• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Replacement of Carboxylate Ligand Substituent on Modulation of Structures and Magnetic Properties in Salen?Type Dinuclear Dy Complexes

    2022-01-14 11:30:20LIMinWUHaiPengZHANGShengLIUYuFangCHENYongQiangCHENSanPing

    LI MinWU Hai?Peng*,ZHANG ShengLIU Yu?FangCHEN Yong?Qiang*,CHEN San?Ping

    (1Department of Chemistry and Chemical Engineering,Jinzhong University,Jinzhong,Shanxi 030619,China)

    (2College of Chemistry and Materials Science,Northwest University,Xi'an 710127,China)

    (3College of Chemistry and Chemical Engineering,Baoji University of Arts and Sciences,Baoji,Shaanxi 721013,China)

    Abstract:Three salen?type centrosymmetric dinuclear Dy complexes,[Dy2(Hhms)2(C(CH3)3COO)2(H2O)4](NO3)2(1),[Dy2(Hhms)2(C14H9COO)2(C2H5OH)2(CH3OH)2][ZnCl4](2),and[Dy2(Hhms)2(C6H3(NH2)2COO)2Cl2]·2CH3CN(3)(H2hms=(2?hydroxy?3?methoxybenzylidene)?semicarbazide),were isolated with different substituted carboxylic acid ligand,and were characterized structurally and magnetically.Structural analyses illustrate that the Dyions in complexes 1 and 2 maintain similar monocapped square?antiprism geometries,but the coordination mode of carbox?ylate in 1 is different from that in 2;complexes 2 and 3 possess similar phenoxy oxygen and carboxylate bridged structure whereas the coordination geometries around the Dy ions are different between 3 and 2 due to the differ?ence of coordinated small molecules.Magnetic characterizations reveal that significant single?molecule magnet(SMM)behavior was observed under zero dc field for complex 3,with an effective energy barrier to the reversal of magnetization of 96 K.Conversely,complex 1 only showed fast quantum tunneling relaxation even 2 was SMM?silent.Furthermore,the magneto?structural correlations in these Dy2complexes were discussed.The results indicate that utility of carboxylate ligand substituent can give rise to good modulation in the molecular anisotropy and symme?try,hence the enhanced magnetic relaxation.CCDC:2092500,1;2092502,2;2092503,3.

    Keywords:dinuclear complex;dysprosium;magnetic properties;carboxylate ligand;single?molecule magnets

    0 Introduction

    Single?molecule magnets(SMMs),which exhibits slow relaxation of magnetization at the molecular level,are expected to be the smallest storage units and quan?tum objects,invoking intense research interest in the field of spintronic devices and quantum computing[1?3].Recently,optimizing the crystal field environment of a single Dycenter based on an electrostatic model allows blocking of magnetization reaching unprecedent?ed liquid nitrogen temperatures[4].Whereas,encapsulat?ing two or more spin centers complexes facilitate the generation of more sophisticated architectures and mag?netic behavior,giving the new opportunities to design SMMs with augmented performances[5?7].The exploita?tion of new Dypolymetallic complexes to drive understanding of influence factors that dictate the slow magnetic relaxation is still being established[8?12].

    Based on the above considerations,to further effi?ciently control the carboxylic coordination,we selected various carboxylic acid ligands with different steric hin?drance and electron donor ability substituent and com?bined them with polydentate Schiff?base ligand with relatively fixed coordination cavities to construct polymetallic complexes(Scheme 1).Herein,three novel Dy?based complexes,[Dy2(Hhms)2(C(CH3)3COO)2(H2O)4](NO3)2(1), [Dy2(Hhms)2(C14H9COO)2(C2H5OH)2(CH3OH)2][ZnCl4](2),and[Dy2(Hhms)2(C6H3(NH2)2COO)2Cl2]·2CH3CN(3)(H2hms=2?hydroxy?3 ?methoxybenzylidene)?semicarbazide)were isolated in a centrosymmetric binuclear architecture.The structural characterization and magnetic properties of complexes 1?3 were investigated.Through magneto?structural cor?relations analysis,the present work highlights the importance of ligand substitution and molecule symme?try in controlling magnetic relaxation and provides a feasible way to develop high?performance carboxylate?based polymetallic SMMs.

    Scheme 1 Structures of carboxylic acid ligands and Schiff?base ligand

    1 Experimental

    1.1 Materials and measurements

    All chemical reagents and solvents were obtained commercially and used in the reactions without further treatment,except for the ligand of H2hms,which was synthesized by an analogous method described in the literature[21].Powder X?ray diffraction measurements were carried out on a Bruker D8 ADVANCE X?ray powder diffractometer at 40 kV and 40 mA,using CuKαradiation(λ=0.154 18 nm)ranging from 5°to 50°(2θ)to verify the phase purity of the polycrystalline samples.The FT?IR spectra were recorded with pressed KBr pellets in a range of 4 000?400 cm-1on a Tensor 27 spectrometer(Bruker Optics,Ettlingen,Germany).Elemental analyses(C,H,N)were collected on an Elementar Vario EL Ⅲ analyzer.Magnetic susceptibility measurements were conducted on a Quantum Design MPMS?XL7 SQUID magnetometer in a temperature range of 2?300 K with 1 000 Oe applied field.Alternating?current(ac)measurements were performed on the same magnetometer at ac frequencies ranging from 1 to 1 000 Hz using a 2.0 Oe oscillating ac field.The measured susceptibilities were corrected for the diamagnetism of the constituent atoms(Pascal's tables).

    1.2 Synthesis of [Dy2(Hhms)2(C(CH3)3COO)2(H2O)4](NO3)2(1)

    A mixture of Dy(NO3)3·6H2O(0.045 6 g,0.1 mmol),C(CH3)3COOH(0.010 2 g,0.1 mmol)and H2hms(0.021 0 g,0.1 mmol)in methanol(4 mL)and dichloromethane(4 mL)was added sodium azide(0.006 5 g,0.1 mmol).After stirring for 3 h,the resul?tant solution was filtered and allowed to stand undis?turbed at room temperature.The yellowish block crys?tals suitable for single?crystal X?ray diffraction were obtained by slow evaporation of the filtrate after 5 d.Yield:ca.56%(32 mg)based on Dy.Elemental Anal.Calcd.for C28H46Dy2N8O20(%):H,4.07;C,29.51;N,9.83.Found(%):H,4.43;C,29.67;N,9.52.IR(KBr,cm-1):3 340(s),3 043(s),2 584(w),2 420(w),1 667(s),1 568(s),1 451(s),1 415(s),1 385(m),1 366(m),1 357(s),1 225(m),1 089(m),1 018(s),956(m),787(m),741(m),669(m),614(m),493(w).

    1.3 Synthesis of [Dy2(Hhms)2(C14H9COO)2(C2H5OH)2(CH3OH)2][ZnCl4](2)

    A mixture of DyCl3·6H2O(0.037 7 g,0.1 mmol),ZnCl2(0.027 3 g,0.2 mmol),C14H9COOH(0.133 2 g,0.6 mmol)and,H2hms(0.021 0 g,0.1 mmol)in metha?nol(4 mL)and ethanol(4 mL)was added sodium azide(0.013 0 g,0.2 mmol).After stirring for 3 h,the resul?tant solution was filtered and allowed to stand undis?turbed at room temperature.The yellowish block crys?tals suitable for single?crystal X?ray diffraction were obtained by slow evaporation of the filtrate after one week.Yield:ca.45%(35 mg)based on Dy.Elemen?tal Anal.Calcd.for C54H58Cl4Dy2N6O14Zn(%):H,3.78;C,41.97;N,5.44.Found(%):H,3.52;C,41.69;N,5.41.IR(KBr,cm-1):3 345(s),3 294(s),3 248(s),3 092(m),2 932(m),2 856(m),1 689(s),1 602(m),1 586(s),1 482(s),1 454(s),1 383(s),1 110(s),1 093(m),854(w),823(w),784(w),744(m),669(m),615(m),494(w).

    1.4 Synthesis of[Dy2(Hhms)2(C6H3(NH2)2COO)2 Cl2]·2CH3CN(3)

    A mixture of H2hms(0.021 0 g,0.1 mmol),C6H3(NH2)2COOH(0.015 2 g,0.1 mmol),and DyCl3·6H2O(0.037 7 g,0.1 mmol)in acetonitrile(4 mL)was placed in a 20 mL Teflon?line autoclave kept for three days at 90℃,and then cooled down to room temperature at a rate of 5 ℃ ·h-1to form yellowish block crystals suit?able for X?ray analysis.Yield:ca.58%(35 mg)based on Dy.Elemental Anal.Calcd.for C36H40Cl2Dy2N12O10(%):H,3.37;C,36.13;N,14.05.Found(%):H,3.55;C,36.49;N,14.02.IR(KBr,cm-1):3 433(s),3 369(s),3 293(s),3 076(m),2 954(s),2 867(w),2 244(w),1 687(s),1 607(s),1 562(s),1 446(s),1 416(s),1 385(s),1 272(m),1 113(s),1 091(s),976(m),857(w),824(w),767(w),732(m),667(m),614(m),494(w).

    1.5 X?ray single?crystal diffraction analysis

    Single?crystal X?ray data for complexes 1?3 were collected at room temperature on a Bruker Apex Ⅱ CCD diffractometer with graphite monochromated MoKαradiation(λ=0.071 073 nm).Cell determination and data reduction were processed with the SAINT pro?cessing program.The absorption correction based on multiscan was applied in SADABS.By using Olex2[27],the structures were solved by direct methods with SHELXT and refined by full?matrix least?squares tech?niques againstF2using SHELXL?2014 programs[28].All non?hydrogen atoms were refined anisotropically.The acidic hydrogen atoms were found from the elec?tron density map and were refined freely.All other hydrogen atoms were placed in calculated geometrical?ly positions and refined using the riding model.The crystallographic data and structure refinement summa?ry are summarized in Table S1(Supporting informa?tion).Selected bond distances and angles are listed in Table S2.

    CCDC:2092500,1;2092502,2;2092503,3.

    2 Results and discussion

    2.1 Description of crystal structures

    Complexes 1?3 were structurally characterized by X?ray crystallography(Table S1).1 and 2 crystallize in the monoclinic space groupC2/c,while 3 crystallizes in space groupP21/n.1?3 are all centrosymmetric binu?clear structures and the asymmetric unit of the com?plex contains one?half of the entire molecule.The Dyions in 1 and 2 have similar monocapped square?antiprism geometries with an {O8N}coordination sphere(Fig.S1 and Table S3).Two antiparallel Hhmsligands bind to the Dyion by two phenoxy oxygen at?oms(O2,O2i),one methoxy group(O1),one aldehyde group(O3),and one Schiff?base nitrogen atom(N1),and the remaining coordination sites are filled by two carboxylic oxygen atoms(O4,O5)and two H2O mole?cules for 1 or a superposition of CH3OH and C2H5OH for 2(O6,O7)(Fig.1).In 1,the C(CH3)3COO-groups act as chelating ligands,with it coordinating to a single Dyion,while in 2,the C14H9COO-groups bridge the two Dycenters in aμ2∶η1∶η1fashion.It is important to note that the different coordination patterns of carboxylate in 1 and 2 do not affect the configurational differences between them.For complex 3,the Dycenters are coordinated by Hhms-ligands and carboxyl?ic oxygen atoms in a manner essentially the same as that in 2 except for two alcohol oxygen atoms substitut?ed by one Cl-ion.Therefore,the Dyion in 3 has a{DyO6NCl}coordination sphere,forming a square?antiprism geometry.The two Dycenters are bridged by two phenoxy oxygen atoms(O2 and O2i)of two Hhms-ligands,besides,the RCOO-groups with distinct terminal substituent bridge two Dyatoms in aμ2∶η1∶η1fashion in 2 and 3,with the Dy…Dy intra?molecular distance of 0.378 1(1),0.365 6(8)and 0.364 8(7)nm respectively,as well as Dy—O—Dy angle of 107.19°,101.81°,and 101.23°respectively.The Dy—O bond lengths are in a range of 0.230 5(3)?0.263 7(2)nm,being the longest related to the methoxy oxygen atom distances.The shortest Dy—O bond lengths in 1?3 involve aldehyde oxygen(for 1)or one of bridged phenoxide oxygen(for 2 and 3)with 0.230 5(3),0.232 7(2),and 0.231 5(5)nm respectively.The Dy—O distances within O,N,O?tridentate pocket of Hhmsligand are shorter than that within O,O?bidentate pock?et of Hhms-ligand.The Dy—Carboxylatebond lengths of the bidentate bridging coordination mode in 2(AVG:0.237 1 nm)and 3(AVG:0.233 2 nm)show shorter distance than that of the chelating coordination mode in 1(AVG:0.244 2 nm),which may be associated with the different terminal substituents of carboxylic acid ligands.The Dy—N(0.247 8(6)?0.256 7(3)nm)and Dy—Cl(0.278 3(1)nm)bonds present quite long distances.Furthermore,the shortest inter?dimer Dy…Dy distance is equal to 0.721 9,1.018 9,and 0.835 6 nm respectively.

    Fig.1 Molecular structures of complexes 1(a),2(b),and 3(c)

    2.2 Magnetic properties

    The magnetic properties of 1?3 were measured using a SQUID magnetometer.The sample purity was first checked by powder X?ray diffraction experiment comparing experimental diagram to theoretical one ob?tained from the crystal structure(Fig.S2).

    Fig.2 Temperature dependence of χMT for complexes 1?3 under 1 000 Oe field

    The variable?temperature magnetic susceptibility for 1?3 was collected between 2 and 300 K under an applied magnetic field ofHdcbeing 1 kOe.At 300 K,χMTproducts were 28.07,28.02,28.16 cm3·K·mol-1for 1?3,respectively(Fig.2),which are slightly lower than the value expected for two ensembles of Dyions in the free ?ion approximation.On cooling,theχMTproducts underwent a slow decline and then decreased rapidly at low temperatures to reach a value of 21.00,20.17,and 16.53 cm3·K·mol-1respectively at 2 K.The reduction ofχMTfor all three complexes is accounted for by the gradual depopulation of the Stark sublevels and/or intramolecular antiferromagnetic interactions.The magnetization data of 1?3 at 2 K are depicted in the inset of Fig.2.The plots ofMvsHshowed a rapid increase below 1 kOe,and the slight increase reaching the maximum magnetizations of 11.9Nβ,11.0Nβ,11.4Nβat 7 kOe,which were much lower than the theo?retical saturation value of 20Nβfor the Dy2dimer.The unsaturated magnetization indicates strong magnetic anisotropy of Dyions[29?30].

    The magnetization relaxation dynamics were investigated by studying the temperature (T)and frequency(ν)dependence of ac magnetic susceptibili?ties.Complex 2 displayed no out?of?phase signal in ac susceptibility measurements in zero?field(Fig.S3).As a result of a strong QTM of Dyions,the temperature?dependent out?of?phase signals of 1 only showed a small tail below 4 K(without peak maximum)under zero dc field(Fig.3).

    Fig.3 Temperature?dependent out?of?phase χ″ac susceptibility signals(a)and frequency?dependent out?of?phase χ″ac susceptibility signals(b)for 1 under zero dc field

    For complex 3,the out?of?phase(χ″)component of the temperature?dependent ac susceptibility exhibited one maximum in the 3.5 K(100 Hz)?8 K(1 000 Hz)range,which indicates the slow relaxation of magnetiza?tion of 3(Fig.4).But a tail of the peak was observed below 3 K,and this observation suggests a temperature?independent QTM regime at lower temperatures,as is often observed for Ln?containing systems.Consis?tently,the frequency dependence of the maximum in association with single relaxation mode appeared on the plot of theχ″vs the frequency between 1 and 1 000 Hz.The Cole?Cole plot ofχ″vsχ'clearly identified sin?gle relaxation process and were fitted using a general?ized Debye model[31]with CCFIT package[32]to extract the relaxation times(τ)(Fig.S4).The fitting gave a rela?tively narrow distribution ofτwith a small coefficientαfrom 0.19 to 0.34.Insight into the dynamic magnetiza?tion under zero dc field of 3 was obtained through plots of lnτvsT-1(Fig.5).An Arrhenius fitting of the high?temperature region gave unphysical parameters ofUeff=68 K andτ0=6.30×10-8s.In the whole temperature range,a combination of multiple relaxation pathways including Orbach,Raman,and QTM processes can be considered here.The data for 3 were fitted using Eq.1:τ-1=τQTM-1+CTn+τ0-1exp[-Ueff/(kBT)],whereUeffis the Orbach parameters,Candnare the Raman parame?ters,andτQTM-1is the QTM rate.The best fit parameters were found to beUeff=96 K,τ0=3.1 ×10-10s,C=0.122 s-1·K-4.77,n=4.77 andτQTM=5.7 ms.To get a better un?derstanding of the magnetic relaxation,we also tried to fit the relaxation time of zero?field data with only QTM and Raman processes,however,no better results were obtained by leaving out the Orbach term(Fig.S5).

    Fig.4 Temperature?dependent in?phase χ'(a)and out?of?phase χ″(b)ac susceptibility signals for 3 under 0 Oe dc field;Frequency?dependent in?phase χ'(c)and out?of?phase χ″(d)ac susceptibility signals for 3 under 0 Oe dc field

    Fig.5 Relaxation data plotted as ln τ vs T-1for 3

    The ac magnetic susceptibility was further investi?gated under an applied static field.Applying a dc field of 1 000 Oe induces slower relaxation with shifting peak maxima toward lower frequency(Fig.S6),indicat?ing a significant suppression of QTM.Cole?Cole plots in a range of 4?9 K were obtained(Fig.S7)and fitted using the generalized Debye model[31]to give the relax?ation timeτ(Fig.5)and distribution coefficientα(0.15?0.27).The thermal energy barrier was estimated from the high?temperature data of lnτvsT-1plot to be 83 K withτ0=2.1×10-8s(Fig.5).An additional term of Raman processes was required to fit the relaxation time behavior in the whole temperature range.The obtained satisfied parameters wereUeff=98 K,τ0=7.4×10-9s,C=0.133 s-1·K-4.32,n=4.32.Furthermore,if we only consid?ered the Raman process for τ without the Orbach pro?cess,the fitting line did not fit well the lnτvsT-1plots(Fig.S5),also suggesting the existence of a thermally activated relaxation in 3.

    Fig.6 Magnetic anisotropy axes(green lines)predicted by Magellan program for Dy centers in complexes 1?3

    From the ac susceptibilities,we can see that com?plex 3 has the highest energy barrier.The structures of 2 and 3 are analogous,with the major difference being in R substituent of carboxylate ligand and the coordi?nated small molecules with four superposed CH3OH/C2H5OH in 2 and two Cl-in 3.It should be noted that there is no change in the coordination modes of Hhmsand RCOO-between them.In addition,complexes 1 and 2 have a similar coordination configuration,with the main distinction only in the bonding mode of car?boxylate which leads to the relative differences in the spatial arrangement of ligands.However,their magnet?ic properties are quite different:1 exhibits a frequency?dependent behavior under zero dc field though without a clear peak,while 2 does not show magnetic relax?ation behavior.

    To further better understand the SMM properties of 1?3,Fig.6 depicts the simulated principal magnetic axes of Dyions in each molecule defined by the Magellan program[33].The directions of the calculated anisotropy axis of Dyin 1 are found to be tilted towards the O4 atom belonging to the bidentate—C(CH3)3COO-anion and bridged phenoxy oxygen atoms(O2).Both of them make a small angle of 17.4°and 34°respectively.While the anisotropy axes of com?plex 2 show parallel arrangement through the middle of each C14H9COO-ligands,almost perpendicular to the bridged phenoxy oxygen atoms(O2 and O2i).For dinu?clear complex 3,the anisotropy of the Dyion is near?ly oriented along with the Dy—Ocarboxylate(O4)and Dy—Cl bonds,which deviation angles are in a range of 17.5°?18.9°.These illustrate the fact that the bonding mode of carboxylate and the coordination of chloride anions affect the magnetic anisotropy of the Dyion and the SMM properties.

    From the analysis of the anisotropic axis above,the most magnetic axes in the ground states are closer along with the carboxylic oxygen moieties.It is well?known that the magnetic anisotropy of an Lnion is extremely sensitive to its coordination environment[34?39].Even changes in the second coordination sphere ligat?ed atoms could also lead to a significant variation on the single?ion anisotropy of the Lnions,as demon?strated by Sessoli and co ?workers[40?42].In 3,the two strongly electron?donating groups—NH2through inductive effects increase the charge of axially shortest carboxylic oxygen donor thus strengthening the axial component of crystal field relative to 1 and 2.Careful inspection of the bond distance of complexes 1?3 reveals that the different electron?donating effects in?duced by the R substituent are necessarily felt by the car?boxylic oxygen ligands,and consequently has an effect on the strength of the chemical bond to the Dyions.This is indeed suggested by the shortest Dy—Ocarboxylatebond for 3(Dy—O4 0.232 6(4)nm,Dy—O5 0.233 7(5)nm).Whilst simultaneously,coordination of a chloride ion,in place of two solvent molecules(H2O or CH3OH/EtOH),reduces the coordination number,resulting in the Dyions in square antiprismatic environments withD4dsymmetry,which are much different from the monocapped square?antiprism in 1 and 2.Moreover,among complexes 1?3,the shortest intramolecular Dy…Dy distances(0.364 8(7)nm)and the smallest Dy—O—Dy angles(101.23°)are found for 3,which may have a positive influence on the magnetic exchange coupling between two Dyions.In contrast to 3,com?plex 2 did not show magnetic relaxation behavior.It might be associated with the relatively high charge dis?tribution of the Ophenoxoatoms(O2 and O2i)lying on the transverse plane(perpendicular to the magnetic anisot?ropy easy axis)which contributes to transverse ligand field,and thus is disadvantageous to obtain the high magnetic anisotropy of oblate Dyion.In total,the different magnetic properties of 3 and 1?2 mainly result from the differences of ligand substitution by the non?coordinating electron?donating group,coordination geometry,and magnetic interaction between two Dyions.The results emphasize that the utility of the ligand substitution can give rise to good modulation in molecule symmetry,as well as the magnetic anisotropy of Lnion,thus improving SMM performance.

    3 Conclusions

    In summary,a series of dinuclear Dycomplexes based on different substituted carboxylate ligand and Schiff?base H2hms ligands have been reported.In com?plexes 1 and 2,donor atom sets around the Dyions are the nearly same as a{DyO8N}coordination sphere,whereas,in 3,the Dyions exhibit a{DyO6NCl}coor?dination environment.Complex 3 exhibited zero?field SMM behavior with a high thermal energy barrier for the reversal of the magnetization(96 K),revealing a significant improvement in performance across the series.The largeUeffvalue observed for 3 is a conse?quence of the enhanced magnetic anisotropy and local symmetry promoted by the presence of the significant electron?donating groups—NH2on the carboxylic oxygen atoms and the coordinated chloride ligands reducing the coordination number of the Dyions,resulting in a higher symmetry environment(D4dsym?metry)of the Lnions.The results demonstrate that the non?coordinating ligand substitution and coordina?tion small molecule play essential roles in charge distri?butions of the ligand?field environments and molecular symmetry thus an SMM performance,which should be considered seriously and utilized efficiently during the rational design of new SMMs.

    Supporting information is available at http://www.wjhxxb.cn

    中国美女看黄片| 美国免费a级毛片| 岛国在线观看网站| 村上凉子中文字幕在线| 久久香蕉国产精品| 一区二区三区精品91| 一本一本综合久久| 日韩一卡2卡3卡4卡2021年| 人妻丰满熟妇av一区二区三区| 757午夜福利合集在线观看| 国产亚洲精品第一综合不卡| 国产一区二区三区在线臀色熟女| av片东京热男人的天堂| 老司机深夜福利视频在线观看| 黄色 视频免费看| 午夜影院日韩av| 欧美午夜高清在线| 午夜精品在线福利| xxx96com| 亚洲精品在线美女| 黄片小视频在线播放| 老鸭窝网址在线观看| 可以免费在线观看a视频的电影网站| 国产精品电影一区二区三区| ponron亚洲| 亚洲男人天堂网一区| 99国产精品一区二区蜜桃av| 熟女少妇亚洲综合色aaa.| 无限看片的www在线观看| 亚洲av成人不卡在线观看播放网| 国产av不卡久久| 成人手机av| 欧美另类亚洲清纯唯美| 精品第一国产精品| 特大巨黑吊av在线直播 | 亚洲国产日韩欧美精品在线观看 | 亚洲男人的天堂狠狠| 久久久久九九精品影院| 日韩av在线大香蕉| 日韩欧美免费精品| 欧美性猛交黑人性爽| 亚洲精品美女久久久久99蜜臀| 国产精品免费一区二区三区在线| 国产男靠女视频免费网站| 999久久久国产精品视频| 久久精品91蜜桃| 国产亚洲精品一区二区www| 99久久99久久久精品蜜桃| 国产伦在线观看视频一区| 久久香蕉精品热| 免费电影在线观看免费观看| 一本一本综合久久| 免费观看精品视频网站| 男人操女人黄网站| 国产亚洲精品综合一区在线观看 | 国产一区二区在线av高清观看| 国产精华一区二区三区| 国内精品久久久久精免费| 动漫黄色视频在线观看| 国产一卡二卡三卡精品| 桃红色精品国产亚洲av| 久久 成人 亚洲| 12—13女人毛片做爰片一| 88av欧美| 日韩一卡2卡3卡4卡2021年| 搡老熟女国产l中国老女人| 男人舔奶头视频| 色综合站精品国产| 精品无人区乱码1区二区| 亚洲 欧美一区二区三区| 久久久久久免费高清国产稀缺| 国产精品,欧美在线| 99riav亚洲国产免费| 天堂影院成人在线观看| 成人特级黄色片久久久久久久| 1024香蕉在线观看| 俺也久久电影网| svipshipincom国产片| 岛国在线观看网站| 草草在线视频免费看| 男女视频在线观看网站免费 | 国产黄片美女视频| 久久精品影院6| 18禁黄网站禁片午夜丰满| 久久国产亚洲av麻豆专区| 亚洲专区中文字幕在线| or卡值多少钱| 国产97色在线日韩免费| 欧美日韩精品网址| 国产精品一区二区三区四区久久 | 变态另类成人亚洲欧美熟女| 亚洲成人国产一区在线观看| 欧美日韩福利视频一区二区| 在线十欧美十亚洲十日本专区| 啦啦啦免费观看视频1| 日本a在线网址| 欧洲精品卡2卡3卡4卡5卡区| 精品久久久久久久末码| 日日摸夜夜添夜夜添小说| 999久久久国产精品视频| 国产精品爽爽va在线观看网站 | 麻豆成人av在线观看| 日本 av在线| 亚洲精品中文字幕一二三四区| 国产成人欧美在线观看| 女性被躁到高潮视频| 国产不卡一卡二| 成人午夜高清在线视频 | 欧美激情 高清一区二区三区| 久久久久国内视频| 亚洲在线自拍视频| 国产爱豆传媒在线观看 | 一本一本综合久久| 99国产精品99久久久久| 成人三级黄色视频| 一边摸一边抽搐一进一小说| 久久热在线av| 天天躁夜夜躁狠狠躁躁| 国产亚洲精品久久久久5区| 久久久久久亚洲精品国产蜜桃av| 久热爱精品视频在线9| 精品国产美女av久久久久小说| 18禁裸乳无遮挡免费网站照片 | 波多野结衣av一区二区av| 国产高清有码在线观看视频 | 欧美日韩亚洲国产一区二区在线观看| 变态另类成人亚洲欧美熟女| 日韩欧美三级三区| 日韩一卡2卡3卡4卡2021年| 国产免费男女视频| 国产精品,欧美在线| 亚洲成av人片免费观看| 久久青草综合色| 久久欧美精品欧美久久欧美| 搡老妇女老女人老熟妇| www.精华液| 一级黄色大片毛片| 亚洲男人天堂网一区| 精品熟女少妇八av免费久了| 99国产精品一区二区三区| 啦啦啦免费观看视频1| 国产精品久久视频播放| 国产精品野战在线观看| 搡老岳熟女国产| 免费搜索国产男女视频| 50天的宝宝边吃奶边哭怎么回事| 精品久久久久久,| 人成视频在线观看免费观看| 久久青草综合色| 波多野结衣高清无吗| 亚洲av第一区精品v没综合| 日韩欧美在线二视频| 国产亚洲av高清不卡| 免费在线观看完整版高清| 国产色视频综合| 一区二区三区国产精品乱码| 午夜a级毛片| 午夜免费激情av| 国产片内射在线| 悠悠久久av| 淫秽高清视频在线观看| 欧美中文综合在线视频| 亚洲人成网站在线播放欧美日韩| 国产三级黄色录像| 夜夜夜夜夜久久久久| 久久精品国产综合久久久| 亚洲精品在线美女| 欧美在线黄色| 亚洲中文av在线| 久久午夜亚洲精品久久| 18禁黄网站禁片午夜丰满| 精品久久久久久久久久免费视频| 国产1区2区3区精品| 欧美日韩黄片免| 国产精品98久久久久久宅男小说| 伊人久久大香线蕉亚洲五| 巨乳人妻的诱惑在线观看| 亚洲第一青青草原| 久久久久久久精品吃奶| 国产精品美女特级片免费视频播放器 | 波多野结衣av一区二区av| 日本 av在线| 性色av乱码一区二区三区2| 老司机午夜十八禁免费视频| 黄色毛片三级朝国网站| 悠悠久久av| 亚洲中文av在线| 午夜精品在线福利| 欧美日韩福利视频一区二区| 免费电影在线观看免费观看| 免费搜索国产男女视频| 中出人妻视频一区二区| 制服人妻中文乱码| 色婷婷久久久亚洲欧美| 日韩精品青青久久久久久| 宅男免费午夜| 性色av乱码一区二区三区2| 亚洲人成伊人成综合网2020| 18禁裸乳无遮挡免费网站照片 | 成人欧美大片| 久久人妻av系列| 不卡av一区二区三区| 亚洲精品国产区一区二| 亚洲精品久久成人aⅴ小说| 国产一区二区三区在线臀色熟女| 亚洲色图 男人天堂 中文字幕| 欧美成人免费av一区二区三区| 中文字幕精品免费在线观看视频| 日本精品一区二区三区蜜桃| 久久精品国产99精品国产亚洲性色| 少妇 在线观看| 国产亚洲欧美在线一区二区| 欧美大码av| 久久久久久九九精品二区国产 | 国产久久久一区二区三区| 久久精品人妻少妇| 亚洲色图 男人天堂 中文字幕| 欧美性长视频在线观看| 国产精品日韩av在线免费观看| 可以免费在线观看a视频的电影网站| 亚洲一区二区三区色噜噜| 俄罗斯特黄特色一大片| 中文字幕av电影在线播放| 国产主播在线观看一区二区| 97超级碰碰碰精品色视频在线观看| 亚洲人成网站在线播放欧美日韩| 欧美zozozo另类| 99国产精品99久久久久| 亚洲久久久国产精品| 成年免费大片在线观看| 在线观看免费视频日本深夜| 亚洲九九香蕉| 在线国产一区二区在线| 免费高清视频大片| 国产精品永久免费网站| 天天躁狠狠躁夜夜躁狠狠躁| 一进一出抽搐动态| 精品国产亚洲在线| 久久久久国内视频| 午夜激情av网站| 成在线人永久免费视频| 国产激情偷乱视频一区二区| 久久久久久久久久黄片| 伦理电影免费视频| av欧美777| 国产成人一区二区三区免费视频网站| 久久精品91蜜桃| 亚洲av熟女| 国产激情偷乱视频一区二区| 亚洲av成人av| www.精华液| 欧美又色又爽又黄视频| 久9热在线精品视频| 欧美不卡视频在线免费观看 | aaaaa片日本免费| 国产亚洲av高清不卡| 免费观看人在逋| 亚洲 欧美一区二区三区| 久热这里只有精品99| 亚洲免费av在线视频| 国产99白浆流出| 午夜亚洲福利在线播放| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品美女久久久久99蜜臀| 国产成人啪精品午夜网站| 亚洲美女黄片视频| 日本撒尿小便嘘嘘汇集6| 国产一级毛片七仙女欲春2 | 日本五十路高清| 91国产中文字幕| 在线十欧美十亚洲十日本专区| 视频区欧美日本亚洲| 亚洲欧洲精品一区二区精品久久久| 国产成人系列免费观看| 欧美黄色淫秽网站| 欧美又色又爽又黄视频| 无人区码免费观看不卡| 天天躁夜夜躁狠狠躁躁| 欧美日韩一级在线毛片| 一区二区三区激情视频| 国产单亲对白刺激| 国产一级毛片七仙女欲春2 | 99国产极品粉嫩在线观看| 精品欧美国产一区二区三| 曰老女人黄片| 久久久久久久精品吃奶| 又黄又爽又免费观看的视频| 黄频高清免费视频| 亚洲专区字幕在线| 国产精品自产拍在线观看55亚洲| 日日摸夜夜添夜夜添小说| 岛国视频午夜一区免费看| 人妻久久中文字幕网| 2021天堂中文幕一二区在线观 | 天天躁狠狠躁夜夜躁狠狠躁| 国产97色在线日韩免费| 免费看a级黄色片| 1024手机看黄色片| 色哟哟哟哟哟哟| 色播亚洲综合网| 欧美乱码精品一区二区三区| 国产一区二区激情短视频| 国产aⅴ精品一区二区三区波| 午夜a级毛片| 少妇的丰满在线观看| 好男人电影高清在线观看| 亚洲精品中文字幕一二三四区| 两个人看的免费小视频| 又紧又爽又黄一区二区| 国产激情偷乱视频一区二区| 国产午夜福利久久久久久| 日本精品一区二区三区蜜桃| 免费看十八禁软件| 黄片播放在线免费| 女人高潮潮喷娇喘18禁视频| 亚洲国产精品成人综合色| 欧美国产日韩亚洲一区| 麻豆成人av在线观看| 19禁男女啪啪无遮挡网站| 麻豆成人午夜福利视频| 亚洲av成人不卡在线观看播放网| a级毛片a级免费在线| 亚洲第一欧美日韩一区二区三区| 国产黄片美女视频| www.999成人在线观看| aaaaa片日本免费| 亚洲精华国产精华精| 成人亚洲精品av一区二区| 美女国产高潮福利片在线看| 日本五十路高清| 在线观看www视频免费| 在线永久观看黄色视频| 日韩高清综合在线| 国产亚洲欧美精品永久| 亚洲精品在线美女| 岛国视频午夜一区免费看| 两人在一起打扑克的视频| 欧美精品亚洲一区二区| 97人妻精品一区二区三区麻豆 | 麻豆成人午夜福利视频| 99久久99久久久精品蜜桃| 日韩精品免费视频一区二区三区| 母亲3免费完整高清在线观看| 精品久久久久久久久久久久久 | 午夜福利免费观看在线| 成人手机av| 黄色毛片三级朝国网站| avwww免费| 男人操女人黄网站| 国产精品国产高清国产av| 国内久久婷婷六月综合欲色啪| 精品国产乱子伦一区二区三区| 好男人电影高清在线观看| 免费看十八禁软件| 国产伦一二天堂av在线观看| 黄片小视频在线播放| 国产亚洲欧美精品永久| 91字幕亚洲| 免费看十八禁软件| 真人做人爱边吃奶动态| 美女大奶头视频| 国产极品粉嫩免费观看在线| 手机成人av网站| 久久久精品欧美日韩精品| 久久伊人香网站| 亚洲自拍偷在线| 欧美人与性动交α欧美精品济南到| 国产亚洲精品一区二区www| 亚洲精品粉嫩美女一区| 欧美国产日韩亚洲一区| 久久久国产欧美日韩av| 中国美女看黄片| 色综合婷婷激情| 91麻豆精品激情在线观看国产| 日本撒尿小便嘘嘘汇集6| 亚洲熟女毛片儿| 午夜亚洲福利在线播放| 精品国内亚洲2022精品成人| 美女午夜性视频免费| 欧美成狂野欧美在线观看| 中文字幕精品免费在线观看视频| 亚洲精品美女久久久久99蜜臀| 成人亚洲精品av一区二区| 好男人电影高清在线观看| 母亲3免费完整高清在线观看| 亚洲中文日韩欧美视频| 久久婷婷人人爽人人干人人爱| 日本一区二区免费在线视频| 久久国产精品影院| 淫秽高清视频在线观看| 级片在线观看| 女人高潮潮喷娇喘18禁视频| 大香蕉久久成人网| 不卡av一区二区三区| 亚洲狠狠婷婷综合久久图片| 精品久久久久久久久久免费视频| 日韩精品免费视频一区二区三区| 日韩一卡2卡3卡4卡2021年| 国产黄片美女视频| 国产精品精品国产色婷婷| www.熟女人妻精品国产| 亚洲一区二区三区色噜噜| 欧美日韩亚洲综合一区二区三区_| 国产v大片淫在线免费观看| 亚洲av五月六月丁香网| 深夜精品福利| 欧美日韩福利视频一区二区| 国产乱人伦免费视频| 亚洲成人国产一区在线观看| 日韩有码中文字幕| 中文字幕精品免费在线观看视频| 国产一卡二卡三卡精品| 在线看三级毛片| 亚洲最大成人中文| 亚洲精品久久成人aⅴ小说| 国产成人影院久久av| 久久精品国产综合久久久| 久久中文看片网| 国产97色在线日韩免费| 一级a爱片免费观看的视频| 99久久综合精品五月天人人| 草草在线视频免费看| 久久人妻av系列| 老汉色av国产亚洲站长工具| 在线国产一区二区在线| 最近最新中文字幕大全免费视频| 在线观看免费视频日本深夜| 久99久视频精品免费| 国产av在哪里看| 婷婷丁香在线五月| 国产免费av片在线观看野外av| 天堂影院成人在线观看| 女生性感内裤真人,穿戴方法视频| 精品国产国语对白av| 18禁美女被吸乳视频| 婷婷亚洲欧美| 欧美成狂野欧美在线观看| 18禁观看日本| 亚洲一区高清亚洲精品| 日韩欧美一区二区三区在线观看| 精品国内亚洲2022精品成人| 欧美日韩亚洲综合一区二区三区_| 亚洲一区中文字幕在线| 欧美成狂野欧美在线观看| 天天躁夜夜躁狠狠躁躁| 精品欧美一区二区三区在线| 亚洲成人国产一区在线观看| 成人欧美大片| 日本a在线网址| 一级黄色大片毛片| 操出白浆在线播放| 巨乳人妻的诱惑在线观看| 国产av一区在线观看免费| 亚洲五月色婷婷综合| 欧美成人一区二区免费高清观看 | 久久青草综合色| 天天添夜夜摸| 国产精品一区二区精品视频观看| 给我免费播放毛片高清在线观看| 伊人久久大香线蕉亚洲五| 少妇的丰满在线观看| 在线永久观看黄色视频| 国产激情偷乱视频一区二区| 亚洲欧美一区二区三区黑人| 亚洲国产高清在线一区二区三 | 亚洲成人免费电影在线观看| 热99re8久久精品国产| 亚洲自拍偷在线| 亚洲第一电影网av| 中文字幕人妻丝袜一区二区| 国产亚洲精品一区二区www| 老鸭窝网址在线观看| 色哟哟哟哟哟哟| av片东京热男人的天堂| 色综合亚洲欧美另类图片| 日韩欧美国产在线观看| 亚洲熟妇熟女久久| 久久精品亚洲精品国产色婷小说| 亚洲精华国产精华精| 每晚都被弄得嗷嗷叫到高潮| 成年免费大片在线观看| 欧美午夜高清在线| 色综合婷婷激情| or卡值多少钱| 亚洲国产日韩欧美精品在线观看 | 9191精品国产免费久久| 国产一卡二卡三卡精品| 成年女人毛片免费观看观看9| 好男人电影高清在线观看| 久久久国产成人免费| 亚洲精品在线美女| 国产成人影院久久av| 侵犯人妻中文字幕一二三四区| 欧美zozozo另类| 欧美日韩瑟瑟在线播放| 一夜夜www| 亚洲专区字幕在线| 男女之事视频高清在线观看| 香蕉久久夜色| 国产精品av久久久久免费| 9191精品国产免费久久| 成在线人永久免费视频| 国产亚洲精品综合一区在线观看 | 搡老妇女老女人老熟妇| 免费在线观看视频国产中文字幕亚洲| 日韩欧美免费精品| 免费在线观看视频国产中文字幕亚洲| 国内毛片毛片毛片毛片毛片| 人人妻人人看人人澡| 制服丝袜大香蕉在线| 亚洲三区欧美一区| 两人在一起打扑克的视频| 一进一出好大好爽视频| 91在线观看av| 午夜免费激情av| 免费看a级黄色片| 国产人伦9x9x在线观看| 午夜福利免费观看在线| 在线观看66精品国产| 久久久精品国产亚洲av高清涩受| 国产av一区二区精品久久| 精品久久久久久久人妻蜜臀av| 亚洲国产精品成人综合色| 久久久久久人人人人人| 成人三级做爰电影| 国产一区二区激情短视频| 手机成人av网站| 日韩有码中文字幕| 久久精品aⅴ一区二区三区四区| 国产1区2区3区精品| 老鸭窝网址在线观看| 伊人久久大香线蕉亚洲五| svipshipincom国产片| 亚洲无线在线观看| 黑人巨大精品欧美一区二区mp4| 很黄的视频免费| 婷婷六月久久综合丁香| 精品卡一卡二卡四卡免费| 久久精品成人免费网站| 国产亚洲精品第一综合不卡| 精品久久久久久久久久免费视频| 亚洲精品中文字幕一二三四区| 欧美亚洲日本最大视频资源| 中出人妻视频一区二区| 久久久水蜜桃国产精品网| 婷婷亚洲欧美| 无人区码免费观看不卡| 亚洲激情在线av| 国产伦在线观看视频一区| 欧美乱妇无乱码| 啦啦啦免费观看视频1| 国产激情欧美一区二区| av超薄肉色丝袜交足视频| 嫩草影视91久久| 天堂影院成人在线观看| 午夜亚洲福利在线播放| 亚洲国产欧美日韩在线播放| 亚洲avbb在线观看| 淫秽高清视频在线观看| 亚洲成人免费电影在线观看| 久久草成人影院| 久久久水蜜桃国产精品网| 777久久人妻少妇嫩草av网站| 国产成人一区二区三区免费视频网站| 久久天堂一区二区三区四区| 无限看片的www在线观看| 欧美色视频一区免费| 日韩精品免费视频一区二区三区| 人人妻人人看人人澡| 桃红色精品国产亚洲av| 美女免费视频网站| 久久国产亚洲av麻豆专区| 久久久久国内视频| 美女大奶头视频| 丁香六月欧美| 丝袜人妻中文字幕| 丁香欧美五月| 精品久久久久久久人妻蜜臀av| 久久久久国内视频| 亚洲国产精品999在线| 夜夜躁狠狠躁天天躁| 一个人观看的视频www高清免费观看 | 欧美乱妇无乱码| 神马国产精品三级电影在线观看 | 亚洲精品美女久久av网站| 脱女人内裤的视频| 亚洲中文av在线| www日本在线高清视频| 午夜精品在线福利| 午夜福利18| xxx96com| 欧美日韩亚洲综合一区二区三区_| 欧美精品亚洲一区二区| 中文字幕人妻熟女乱码| 18禁黄网站禁片免费观看直播| 中文在线观看免费www的网站 | 亚洲精品中文字幕一二三四区| 亚洲精品在线美女| 桃色一区二区三区在线观看| 亚洲激情在线av| 色综合婷婷激情| 欧美成人一区二区免费高清观看 | 日日爽夜夜爽网站| 欧美日韩乱码在线| 精品不卡国产一区二区三区| 99久久国产精品久久久| 婷婷六月久久综合丁香| 淫妇啪啪啪对白视频| 国产精品精品国产色婷婷| 日本成人三级电影网站| 99久久国产精品久久久| 国产精品久久久av美女十八| 一级作爱视频免费观看| www.自偷自拍.com| 校园春色视频在线观看|