郭淑青,宋慧,楊清華,高金鋒,高小麗,馮佰利,楊璞
谷子株高及穗部性狀主基因+多基因混合遺傳模型分析
1西北農(nóng)林科技大學農(nóng)學院/旱區(qū)作物逆境生物學國家重點實驗室,陜西楊凌 712100;2安陽市農(nóng)業(yè)科學院谷子研究所,河南安陽 455000
【目的】株高和穗部性狀是影響谷子產(chǎn)量的關鍵性狀。探究谷子株高及穗部性狀表型變異的遺傳規(guī)律,為相關性狀的遺傳改良與基因定位提供參考依據(jù)?!痉椒ā恳怨茸觾?yōu)質(zhì)品種豫谷18為共同父本,分別與黃軟谷和紅酒谷雜交,構建2個分別包含250個家系的重組自交系F7群體(YYRIL和YRRIL)。采用主基因+多基因混合遺傳模型,對YYRIL和YRRIL群體在2個環(huán)境下的株高、穗長、穗下節(jié)間長、穗碼數(shù)、穗粒重等5個農(nóng)藝性狀的表型數(shù)據(jù)進行遺傳分析。【結果】5個性狀在所有環(huán)境中均表現(xiàn)連續(xù)變異且存在超親分離現(xiàn)象,峰度和偏度絕對值小于1,近似正態(tài)分布,呈現(xiàn)數(shù)量性狀的典型遺傳特點。性狀間相關性分析表明株高與穗長、穗下節(jié)間長在所有環(huán)境中均呈極顯著正相關,穗碼數(shù)與穗粒重呈極顯著正相關。遺傳模型分析顯示YYRIL和YRRIL群體株高的最適遺傳模型分別為PG-AI和PG-A多基因模型,多基因遺傳率分別為95.15%和91.27%。2個群體穗碼數(shù)的最適模型均為PG-AI,多基因遺傳率為70.07%—71.58%。穗下節(jié)間長在2個群體的最適遺傳模型分別為4MG-CEA和3MG-CEA,均為等加性主基因模型。穗下節(jié)間長在YYRIL群體的主基因遺傳率為9.69%,4對主基因加性效應值相等,均為-0.34,具有負向效應;穗下節(jié)間長在YRRIL群體的主基因遺傳率為45.78%,3對主基因加性效應值相等,均為1.17,具有正向效應。穗長在YYRIL群體的最適模型為MX2-ED-A,即2對顯性上位主基因+加性多基因模型,主基因遺傳率為43.56%,多基因遺傳率為50.56%??刂扑腴L的2對主基因加性效應值分別為-1.21、1.68,多基因加性效應較小,為-0.0017;穗長在YRRIL群體的最適模型為MX2-AE-A,即2對累加作用主基因,加性多基因混合遺傳模型;穗長的主基因遺傳率為46.40%,多基因遺傳率為46.91%。控制穗長的第1對主基因加性效應值為1.53,具有正向效應,第1對主基因加性×第2對主基因加性上位性互作效應值是0.60,多基因加性效應值為-0.47,表現(xiàn)為較低的負向遺傳效應。穗粒重在YYRIL群體的最適遺傳模型為MX2-ED-A;符合2對顯性上位主基因+加性多基因模型,主基因遺傳率為69.09%,多基因遺傳率為12.08%;控制穗粒重的2對主基因加性效應值分別為0.58、5.82,以第2對主基因的加性效應為主,多基因加性效應值為-3.81。穗粒重在YRRIL群體的最適遺傳模型為3MG-PEA,即3對部分等加性主基因遺傳模型;穗粒重的主基因遺傳率為81.10%,3對主基因加性效應值分別為-2.68、-2.68和2.66,前2對主基因的加性效應值相同,且均為負向效應。【結論】谷子株高、穗碼數(shù)的最適遺傳模型相似,均服從多基因遺傳,遺傳率較高,受環(huán)境影響較??;穗下節(jié)間長的遺傳受主基因控制,主基因遺傳率偏低,受環(huán)境影響較大,在栽培中應充分考慮環(huán)境因素;穗長遺傳受主基因和多基因共同控制;穗粒重在2個群體均服從主基因遺傳,主基因遺傳率較高,可能存在主效QTL。
谷子;重組自交系;株高;穗部性狀;主基因+多基因
【研究意義】谷子(L.)抗旱耐貧瘠,是中國北方干旱半干旱地區(qū)重要的糧食作物。此外,谷子富含豐富的蛋白質(zhì)、維生素、脂肪等營養(yǎng)物質(zhì),其食品保健價值受到廣泛關注[1]。谷子株高及穗部農(nóng)藝性狀間相互聯(lián)系,直接影響其產(chǎn)量[2]。然而谷子農(nóng)藝性狀多屬數(shù)量性狀,遺傳基礎復雜,易受環(huán)境條件影響,基因型與表型的對應關系不明確[3-4]。研究谷子株高及穗部性狀的遺傳規(guī)律,對提高和穩(wěn)定谷子產(chǎn)量、維護區(qū)域糧食安全具有重要意義?!厩叭搜芯窟M展】主基因加多基因混合遺傳模型是揭示株高及穗部性狀遺傳機制的重要途徑[5]。泛主基因-多基因遺傳理論認為,數(shù)量性狀的遺傳體系是由效應較大的主基因、效應較小的多基因或主基因和多基因共同組成,即主基因加多基因混和遺傳體系[6-8]?;谠摾碚摚略鞯萚9-10]和蓋鈞鎰等[8]提出了主基因加多基因混和遺傳模型分析方法。該方法不僅可經(jīng)濟便捷地對表型性狀主基因數(shù)目、基因效應做出初步判斷,更能明晰基因間互作及其上位性以及基因與環(huán)境的相互作用,是分析植物數(shù)量性狀遺傳的重要途徑[11-13]。大量的研究實踐表明,基于主基因加多基因遺傳模型對表型數(shù)據(jù)的分析與QTL定位的結果具有相對一致性,可相互驗證[14-16]。主基因加多基因混和遺傳分析方法在小麥[17]、水稻[18]、玉米[19]、油菜[20]、棉花[21]、大麥[22]、蠶豆[23]、番茄[24]、煙草[25]、白花丹[26]等植物的農(nóng)藝性狀、抗旱性、抗病性、化學成分等方面的遺傳分析中得到了廣泛應用。性狀受基因和環(huán)境共同影響。相同性狀在不同環(huán)境和不同群體中具有顯著差異的遺傳模型[27]?!颈狙芯壳腥朦c】目前,已開始廣泛研究谷子數(shù)量性狀,但利用主基因加多基因混合遺傳模型研究較少,對谷子重要農(nóng)藝性狀在多環(huán)境下的表型遺傳分析鮮見報道?!緮M解決的關鍵問題】本研究以豫谷18為共同親本,分別與紅酒谷、黃軟谷雜交,并以單籽傳法構建的2個重組自交系群體(YYRIL和YRRIL)為材料,在陜西榆林和河南安陽2個環(huán)境中開展表型鑒定,利用主基因+多基因混合遺傳模型分析方法,鑒定谷子株高及穗部性狀遺傳模型和基因作用方式,以期為谷子重要農(nóng)藝性狀的QTL定位及性狀改良提供依據(jù)。
以高產(chǎn)、優(yōu)質(zhì),適應性廣的谷子品種豫谷18為共同父本,分別與地方品種紅酒谷和黃軟谷雜交,通過連續(xù)6代單籽傳法自交,構建2個包含250個家系的重組自交系群體(RILs-F7),分別命名為YYRIL和YRRIL。試驗材料均由西北農(nóng)林科技大學小雜糧課題組提供。于2020年分別在陜西榆林(半干旱區(qū),109°21′46″E,37°56′26″N,2020YL,E1)和河南安陽(半濕潤區(qū),114°23′32″E,36°58′32″N,2020AY,E2)種植這兩個群體。每個環(huán)境的田間試驗采取隨機區(qū)組試驗設計,3次重復,每個小區(qū)4行,行長2 m,行距30—40 cm,小區(qū)面積為4 m2(2 m×2 m)。試驗點肥力均勻,田間管理參照常規(guī)農(nóng)田統(tǒng)一管理。
成熟期每個小區(qū)隨機選取9株,利用鋼尺測量親本及群體株高(plant hight,PH)、穗長(panicle length,PL)、穗下節(jié)間長(internode length under panicle,PIL),并測量穗碼數(shù)(spikelet number per panicle,SN)。成熟后單株收獲脫粒,利用天平稱量穗粒重(grain weight per panicle,GW)。性狀調(diào)查方法及標準依據(jù)《谷子種質(zhì)資源描述規(guī)范和數(shù)據(jù)標準》[28]。
利用Excel 2010和SPSS 22.0軟件對2個群體及3個親本在2個環(huán)境下的表型數(shù)據(jù)進行初步分析處理,判斷是否符合正態(tài)分布。利用R語言包繪制谷子重組自交系株高及穗部性狀的頻率分布直方圖;利用章元明教授團隊開發(fā)的R軟件包SEA-G3DH(https://cran.r-project.org/web/packages/SEA/index.html)對親本及群體的5個表型性狀進行主基因+多基因混合遺傳模型分析。通過極大似然法(maximum likelihood method,MLV)和迭代最大期望算法(iterated expectation and conditional maximization,IECM)對混合分布中的相關成分分布參數(shù)做出估計,采用最小赤池信息量準則(Akaike’s information criterion,AIC),選出AIC值最小的幾個模型作為備選遺傳模型,然后利用均勻性檢驗(12、22和32)、Smirnov檢驗(2)和Kolmogorov檢驗(D)對備選模型進行適合性檢驗,根據(jù)檢驗結果選擇統(tǒng)計量達到顯著性水平個數(shù)最少的模型為該性狀的最適遺傳模型,最后,用最小二乘法計算出最適遺傳模型的一、二階遺傳參數(shù)。
2.1.1 YYRIL群體株高及穗部性狀的表型變異及頻率分布 對YYRIL群體及親本的株高及穗部性狀進行分析可知(表1),親本的性狀差異在不同環(huán)境下表現(xiàn)不一致。雙親株高、穗碼數(shù)在2個環(huán)境下均呈極顯著差異,穗下節(jié)間長在榆林存在顯著差異,而在安陽差異不顯著。群體在2個不同環(huán)境下的表型性狀存在不同程度的分離,變異系數(shù)從高到低依次為穗粒重(22.01%)、穗碼數(shù)(14.07%)、穗下節(jié)間長(13.46%)、穗長(11.02%)、株高(6.37%)。在2個環(huán)境下,YYRIL群體的株高及穗部性狀偏度為-0.72—1.29,峰度為-0.46—1.34。除E1環(huán)境下的穗長、穗下節(jié)間長外,各農(nóng)藝性狀的偏度和峰度絕對值均小于1,即表現(xiàn)為近似正態(tài)分布。農(nóng)藝性狀在2個環(huán)境的頻率分布圖存在一定程度差異(圖1),YYRIL群體株高在2個環(huán)境均呈現(xiàn)單峰偏態(tài)分布,表明株高可能由多基因控制;穗下節(jié)間長在2個環(huán)境均表現(xiàn)多峰分布,可能存在主基因;穗長在榆林的頻率分布為單峰分布,在安陽呈現(xiàn)雙峰分布;穗碼數(shù)在榆林表現(xiàn)為雙峰分布,在安陽表現(xiàn)為單峰分布,穗粒重在榆林表現(xiàn)為單峰分布,在安陽表現(xiàn)為多峰分布。YYRIL群體株高及穗部性狀在各個環(huán)境中呈連續(xù)分布且存在不同程度超親分離現(xiàn)象,適宜進行遺傳分析。利用Pearson相關系數(shù)對YYRIL群體在2個不同環(huán)境農(nóng)藝性狀進行相關性分析,發(fā)現(xiàn)株高與穗長、穗下節(jié)間長在2個環(huán)境中均呈極顯著正相關,穗碼數(shù)與穗粒重在E1呈極顯著正相關(圖2)。
2.1.2 YRRIL群體株高及穗部性狀的表型變異及頻率分布 YRRIL群體親本間性狀的差異在不同環(huán)境下表現(xiàn)不一致(表1),雙親株高、穗下節(jié)間長在2個環(huán)境的差異不顯著,而穗碼數(shù)、穗粒重在2個環(huán)境均呈現(xiàn)極顯著差異。群體性狀存在豐富的遺傳變異,變異系數(shù)從高到低依次為穗粒重(30.79%)、穗碼數(shù)(15.50%)、穗長(13.92%)、穗下節(jié)間長(13.54%)、株高(10.06%)。YRRIL群體株高、穗長、穗下節(jié)間長、穗碼數(shù)、穗粒重在2個環(huán)境的偏度和峰度絕對值均小于1,表現(xiàn)為近似正態(tài)分布。群體性狀表型頻率分布圖可以看出(圖1),所有性狀在不同環(huán)境均呈現(xiàn)連續(xù)性分布,分布特征存在差異,株高在榆林表現(xiàn)雙峰分布,在安陽表現(xiàn)為單峰分布;穗長在榆林表現(xiàn)單峰分布,在安陽為多峰分布;穗下節(jié)間長在2個環(huán)境下均呈現(xiàn)多峰分布,表明存在主基因,穗碼數(shù)在2個環(huán)境下均呈現(xiàn)單峰分布,穗粒重在榆林表現(xiàn)為單峰分布,在安陽表現(xiàn)多峰分布。YRRIL群體株高及穗部性狀在各個環(huán)境中存在不同程度超親分離現(xiàn)象,適宜進行遺傳分析。YRRIL群體性狀在各環(huán)境的相關性分析顯示(圖2),株高與穗長、穗下節(jié)間長在2個環(huán)境中均呈極顯著正相關,穗碼數(shù)與穗粒重在2個環(huán)境均表現(xiàn)極顯著正相關。
2.2.1 YYRIL群體株高及穗部性狀主基因+多基因混合遺傳分析 對YYRIL群體在2個環(huán)境下的株高及穗部性狀分別進行主基因+多基因混合模型遺傳分析,選取AIC值最小的一組模型為備選模型(表2),比較株高分別在2個環(huán)境下的AIC值,PG-AI模型的AIC值最低分別為1 874.259和1 643.336,為株高的備選模型;穗長在E1的最低AIC值為1 258.761,對應的備選模型是PG-AI,穗長在E2的最低AIC值為1 186.078,備選模型為MX2-ED-A;3MG-AI、4MG- CEA的AIC值較低,分別為1 520.849和1 164.932,為穗下節(jié)間長的備選模型;穗碼數(shù)的備選模型分別為2MG-CE和PG-AI,AIC值分別為2 165.766和1 881.470,穗粒重在2個環(huán)境下最低的AIC值分別為1 686.369和1 485.489,對應的備選模型是PG-A和MX2-ED-A。
通過對YYRIL群體各個性狀在2個環(huán)境下的備選模型采用均勻性檢驗、Smirnov檢驗和Kolmogorov檢驗,確定AIC值最小且統(tǒng)計量顯著性水平個數(shù)最少的模型為最適模型(表3)。YYRIL群體株高的最適遺傳模型均為PG-AI模型,即2對連鎖主基因+加性-上位性多基因遺傳模型。穗長在2個環(huán)境的備選模型的統(tǒng)計量達到顯著水平的數(shù)量均為0;根據(jù)AIC準則進行篩選,穗長的最適模型為MX2-ED-A模型,即2對顯性上位主基因+加性多基因模型。同理穗下節(jié)間長對應的最適遺傳模型為4MG-CEA模型,即4對主基因模型,主基因加性效應相同,無多基因。穗碼數(shù)對應的最適遺傳模型為PG-AI模型。穗粒重對應的遺傳模型為MX2-ED-A。
表1 谷子YYRIL和YRRIL群體株高及穗部性狀描述性統(tǒng)計分析
PH:株高;PL:穗長;PIL:穗下節(jié)間長;SN:穗碼數(shù);GW:穗粒重。E1:陜西榆林;E2:河南安陽。*:差異達到顯著水平(<0.05);**:差異達到極顯著水平(<0.01)。表格中“-”表示空缺。下同
PH: Plant height; PL: Panicle length; PIL: Internode length under panicle; SN:Spikelet number per panicle; GW: Grain weight per panicle. E1: Yulin, Shaanxi; E2: Anyang, henan. *:Significant difference at the 0.05 level; **: Significant difference at the 0.01 level. “-”in the cells mean the value is absent. The same as below
PH:株高;PL:穗長;PIL:穗下節(jié)間長;SN:穗碼數(shù);GW:穗粒重。E1:陜西榆林;E2:河南安陽。下同
PH: Plant height; PL: Panicle length; PIL: Internode length under panicle; SN:Spikelet number per panicle ; GW: Grain weight per panicle. E1: Yulin, Shaanxi; E2: Anyang, henan. The same as below
圖1 谷子YYRIL和YRRIL群體株高及穗部性狀的頻率分布(柱形)、擬混合分布(紅線)與成分分布(黑線)
Fig. 1 Frequent (column), mixed (red line), and component (black line) distributions for plant height and panicle traits inYYRIL and YRRIL foxtail millet population
a:YYRIL群體株高及穗部性狀在榆林的相關性;b:YYRIL群體株高及穗部性狀在安陽的相關性;c:YRRIL群體株高及穗部性狀在榆林的相關性;d:YRRIL群體株高及穗部性狀在安陽的相關性
估算YYRIL群體株高及穗部性狀最適遺傳模型下的一階參數(shù)和二階參數(shù)可知(表4),2個環(huán)境中,株高的多基因遺傳率介于74.68%—95.15%,株高以多基因遺傳為主。穗長的主基因遺傳率為43.56%,多基因遺傳率為50.56%。控制穗長的第1對主基因加性效應值(da)為-1.21,具有負向效應,第2對主基因加性效應值(db)為1.68,具有正向效應,多基因顯性效應較小為-0.0017。穗下節(jié)間長的主基因遺傳率為9.69%,環(huán)境因素決定90.31%的變異,穗下節(jié)間長受環(huán)境因素影響較大。控制穗下節(jié)間長的4對主基因加性效應值(da、db、dc和dd)相同,均為-0.34,為負向遺傳效應。穗碼數(shù)的多基因遺傳率是70.07%,穗碼數(shù)受環(huán)境影響較小,一致性較好。穗粒重的主基因遺傳率為69.09%,多基因遺傳率為12.08%,穗粒重主要受主基因作用。穗粒重的2對主基因加性效應值(da和db)分別為0.58和5.82,其中第2對主基因的加性效應值較大,說明主基因加性效應以第2對主基因為主,且為正向遺傳效應;穗粒重多基因加性效應值([d])為-3.81,為負向遺傳效應。
2.2.2 YRRIL群體株高及穗部性狀主基因+多基因混合遺傳分析 根據(jù)AIC值最小原則,選取YRRIL群體株高及穗部性狀在2個環(huán)境下的備選模型(表2)。株高在2個環(huán)境下PG-A和MX2-IE-A的AIC值最低,分別為1 966.339和2 126.700,為株高備選模型;PG-AI和MX2-AE-A的AIC值最低為1 463.860和1 324.700,為穗長的備選模型;穗下節(jié)間長在2個環(huán)境下的備選模型為3MG-CEA和4MG-EEEA,AIC值分別為1 285.900和1 546.820,穗碼數(shù)的在2個環(huán)境下的備選模型均為PG-AI,穗粒重在2個環(huán)境下最低的AIC值分別為1 808.660和1 481.494,對應的備選模型是PG-AI和3MG-PEA。
通過對YRRIL群體各個性狀在2個環(huán)境下的備選模型采用適應性檢驗,選出AIC值最小和統(tǒng)計顯著性水平數(shù)目最少的模型作為最適模型(表3)。株高的2個備選模型的統(tǒng)計量達到顯著水平的個數(shù)均為0,根據(jù)AIC準則進行篩選,株高對應的最適遺傳模型為PG-A模型,即多基因模型,多基因以加性效應為主。穗長的最適模型為MX2-AE-A,即2對連鎖主基因,累加作用多基因混合遺傳模型。穗下節(jié)間長對應的最適遺傳模型為3MG-CEA模型,即3對主基因模型,主基因的加性效應相同;穗碼數(shù)在2個環(huán)境的最適遺傳模型均為PG-AI模型,即2對連鎖主基因+加性-上位多基因遺傳模型;穗粒重對應的遺傳模型為3MG-PEA,即3對主基因遺傳模型。
表2 谷子YYRIL和YRRIL群體株高及穗部性狀最適遺傳模型分離分析的極大似然值函數(shù)MLV值和Akaike信息準則AIC值
MG:主基因模型;PG:多基因遺傳模型;MX:主基因+多基因混合模型;A:加性效應;I:互作;E:相等;AI:加性上位性效應;AE:累加作用;ED:顯性上位;CE:互補作用;IE:抑制作用;CEA:全等加性;PEA:部分等加性
MG: Major gene model; PG: Polygene model; MX: Mixed major gene and polygene model. A: Additive effect; I: Interaction; E: Equal; AI: Additive + epistasis effect; AE: Accumulative effect; ED: epistasis dominance; CE: complementary effect; IE: inhibition effect; CEA: congruent equal additive; PEA: Partial equal additive
表3 谷子YYRIL和YRRIL群體株高及穗部性狀最佳遺傳模型適應性檢驗
12、22、32:均勻性檢驗;nW:Smirnov檢驗;:Kolmogorov檢驗,括號內(nèi)數(shù)值為概率值
12,22,32: the statistic of Uniformity test;nW: the statistic of Smirnov test;: the statistic of Kolmogorov test, the numbers in brackets are the distribution values in theory
表4 谷子YYRIL和YRRIL群體株高及穗部性狀最適模型遺傳參數(shù)
m:群體均值;da:第1對主基因的加性效應;db:第2對主基因的加性效應;dc:第3對主基因的加性效應;dd:第4對主基因的加性效應;i:上位性效應;[d]:多基因加性效應;2:多基因方差;2:主基因方差;2(%):主基因遺傳力;2(%):多基因遺傳力
m: population mean; da: additive effect of the first major gene; db: additive effect of the second major gene; dc: additive effect of the third major gene; dd: additive effect of the fourth major gene; i: epistatic effect value; [d]: additive effect of polygene;2: polygene variance;2: major gene variance;2(%): heritability of major gene;2(%): heritability of polygene
由YRRIL群體株高及穗部性狀的最適遺傳模型估算一階參數(shù)和二階參數(shù)可知(表4),株高的多基因遺傳率為91.27%,環(huán)境因素決定8.73%的變異,谷子YRRIL群體株高主要由多基因控制,受環(huán)境影響小。穗長的主基因遺傳率為46.40%,多基因遺傳率為46.91%。控制穗長的第1對主基因加性效應值(da)為1.53,具有正向效應,加性和第1對主基因×第2對主基因的加性上位性互作效應值(iab)是0.60,多基因加性效應值([d])為-0.47,表現(xiàn)為較低的負向遺傳效應。穗下節(jié)間長的主基因遺傳率為45.78%,環(huán)境因素決定54.22%的變異,穗下節(jié)間長受環(huán)境因素影響較大??刂扑胂鹿?jié)間長的3對主基因加性效應值(da、db、dc和dd)相同,均為1.17,為正向遺傳效應。穗碼數(shù)的多基因遺傳率介于71.58%—92.89%,穗碼數(shù)受環(huán)境影響較小,一致性較好。穗粒重的主基因遺傳率為81.10%,環(huán)境因素僅占18.90%,穗粒重主要受主基因作用。穗粒重的3對主基因加性效應值(da、db和dc)分別為-2.68、-2.68和2.66,其中前對2對主基因的加性效應值相同,均為負向效應,第3對主基因加性效應為正向遺傳效應。
谷子抗旱耐貧瘠,適應性廣,是優(yōu)化種植業(yè)區(qū)域布局、保證北方旱作區(qū)糧食作物生產(chǎn)長效發(fā)展的重要作物[29-30]。株高及穗部性狀是影響谷子產(chǎn)量的重要因素,研究其遺傳規(guī)律對提高和穩(wěn)定谷子產(chǎn)量具有重要的意義。主基因+多基因模型是目前廣泛用于分析作物數(shù)量性狀遺傳組成的方法,其不僅可通過表型數(shù)據(jù)對目標性狀的遺傳基礎進行初步判斷,更可校驗QTL定位的結果,提高結果的準確性和可靠性,為數(shù)量性狀QTL定位提供依據(jù)[31-32]。本研究以高產(chǎn)、優(yōu)質(zhì)、適應性廣,綜合抗性好的谷子品種豫谷18分別與黃軟谷、紅酒谷雜交構建的2個自交系群體(YYRIL-F7和YRRIL-F7)為材料,采用主基因+多基因混和遺傳模型,研究谷子株高、穗長、穗下節(jié)間長、穗碼數(shù)、穗粒重等5個重要農(nóng)藝性狀的遺傳規(guī)律。研究發(fā)現(xiàn)5個性狀在親本間的差異在不同環(huán)境下表現(xiàn)不一致。5個性狀在群體內(nèi)變異豐富,且在兩個群體的變異程度相似。穗粒重的變異系數(shù)最大,株高的變異系數(shù)最小,這表明穗粒重的離散程度大,改良潛力大,與方路斌等[33]、李曉宇等[34]研究結果一致。兩群體株高、穗長、穗下節(jié)間長、穗碼數(shù)、穗粒重均表現(xiàn)連續(xù)分布且存在超親分離,峰度和偏度絕對值小于1,近似正態(tài)分布,符合多基因控制的數(shù)量性狀的典型特征。農(nóng)藝性狀的相關性在2個群體內(nèi)表現(xiàn)一致,株高與穗長、穗下節(jié)間長呈現(xiàn)極顯著正相關,穗碼數(shù)與穗粒重呈現(xiàn)極顯著正相關。因此,育種過程應充分考慮性狀間的相關性,提高對目標性狀的選擇效率[35]。
通過對2個群體在不同環(huán)境下的農(nóng)藝性狀的遺傳模型進行篩選和適合性檢驗發(fā)現(xiàn):YYRIL群體株高在2個環(huán)境下均符合PG-AI模型,即多基因遺傳模型,多基因具有明顯的加性上位性作用;株高的多基因遺傳率介于74.68%—95.15%,環(huán)境因素決定4.85%—25.32%的變異。YRRIL群體株高的最適遺傳模型為PG-A模型,即多基因模型,多基因以加性效應為主;株高的多基因遺傳率為91.27%,環(huán)境因素決定8.73%的變異。盡管株高在兩群體的最適模型不一致,但均符合多基因模型,且多基因遺傳率較高,表明株高可能受穩(wěn)定遺傳的多基因控制。He等[36]利用高密度遺傳圖譜鑒定出26個與株高顯著相關的QTL,并證明谷子矮稈/半矮稈表型是由多個QTL控制的,而不是由單個基因或者主效QTL控制,這也與前人關于高粱、玉米株高的研究相似[37-38]。但VANDANA等[39]利用全基因組關聯(lián)分析鑒定了3個與株高相關的位點,可能是由材料類型差異較大所致。YYRIL群體穗碼數(shù)的最適遺傳模型為PG-AI模型,YRRIL群體穗碼數(shù)在2個環(huán)境下的備選模型均為PG-AI,即2對連鎖主基因+加性-上位多基因遺傳模型。穗碼數(shù)在2個群體的最適模型一致,多基因遺傳率分別為70.07%和71.58%。Zhang等[40]在不同光照條件下鑒定了5個與穗碼數(shù)相關的QTL,分別位于第2、4、9染色體上,與本研究有差異,可能由于定位到的QTL效應值較小,能解釋的遺傳變異小。杜希朋等[41]利用主基因+多基因模型對螞蚱麥×碧玉麥雜交的F2小穗數(shù)等性狀進行遺傳分析,發(fā)現(xiàn)株高、小穗數(shù)都是多基因控制的數(shù)量性狀,與本研究結果一致,兩者可能具有遺傳相似性。YYRIL群體穗下節(jié)間長在E1的最適模型是3MG-AI,在E2的最適模型為4MG-CEA,以穗下節(jié)間長在2個環(huán)境下的最佳模型作為備選模型,經(jīng)適合性檢驗發(fā)現(xiàn),穗下節(jié)間長的2個備選模型的統(tǒng)計量達到顯著水平的數(shù)量均為0;根據(jù)AIC準則進行篩選,最適模型為4MG-CEA模型,即4對主基因模型,無多基因;穗下節(jié)間長的主基因遺傳率較低,環(huán)境因素決定90.31%的變異,YYRIL群體穗下節(jié)間長受環(huán)境因素影響較大。YRRIL群體穗下節(jié)間長在2個環(huán)境下的備選模型分別為3MG-CEA和4MG-EEEA,經(jīng)檢驗穗下節(jié)間長對應的最適遺傳模型為3MG-CEA模型,即3對完全獨立等加性主基因模型;主基因遺傳率為45.78%,環(huán)境因素決定54.22%的變異。本研究中,同一群體穗下節(jié)間長在不同的環(huán)境條件下的遺傳模型存在差異,而不同群體在同一環(huán)境下的穗下節(jié)間長的最適遺傳模型相似,且本研究穗下節(jié)間長的最適模型與前人研究結果差異較大[42-44],可能由于穗下節(jié)間長的主基因遺傳率偏低,極易受環(huán)境影響,導致分析結果差異大。
YYRIL群體穗長的最適模型為MX2-ED-A模型,即2對顯性上位主基因-加性多基因模型;穗長的主基因遺傳率為43.56%,多基因遺傳率為50.56%;控制穗長的第2對主基因加性效應值(db)大于第1對主基因加性效應值(da),具有正向效應,即以第2對主基因的加性效應為主,多基因加性效應較小。YRRIL群體穗長的最適模型為MX2-AE-A,即2對累加主基因+加性多基因模型;穗長的主基因遺傳率為46.40%,多基因遺傳率為46.91%;控制穗長的第1對主基因加性效應值(da)為1.53,具有正向效應,多基因加性效應為-0.47,表現(xiàn)為較低的負向遺傳效應。2個群體穗長均符合2對主基因加多基因模型,但主基因間的效應不同,這與群體遺傳背景差異有關。楊坤[45]對谷子穗長進行初步定位,共檢測到3個與穗長相關的位點,2個表現(xiàn)為微效,Wang等[46]檢測到3個與谷子穗長相關的QTL,Zhi等[44]在13個環(huán)境中檢測到35個與穗長相關的QTL,其中2個QTL分別在12和7個環(huán)境中檢測到,F(xiàn)ang等[47]鑒定了2個穗長相關的QTL。與本研究結果不完全一致,可能是遺傳模型分析簡化了主基因間的連鎖作用,也有可能是性狀在不同群體和不同環(huán)境中的表達存在差異。YYRIL群體穗粒重在2個環(huán)境下的備選模型分別是PG-A和MX2-ED-A;經(jīng)適合性檢驗,穗粒重的最適遺傳模型為MX2-ED-A,即2對顯性上位主基因+加性多基因模型。估算最適模型的一階參數(shù)和二階參數(shù)發(fā)現(xiàn),穗粒重的第2對主基因的加性效應值大于第1對主基因的加性效應值,說明主基因加性效應以第2對主基因為主,且為正向遺傳效應,穗粒重多基因加性效應為-3.81,負向遺傳效應。穗粒重主基因遺傳率為69.09%,多基因遺傳率為12.08%,主基因效應顯著大于多基因效應,YYRIL穗粒重主要受主基因作用。YRRIL群體穗粒重在2個環(huán)境下的最適模型為3MG-PEA,即3對主基因遺傳模型。穗粒重的3對主基因加性效應值(da、db和dc)分別為-2.68、-2.68和2.66,前對2對主基因的加性效應值相同,均為負向效應,第3對主基因加性效應為正向遺傳效應。穗粒重的主基因遺傳率為81.10%,表明穗粒重主要受主基因作用,遺傳因素決定了81.10%的變異,環(huán)境因素僅占18.90%。2個群體穗粒重均以主基因遺傳為主。Zhi等[44]在9個環(huán)境中檢測到16個與谷子穗粒重相關的QTL,其中一個位點在2個環(huán)境均檢測到,其余僅在單一環(huán)境檢測到。Liu等[48]將12個與穗粒重相關的QTL定位于第7染色體上,其中1個QTL在3個環(huán)境下均被檢測到。Fang等[47]鑒定了1個與穗粒重相關的QTL。原因可能是試驗材料和群體類型各不相同對分析結果造成影響。
谷子株高及穗部性狀的遺傳分析對于谷子后續(xù)遺傳研究具有重要意義。從遺傳率的角度,谷子穗長受主基因和多基因控制,主基因遺傳率與多基因遺傳率相似,環(huán)境對表型變異的影響小。穗粒重主要受主基因遺傳控制,具有較高的遺傳率,遺傳因素對其影響較大,在育種過程中應重視利用其主基因特性、在早代進行定向選擇。穗下節(jié)間長遺傳率較低易受環(huán)境影響,且與株高有很強的相關性,因此,在栽培中充分考慮環(huán)境因素、通過控制水肥等縮短穗下節(jié)間長、降低株高[49-51]。主基因與多基因混合模型分析發(fā)現(xiàn)兩群體在2個不同環(huán)境下的株高、穗碼數(shù)的最適模型相似,可能存在基因連鎖、一因多效,其結果還需要通過QTL驗證分析。
明確了2個谷子RIL群體株高及穗部性狀最佳模型及遺傳效應。2個群體的株高、穗碼數(shù)最適遺傳模型相似,均服從多基因遺傳,遺傳率較高,受環(huán)境影響較小,一致性較好,控制這兩個性狀的基因可能在相近的染色體區(qū)域。穗下節(jié)間長由完全等加性的主基因控制遺傳,主基因遺傳率低,受環(huán)境影響較大。穗長受主基因和多基因共同控制。穗粒重均由主基因控制,遺傳率高,可能存在主效QTL。
References
[1] Jia G q, Huang X h, Zhi H, Zhao Y, Zhao Q, Li W j, Chai Y, Yang L F, Liu K Y, Lu H Y, Zhu C R, Lu Y Q, Zhou C C, Fan D L, Weng Q J, Guo Y L, Huang T, Zhang L, Lu T T, Feng Q, Hao H F, Liu H K, Lu P, Zhang N, Li Y H, Guo E H, Wang S J, Wang S Y, Liu J R, Zhang W F, Chen G Q, Zhang B J, Li W, Wang Y F, Li H Q, Zhao B H, Li J Y, Diao X M, Han B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (). Nature Genetics, 2013, 45(8): 957-961.
[2] 賈小平, 張博, 董志平, 全建章, 王永芳, 張小梅, 袁璽壘, 李劍峰, 戴凌峰. 海南短日照條件下谷子穗部性狀的全基因組關聯(lián)分析. 河南農(nóng)業(yè)科學, 2018, 47(9): 33-40.
Jia X P, Zhang B, Dong Z P, Quan J Z, Wang Y F, Zhang X M, Yuan X L, Li J F, Dai L F. Genome-wide association analysis of panicle traits of foxtail millet under hainan short-day condition. Journal of Henan Agricultural Sciences, 2018, 47(9): 33-40. (in Chinese)
[3] 蓋鈞鎰. 植物數(shù)量性狀遺傳體系的分離分析方法研究. 遺傳, 2005(1): 130-136.
Gai J Y. Segregation analysis of genetic system of quantitative traits in plants. Hereditas, 2005(1): 130-136. (in Chinese)
[4] 王小勤. 谷子高密度遺傳圖譜構建及產(chǎn)量和農(nóng)藝性狀QTL分析[D]. 重慶: 西南大學, 2017.
Wang X Q. Construction of high-density genetic map and QTL analysis of yield and agronomic traits in Foxtail millet[D]. Chongqing: Southwest University, 2017. (in Chinese)
[5] 章元明, 蓋鈞鎰, 王永軍. 利用P1、P2和DH或RIL群體聯(lián)合分離分析的拓展. 遺傳, 2001(5): 467-470.
Zhang Y M, Gai J Y, Wang Y J. An expansion of joint segregation analysis of quantitative trait for using P1, P2and DH or RIL populations. Hereditas, 2001(5): 467-470. (in Chinese)
[6] 張書芬, 傅廷棟, 朱家成, 王建平, 文雁成, 馬朝芝. 甘藍型油菜芥酸含量的基因分析. 中國農(nóng)業(yè)科學, 2008, 41(10): 3343-3349.
Zhang S F, Fu T D, Zhu J C, Wang J P, Wen Y C, Ma C Z. Genetic analysis of erucic acid inL. using mixed major gene and polygene inheritance model. Scientia Agricultura Sinica, 2008, 41(10): 3343-3349. (in Chinese)
[7] 王金社, 李海旺, 趙團結, 蓋鈞鎰. 重組自交家系群體4對主基因加多基因混合遺傳模型分離分析方法的建立. 作物學報, 2010, 36(2): 191-201.
Wang J S, Li H W, Zhao T J, Gai J Y. Establishment of segregation analysis of mixed inheritance model with four major genes plus polygenes in recombinant inbred lines population. Acta Agronomica Sinica, 2010, 36(2): 191-201. (in Chinese)
[8] 蓋鈞鎰, 章元明, 王建康. QTL混合遺傳模型擴展至2對主基因+多基因時的多世代聯(lián)合分析. 作物學報, 2000, 26(4): 385-391.
Gai J Y, Zhang Y M, Wang J K. A joint analysis of multiple generations for QTL models extended to mixed two major genes plus polygene. Acta Agronomica Sinica, 2000, 26(4): 385-391. (in Chinese)
[9] 章元明, 蓋鈞鎰, 張孟臣. 利用P1F1P2和F2或F2:3世代聯(lián)合的數(shù)量性狀分離分析. 西南農(nóng)業(yè)大學學報, 2000, 22(1): 6-9.
Zhang Y M, Gai J Y. Zhang M C. Jointly segregating analysis of P1P2F1and F2or F2∶3families. Journal of Southwest Agricultural University, 2000,22(1): 6-9. (in Chinese)
[10] 章元明, 蓋鈞鎰. 數(shù)量性狀分離分析中分布參數(shù)估計的IECM算法. 作物學報, 2000(6): 699-706.
Zhang Y M, Gai J Y. The IECM algorithm for estimation of component distribution parameters in segregating analysis of quantitative traits. Acta Agronomica Sinica, 2000(6): 699-706. (in Chinese)
[11] 咸豐, 張勇, 馬建祥, 張顯, 楊建強. 野生甜瓜‘云甜-930’抗白粉病主基因+多基因遺傳分析. 中國農(nóng)業(yè)科學, 2011, 44(7): 1425-1433.
Xian F, Zhang Y, Ma J X, Zhang X, Yang J Q. Genetic analysis of resistant to powdery mildew with mixed model of major gene plus polygene in wild melon material ‘Yuntian-930’. Scientia Agricultura Sinica, 2011, 44(7): 1425-1433. (in Chinese)
[12] 馮云超, 余志江, 霍仕平, 晏慶九, 向振凡, 張芳魁, 羊煉, 張興端. 玉米雄穗抽雄至散粉間隔時間主基因+多基因遺傳模型及遺傳效應. 玉米科學, 2019, 27(4): 1-8.
Feng Y C, Yu Z J, Huo S P, Yan Q J, Xiang Z F, Zhang F K, Yang L, Zhang X D. Genetic effects of tassel-anthesis interval using mixture model of major gene plus polygene in maize. Journal of Maize Sciences, 2019, 27(4): 1-8. (in Chinese)
[13] Wang J, Podlich D W, Cooper M, DeLacy I H. Power of the joint segregation analysis method for testing mixed major-gene and polygene inheritance models of quantitative traits. Theoretical and Applied Genetics, 2001, 103(5): 804-816.
[14] 王培, 李曉林, 楊林, 吳青霞, 楊子博, 白志元, 李立群, 李學軍. 小麥單株穗數(shù)的遺傳分析及基于QTL定位的最優(yōu)基因型預測. 麥類作物學報, 2012, 32(5): 820-827.
Wang P, Li X L, Yang L, Wu Q X, Yang Z B, Bai Z Y, Li L Q, Li X j. Genetic analysis of spike number per plant in wheat and prediction of superior genotype based on QTL information. Journal of Triticeae Crops, 2012, 32(5): 820-827. (in Chinese)
[15] 劉瑩, 蓋鈞鎰, 呂慧能, 王永軍, 陳受宜. 大豆耐旱種質(zhì)鑒定和相關根系性狀的遺傳與QTL定位. 遺傳學報, 2005(8): 855-863.
Liu Y, Gai J Y, Lü H N, Wang Y J, Chen S Y. Identification of drought tolerant germplasm and inheritance and QTL mapping of related root traits in soybean ((L.) Merr). Acta Gentica Sinica, 2005(8): 855-863. (in Chinese)
[16] 王春娥, 蓋鈞鎰, 傅三雄, 喻德躍, 陳受宜. 大豆豆腐和豆乳得率的遺傳分析與QTL定位. 中國農(nóng)業(yè)科學, 2008, 41(5): 1274-1282.
Wang C E, Gai J Y, Fu S X, Yu D Y, Chen S Y. Inheritance and QTL mapping of tofu and soymilk output in soybean. Scientia Agricultura Sinica, 2008, 41(5): 1274-1282. (in Chinese)
[17] 馬斯霜, 白海波, 惠建, 呂雪蓮, 陳曉軍, 高穎銀, 李樹華. 旱脅迫下2個小麥RIL群體苗期性狀主基因與多基因的遺傳分析. 江蘇農(nóng)業(yè)科學, 2020, 48(14): 87-93.
Ma S S, Bai H B, Hui J, Lü X L, Chen X J, Gao Y Y, Li S H. Genetic analysis of main genes and polygenes in seedling traits of two wheat RIL populations under drought stress. Jiangsu Agricultural Sciences, 2020, 48(14): 87-93. (in Chinese)
[18] 蘇展, 程海濤, 郭玉華, 曹宏, 張偉偉, 付飛. 水稻DH群體鹽脅迫下苗高的主基因-多基因混合模型遺傳分析. 華北農(nóng)學報, 2011, 26(3): 210-213.
Su Z, Cheng H T, Guo Y H, Cao H, Zhang W W, Fu F. Genetic analysis of seedling height of rice DH population under salt stress by using major genes plus polygenes mixed model. Acta Agriculturae Boreali-sinica, 2011, 26(3): 210-213. (in Chinese)
[19] 劉鵬飛, 周富亮, 梁思維, 蔣鋒. 甜玉米莖稈強度性狀的主基因+多基因遺傳分析. 西北農(nóng)林科技大學學報(自然科學版), 2020, 48(9): 64-72+88.
Liu P F, Zhou F L, Liang S W, Jiang F. Mixed major genes and polygenes inheritance analyses for stem strength traits of sweet corn. Journal of Northwest A&F University (Natural Science Edition), 2020, 48(9): 64-72+88. (in Chinese)
[20] 劉霞, 張冰冰, 馬兵, 趙娜, 田正書, 秦夢凡, 王陽, 郎麗娜, 劉亞萍, 黃鎮(zhèn), 徐愛遐. 甘藍型油菜株高及其相關性狀的主基因+多基因遺傳分析. 西北農(nóng)業(yè)學報, 2018, 27(4): 528-536.
Liu X, Zhang B B, Ma B, Zhao N, Tian Z S, Qin M F, Wang Y, Lang L N, Liu Y P, Huang Z, Xu A X. Mixed major gene plus poly-gene genetic analysis of plant height and its related traits inL.. Acta Agriculturae Boreali-Occidentalis Sinica, 2018, 27(4): 528-536. (in Chinese)
[21] 龔舉武, 劉愛英, 李俊文, 姜驍, 段麗, 葛群, 鄧曉英, 鞏萬奎, 石玉真, 商海紅, 陳全家, 耿洪偉, 袁有祿. 陸地棉衣分性狀的主基因-多基因遺傳分析. 棉花學報, 2019, 31(3): 192-200.
Gong J W, Liu A Y, Li J W, Jiang X, Duan L, Ge Q, Deng X Y, Gong W K, Shi Y Z, Shang H H, Chen Q J, Geng H W, Yuan Y L. Major gene plus polygene genetic analysis of lint percent in upland cotton. Cotton Science, 2019, 31(3): 192-200. (in Chinese)
[22] 呂亮杰, 郭元世, 杜麗杰, 呂超, 張新忠, 郭寶健, 許如根. 大麥籽粒淀粉含量的主基因+多基因遺傳模型分析. 麥類作物學報, 2014, 34(1): 13-22.
Lü L J, Guo Y S, Du L J, Lü C, Zhang X Z, Guo B J, Xu R G. Major genes plus polygenes mixed inheritance model for starch contents in barley seed. Journal of Triticeae Crops, 2014, 34(1): 13-22. (in Chinese)
[23] 杜成章, 龍玨臣, 龔萬灼, 朱振東, 宗緒曉, 張繼君. 蠶豆赤斑病抗性的主基因+多基因遺傳分析. 植物保護, 2019, 45(6): 131-137.
Du C Z, Long J C, Gong W Z, Zhu Z D, Zong X X, Zhang J J. Analysis of major genes plus polygenes mixed inheritance for resistance to chocolate spot on faba bean. Plant Protection, 2019, 45(6): 131-137. (in Chinese)
[24] Sun X r, Liu L, Zhi X n, Bai J r, Cui Y n, Shu J h, Li J m. Genetic analysis of tomato internode length via mixed major gene plus polygene inheritance model. Scientia Horticulturae, 2019, 246: 759-764.
[25] 張興偉, 王志德, 劉艷華, 任民, 楊洋. 植物數(shù)量性狀“主基因+多基因”混合遺傳模型及其在煙草上的應用. 中國煙草學報, 2013, 19(3): 41-44.
Zhang X W, Wang Z D, Liu Y H, Ren M, Yang Y. Major gene plus polygene mixed genetic model in quantitative characters and its application in tobacco. Acta Tabacaria Sinica, 2013, 19(3): 41-44. (in Chinese)
[26] Shen P, Gao S p, Chen X, Lei T, Li W j, Huang Y x, Li Y r, Jiang M y, Hu D, Duan Y f, Li M, Li J n. Genetic analysis of main flower characteristics in the F1generation derived from intraspecific hybridization betweenandf.. Scientia Horticulturae, 2020, 274: 109652.
[27] 龔舉武, 劉愛英, 段麗, 姜驍, 李俊文, 鄧曉英, 葛群, 鞏萬奎, 石玉真, 商海紅, 陳全家,耿洪偉, 袁有祿. 不同環(huán)境下‘中棉所70’RIL群體棉鈴重的主基因+多基因遺傳分析. 中國農(nóng)學通報, 2019, 35(15): 128-137.
Gong J W, Liu A Y, Duan L, Jiang X, Li J W, Deng X Y, Ge Q, Gong W K, Shi Y Z, Shang H H, Chen Q J, Geng H W, Yuan Y L. Major gene + polygene genetic analysis of boll weight in RIL population of 'CCRI70' under various environments. Chinese Agricultural Science Bulletin, 2019, 35(15): 128-137. (in Chinese)
[28] 陸平. 谷子種質(zhì)資源描述規(guī)范和數(shù)據(jù)標準. 北京: 中國農(nóng)業(yè)出版社, 2006.
Lu P. Descriptors and data standard for foxtail millet germplasm resources. Beijing: China Agriculture Press, 2006. (in Chinese)
[29] Hisato M, Hiroki T, Yohei M, Ryohei T, Kenji F. Genetic analysis ofgene involved in panicle branching of foxtail millet,(L.)P. Beauv., and mapping by using QTL-seq. Molecular Breeding, 2016, 36(5): 59.
[30] Sarika G, Kajal K, Mehanathan M, Swarup Kumar P, Manoj P. Population structure and association mapping of yield contributing agronomic traits in foxtail millet. Plant Cell Reports, 2014, 33(6): 881-893.
[31] 曹錫文, 劉兵, 章元明. 植物數(shù)量性狀分離分析Windows軟件包SEA的研制. 南京農(nóng)業(yè)大學學報, 2013, 36(6): 1-6.
Cao X W, Liu B, Zhang Y M. SEA:a software package of segregation analysis of quantitative traits in plants. Journal of Nanjing Agricultural University, 2013, 36(6): 1-6. (in Chinese)
[32] 崔月, 陸建農(nóng), 施玉珍, 殷學貴, 張啟好. 蓖麻株高性狀主基因+多基因遺傳分析. 作物學報, 2019, 45(7): 1111-1118.
Cui Y, Lu J N, Shi Y Z, Yin X G, Zhang Q H. Genetic analysis of plant height related traits inL. with major gene plus polygenes mixed model. Acta Agronomica Sinica, 2019, 45(7): 1111-1118. (in Chinese)
[33] 方路斌, 羅河月, 陳潔, 李平. 谷子主要農(nóng)藝性狀的相關和主成分分析. 天津農(nóng)業(yè)科學, 2018, 24(11): 62-65.
Fang L B, Luo H Y, Chen J, Li P. Correlation analysis and principal component analysis on major agronomic characters of millet. Tianjin Agricultural Sciences, 2018, 24(11): 62-65. (in Chinese)
[34] 李曉宇, 王昆鵬, 劉迎春, 張一波. 谷子主要農(nóng)藝性狀分析. 內(nèi)蒙古農(nóng)業(yè)大學學報(自然科學版), 2015, 36(2): 26-30.
Li X Y, Wang K P, Liu Y C, Zhang Y B. Analysis on the agronomic traits of millet. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2015, 36(2): 26-30. (in Chinese)
[35] 王海崗, 賈冠清, 智慧, 溫琪汾, 董俊麗, 陳凌, 王君杰, 曹曉寧, 劉思辰, 王綸, 喬治軍, 刁現(xiàn)民. 谷子核心種質(zhì)表型遺傳多樣性分析及綜合評價. 作物學報, 2016, 42(1): 19-30.
Wang H G, Jia G Q, Zhi H, Wen Q F, Dong J L, Chen L, Wang J J, Cao X Y, Liu S C, Wang L, Qiao Z J, Diao X M. Phenotypic diversity evaluations of foxtail millet core collections. Acta Agronomica Sinica, 2016, 42(1): 19-30. (in Chinese)
[36] He Q, Zhi H, Tang S, Xing L, Wang S y, Wang H g, Zhang A y, Li Y h, Gao M, Zhang H j, Chen G q, Dai S t, Li J x, Yang J j, Liu H f, Zhang W, Jia Y c, Li S j, Liu J r, Qiao Z j, Guo E h, Jia G q, Liu J, Diao X m. QTL mapping for foxtail millet plant height in multi-environment using an ultra-high density bin map. Theoretical and applied genetics, 2020,134(2): 1-16.
[37] 白曉倩, 盧華雨, 于澎湃, 裴忠有, 羅峰, 孫守鈞. 粒用高粱×蘇丹草雜交F2代農(nóng)藝性狀的數(shù)量遺傳分析. 江蘇農(nóng)業(yè)科學, 2019, 47(19): 188-193.
BAI X Q, LU H Y, YU P P, PEI Z Y, LUO F, SUN S J. Quantitative analysis of agronomic traits of Sorghum × Sudangrass F2generation. Jiangsu Agricultural Sciences, 2019, 47(19): 188-193. (in Chinese)
[38] 王鐵固, 馬娟, 張懷勝, 陳士林. 玉米株高主基因+多基因遺傳模型分析. 玉米科學, 2012, 20(4): 45-49.
Wang T G, Ma J, ZHANG H S, CHEN S L. Genetic analysis on plant height by mixed inheritance model of major genes plus polygenes in maize. Journal of Maize Sciences, 2012, 20(4): 45-49. (in Chinese)
[39] Vandana J, Sarika G, Vijay G, Mehanathan M, Tirthankar B, Nirala R, Manoj P. Genome-wide association study of major agronomic traits in foxtail millet (L.) using ddRAD sequencing. Scientific Reports, 2019, 9: 5020.
[40] ZHANG K, FAN G y, ZHANG X x, ZHAO F, Wei W, Du G h, FENG X l,WANG X m, WANG F, SONG G l, ZOU H f, ZHANG X l, Li S d, NI X m, ZHANG G y, ZHAO Z h. Identification of QTLs for 14 agronomically important traits inbased on SNPs generated from high-throughput sequencing. G3-Genes Genomes Genetics, 2017, 7(5): 1587-1594.
[41] 杜希朋, 閆媛媛, 劉偉華, 高愛農(nóng), 張錦鵬, 李秀全, 楊欣明, 車永和, 郭小敏. 螞蚱麥×碧玉麥雜交F2代部分重要農(nóng)藝性狀的遺傳分析. 麥類作物學報, 2011, 31(4): 624-629.
DU X P, YAN Y Y, LIU W H, GAO A N, ZHANG J P, LI X Q, YANG X M, CHE Y H, GUO X M. Genetic analysis on several important agronomic traits in F2generation of Mazhamai×Quality. Journal of Triticeae Crops, 2011, 31(4): 624-629. (in Chinese)
[42] 解松峰, 吉萬全, 張耀元, 張俊杰, 胡衛(wèi)國, 李俊, 王長有, 張宏, 陳春環(huán). 小麥重要產(chǎn)量性狀的主基因+多基因混合遺傳分析. 作物學報, 2020, 46(3): 365-384.
XIE S F, JI W Q, ZHANG Y Y, ZHANG J J, HU W G, LI J, WANG C Y, ZHANG H, CHEN C H. Genetic effects of important yield traits analysed by mixture model of major gene plus polygene in wheat. Acta Agronomica Sinica, 2020, 46(3): 365-384. (in Chinese)
[43] WANG Z l, Wang J, PENG J x, DU X f, Jiang M s, LI Y f, HAN F, DU G h, YANG H q, LIAN S c, YONG J p, CAI W, CUI J d, HAN K n, YUAN F, CHANG F, YUAN G b, ZHANG W n, ZHANG L y, PENG S z, Zou H f, Guo E h. QTL mapping for 11 agronomic traits based on a genome-wide Bin-map in a large F2population of foxtail millet ((L.). Springer Netherlands, 2019, 39: 18.
[44] ZHI H, HE Q, TANG S, YANG J j, ZHANG W, LIU H , JIA Y c, JIA G q, ZHANG A y, LI Y h, GUO E h, GAO M, LI S j, LI J x, QIN N, ZHU C c, MA C y, ZHANG H j, CHEN G q, ZHANG W f, WANG H g, QIAO Z j, LI S g, CHENG R h, XING L, WANG S y, LIU J r, LIU J, DIAO X m. Genetic control and phenotypic characterization of panicle architecture and grain yield-related traits in foxtail millet (). Theoretical and applied genetics, 2021, 134(9): 1-14.
[45] 楊坤. 谷子SSR標記連鎖圖譜構建及幾個主要性狀QTL分析[D]. 石家莊: 河北師范大學, 2008.
Yang K. Construction of SSR based linkage map and QTL analysis of several important traits in foxtail millet,[D]. Shijiazhuang: Hebei Normal University, 2008. (in Chinese)
[46] Wang J, Wang Z l, Du X f, Yang H q, Han F, Han Y h, Yuan F, Zhang L y, Peng S z, Guo E h. A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [(L.) P. Beauv.] using RAD-seq. PloS one, 2017, 12: e0179717.
[47] Fang X m, Dong K j, Wang X q, Liu T p, He J h, Ren R y, Zhang L, Liu R, Liu X y, Li M, Huang M z, Zhang Z s, Yang T y. A high density genetic map and QTL for agronomic and yield traits in foxtail millet [(L.) P. Beauv.]. BMC Genomics, 2016, 17: 336.
[48] Liu T p, He J h, Dong K j, Wang X w, Wang W w, Yang P, Ren R y, Zhang L, Zhang Z s, Yang T y. QTL mapping of yield component traits on bin map generated from resequencing a RIL population of foxtail millet (). BMC genomics, 2020, 21: 141.
[49] 姚金保, 任麗娟, 張平平, 楊學明, 馬鴻翔, 姚國才, 張鵬, 周淼平. 小麥株高及其構成因素的遺傳及相關性分析. 麥類作物學報, 2011, 31(4): 604-610.
Yao J B, Ren L J, Zhang P P, Yang X M, Ma H X, Yao G C, Zhang P, Zhou M P. Genetic and correlation analysis of plant height and its components in wheat. Journal of Triticeae Crops, 2011, 31(4): 604-610. (in Chinese)
[50] 楊兆生, 閻素紅, 王俊娟. 不同種植方式下小麥株高構成因素的相關研究. 麥類作物學報, 1999(4): 19-22.
Yang Z S, Yan S H, Wang J J. Study on components of wheat plant height under different planting patterns. Journal of Triticeae Crops, 1999(4): 19-22. (in Chinese)
[51] 趙萬春, 王紅. 小麥株高及其構成因素的遺傳和相關性研究. 麥類作物學報, 2003(4): 28-31.
Zhao W C, Wang H. Genetic and correlation study on plant height and its components in wheat. Journal of Triticeae Crops, 2003(4): 28-31. (in Chinese)
Analyzing Genetic Effects for Plant Height and Panicle Traits by Means of the Mixed Inheritance Model of Major Gene Plus Polygene in Foxtail Millet
Guo Shuqing1, Song Hui2, Yang QingHua1, Gao Jinfeng1, Gao Xiaoli1, Feng Baili1, Yang Pu1
1College of Agriculture, Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi;2Institute of Millet Crops, Anyang Academy of Agricultural Sciences, Anyang 455000, Henan
【Objective】Plant height and panicle traits are key yield-dependent traits in foxtail millet. The objective was to probe into inheritance patterns of plant height and panicle traits and provide a reference basis for genetically improving related traits and mapping their genes.【Method】Yugu 18, a high performing foxtail millet variety, was arranged as the male parent to cross two foxtail millet varieties, Huangruangu and Hongjiugu, and thus two F7populations of which each was composed of recombinant inbred lines involving 250 family lines(YYRIL and YRRIL)were established. Phenotypic data of Five agronomic traits of the two populations, plant height, panicle length, internode length under panicle, spikelet number per panicle and grain weight per panicle, were genetically examined in two different environments using the mixed inheritance model of major gene plus polygene.【Result】In these two environments, all the five agronomic traits showed continuous variations with their kurtosis and skewness values standing at the absolute value of less than 1 and thus presenting a distribution close to a normal distribution, were characterized by typical inheritance of quantitative traits; some of these traits saw super-parent separation phenomena.The correlation analysis among the traits showed that the plant height appeared significantly and positively correlated with the panicle length, and an extremely significantly positive correlation between spikelet number per panicle and grain weight per panicle was also found in the two environments. The analysis by the inheritance model showed that the best inheritance models for the plant height of the YYRIL and YRRIL population were the PG-AI and PG-A polygene models, and the heritability of the polygenes standing at 95.15% and 91.27%, respectively. The best inheritance models for the spikelet number per panicle of the two populations were the PG-AI, with the heritability of the polygenes standing at 70.07%-71.58%. The best inheritance models for the internode length under panicle of the two populations were the 4MG-CEA and 3MG-CEA of which both were models for equally additive major genes. In YYRIL, the heritability of the major genes for the internode length under panicle stood at 9.69%, and the four pairs of major genes had an equal additive effect value of -0.34, taking negative effect; and in the YYRIL, the heritability of the major genes for the internode length under panicle stood at 45.78%, and the 3 major gene pairs in question had an equal additive effect value of 1.17, taking positive effect. In the YYRIL, the best inheritance model for the panicle length was the MX2-ED-A, a model for two pairs of dominant epistatic major genes and additive polygenes, with the heritability of the major genes and polygenes standing at 43.56% and 50.56%, respectively. the two pairs of panicle length-dependent major genes separately had the additive effect values of -1.21 and 1.68 and the polygenes had a lower additive effect value of -0.0017; in the YRRIL, the best inheritance model for the panicle length was the MX2-AE-A, a mixed inheritance model for two pairs of accumulative effect major genes and additive polygenes; the major genes and polygenes for the panicle length had heritability values standing at 46.40% and 46.91%, respectively. The first pair of panicle length-dependent major genes had an additive effect value of 1.53, taking positive effect; The additive and epistatic interactions effect value of the first×the second pairs of major genes were 0.60. The polygenes had an additive effect value of -0.47, taking the lower negative inheritance effect. In the YYRIL, the best inheritance model for the grain weight per panicle was the MX2-ED-A; the grain weight per panicle followed the inheritance model for two pairs of dominant epistatic major genes + additive polygenes with the heritability of the major genes and polygenes standing at 69.09% and 12.08%; the additive effect values of the two pairs of grain-weight per panicle-dependent major genes were separately 0.58 and 5.82, with the additive effect of the second pair of major genes dominating, and the additive effect value of polygenes stood at a value of -3.81. In the YRRIL, the best inheritance model for the grain weight per panicle was the 3MG-PEA, an inheritance model for three pairs of partially equal additive major genes; the heritability of the grain weight per panicle-dependent major genes stood at 81.10% and the additive effect values of the three pairs of major genes separately were -2.68, -2.68and 2.66, all taking negative effect.【Conclusion】In foxtail millet, the plant height and spikelet number per panicle had similar inheritance models, were all under polygenic control with a higher heritability and environmentally affected to a slight content; the inheritance of the internode length under panicle was genetically controlled by major genes, which had a lower heritability and were environmentally affected to a great extent, and thus environmental factors should be taken into full account in production; the panicle length was genetically controlled jointly by major genes and polygenes; the grain weight per panicle was genetically controlled by major genes with a high heritability in both of the two population and probably carried major QTL.
foxtail millet; RIL; plant height; panicle traits; major gene+polygene
2021-05-24;
2021-07-08
國家重點基礎研究發(fā)展計劃(2019YFD1000702,2019YFD1000702-4,2020YFD1000800,2020YFD1000803)、財政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術體系(CARS-06-A26)、陜西省小雜糧產(chǎn)業(yè)技術體系(NYKJ-2018-YL19)
郭淑青,E-mail:gsq055069@nwafu.edu.cn。宋慧,E-mail:837181622@qq.com。郭淑青和宋慧為同等貢獻作者。
楊璞,E-mail:yangpu5532@hotmail.com
(責任編輯 李莉)