国网站 | 亚洲自偷自拍三级| 男人狂女人下面高潮的视频| 亚洲成人av在线免费| 狂野欧美激情性xxxx在线观看| 99热这里只有精品一区| 久久国产精品大桥未久av | 熟女人妻精品中文字幕| 精品视频人人做人人爽| 大陆偷拍与自拍| 一边亲一边摸免费视频| 最近的中文字幕免费完整| 亚洲无线观看免费| 欧美日韩视频精品一区| 国产精品三级大全| 久久精品国产亚洲网站| 亚洲久久久国产精品| 少妇人妻一区二区三区视频| 亚洲精品久久午夜乱码| 纯流量卡能插随身wifi吗| 免费大片黄手机在线观看| 国产一区二区在线观看av| 午夜激情福利司机影院| 久久久久久久久久久免费av| 夫妻午夜视频| 在线观看www视频免费| 色5月婷婷丁香| 色婷婷av一区二区三区视频| 亚洲欧美中文字幕日韩二区| 久久久国产精品麻豆| 黑人高潮一二区| 少妇 在线观看| av福利片在线观看| 一级毛片电影观看| 熟妇人妻不卡中文字幕| 夫妻性生交免费视频一级片| 亚洲精品国产成人久久av| 久久久久久人妻| 久久国产精品大桥未久av | 日韩欧美精品免费久久| 亚洲人成网站在线观看播放| 男人舔奶头视频| 亚洲精品久久午夜乱码| 男女无遮挡免费网站观看| 日本午夜av视频| 亚洲欧美清纯卡通| 国产精品久久久久久久久免| 午夜视频国产福利| 国产伦精品一区二区三区视频9| 日韩一区二区三区影片| 一级毛片黄色毛片免费观看视频| 人人妻人人添人人爽欧美一区卜| 亚洲精品国产av蜜桃| 亚洲av成人精品一区久久| 夫妻性生交免费视频一级片| 少妇人妻一区二区三区视频| 中国国产av一级| 中文字幕免费在线视频6| 人妻夜夜爽99麻豆av| 高清不卡的av网站| 国产淫语在线视频| 最新的欧美精品一区二区| 啦啦啦中文免费视频观看日本| 丁香六月天网| 亚洲不卡免费看| 另类亚洲欧美激情| 最新中文字幕久久久久| 狂野欧美激情性bbbbbb| 99国产精品免费福利视频| 精品国产乱码久久久久久小说| 国产 精品1| 天堂中文最新版在线下载| 欧美日韩视频高清一区二区三区二| 纯流量卡能插随身wifi吗| 老司机影院毛片| 18禁裸乳无遮挡动漫免费视频| av女优亚洲男人天堂| 国产又色又爽无遮挡免| 一本色道久久久久久精品综合| 亚洲av不卡在线观看| 国产黄色免费在线视频| 在现免费观看毛片| 欧美最新免费一区二区三区| 天美传媒精品一区二区| 国产精品国产av在线观看| 国产男人的电影天堂91| av线在线观看网站| 哪个播放器可以免费观看大片| 97精品久久久久久久久久精品| 欧美区成人在线视频| 亚洲自偷自拍三级| 国产乱来视频区| 免费大片黄手机在线观看| av免费在线看不卡| 中文乱码字字幕精品一区二区三区| a级片在线免费高清观看视频| 26uuu在线亚洲综合色| 国产成人a∨麻豆精品| 精品一区二区三卡| 精品人妻偷拍中文字幕| 校园人妻丝袜中文字幕| 中文字幕人妻熟人妻熟丝袜美| 一级毛片黄色毛片免费观看视频| 国产精品欧美亚洲77777| av在线老鸭窝| 精品久久久久久电影网| 亚洲欧美一区二区三区国产| 亚洲欧美日韩东京热| 美女国产视频在线观看| 国产精品久久久久久精品电影小说| 中文字幕久久专区| 日本色播在线视频| 春色校园在线视频观看| 欧美老熟妇乱子伦牲交| 日韩不卡一区二区三区视频在线| 一区二区三区免费毛片| 亚洲三级黄色毛片| 欧美日韩视频精品一区| 五月天丁香电影| 久久久久久久久久成人| 七月丁香在线播放| 97精品久久久久久久久久精品| 色94色欧美一区二区| 十分钟在线观看高清视频www | 国产精品人妻久久久影院| 欧美成人午夜免费资源| 少妇丰满av| 99热这里只有是精品在线观看| 内射极品少妇av片p| 国内揄拍国产精品人妻在线| 我要看黄色一级片免费的| 成年女人在线观看亚洲视频| 国内少妇人妻偷人精品xxx网站| 少妇猛男粗大的猛烈进出视频| 十八禁网站网址无遮挡 | 精品国产国语对白av| 国产欧美日韩一区二区三区在线 | 国产高清有码在线观看视频| 国产免费又黄又爽又色| 亚洲欧美一区二区三区国产| 中文字幕人妻丝袜制服| 一本久久精品| 一级毛片黄色毛片免费观看视频| 欧美日韩国产mv在线观看视频| 人人妻人人澡人人爽人人夜夜| 国产免费视频播放在线视频| 精品一品国产午夜福利视频| 亚洲av国产av综合av卡| 一二三四中文在线观看免费高清| 成年女人在线观看亚洲视频| av福利片在线| 午夜激情福利司机影院| 久久鲁丝午夜福利片| 久久久国产一区二区| 久久久久久久国产电影| 亚洲av中文av极速乱| 亚洲精品国产色婷婷电影| tube8黄色片| 午夜激情久久久久久久| 国产色婷婷99| 搡女人真爽免费视频火全软件|