• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Constructing and Photocatalytic Performance of Flower?like CeO2/TiO2 Heterostructures

    2022-01-14 11:30:14WANGHongXiaLIXinXingZHOUYu

    WANG Hong?Xia LI Xin?Xing ZHOU Yu

    (1Department of Information and Engineering,Suqian University,Suqian,Jiangsu 223800,China)

    (2Suqian Key Laboratory for Functional Materials,Suqian University,Suqian,Jiangsu 223800,China)

    Abstract:A kind of three?dimensional flower?like CeO2/TiO2 heterojunction as photocatalysts was designed by the solvothermal method.The photocatalytic activity was evaluated by the decomposition of methyl orange(MO)under xenon lamp irradiation.The results showed that the flower?like structure was composed of thin nanosheets,on which many CeO2particles were uniformly attached.The molar ratio of Ce to Ti(nCe/nTi)and the solvothermal time influ?enced on the photocatalytic performance.When nCe/nTi=0.1 and the solvothermal time was 6 h,the photocatalytic activity of CeO2/TiO2reached the best,and the degradation rate reached 95% under xenon lamp irradiation for 50 min.The results suggested that the photocatalytic activity of CeO2/TiO2 heterojunction was greatly improved,compared to TiO2,which was mainly the function of heterojunction formed by CeO2and TiO2,and was conducive to the separation of photogenerated electrons and holes.

    Keywords:heterostructure;photocatalysis;photodegradation;micro/nano?materials;semiconductor

    0 Introduction

    Photocatalytic technology can be used to simulate natural photosynthesis,which can change solar energy into chemical energy,and degrade organic pollutants in sewage into harmless substances such as CO2and H2O under normal temperature and pressure[1?3],thus avoiding the secondary pollution problem with tradi?tional methods.TiO2is an n?type semiconductor cata?lyst that is non?toxic,highly active,chemically stable,cheap,environmentally friendly,and it has been widely studied as an ideal photocatalyst[4?7].However,in the process of photocatalysis,TiO2has some defects,such as low quantum efficiency,easy recombination of elec?tron?hole pairs,and low utilization of sunlight,which greatly restricts its extensive industrial application.The solution to these problems depends on in?depth and systematic basic research.

    To improve the photocatalytic activity of TiO2,the researchers used a variety of methods,such as control?ling the morphology[8?11],doping transition metal ions and non ?metallic ions[12?16],surface sensitization[17?18],semiconductor composite[19?20].Recent studies show that the selection of semiconductors with appropriate energy bands to couple with TiO,such as BiWO[21?22],226g?C3N4[23?25],CdS[26?27],CeO2[28?29],is conducive to separat?ing electrons and holes,and improving the visible light catalysis of TiO2.CeO2has high conductivity,thermal stability,oxygen storage capacity,and has a narrow energy gap(2.92 eV).Moreover,Ce4+and Ce3+ions are easy to reciprocal transformation,which makes CeO2have good electron transfer ability and light absorption ability.The bandgap difference between TiO2and CeO2can promote the separation of photogenerated electron?hole pairs and improve catalysis activity[30].Although TiO2and CeO2composite materials have received extensive attention,the research of CeO2/TiO2as prom?ising photocatalytic materials is not deep enough.In particular,the photocatalytic efficiency of CeO2/TiO2is far from practical application.Therefore,it is necessary to further improve the photocatalytic performance of CeO2/TiO2by optimizing the experiment.In this work,we prepared CeO2/TiO2photocatalyst materials with a three?dimensional flower structure by solvothermal method.Under xenon lamp irradiation,flower?like CeO2/TiO2photocatalyst had high activity for methyl orange degradation.

    1 Experimental

    1.1 Preparation of the samples

    Preparation of CeO2:All the chemical reagents were chemically pure and were used directly without further processing.The water used was distilled water.Under strong stirring,0.26 g cerium nitrate was dissolved in 100 mL water.After stirring frequently for 30 min,NaOH was added to the solution to control the pH to 9?10,followed by hydrothermal treatment at 180 ℃ in a Teflon?lined autoclave for 24 h.The prod?uct was centrifugally separated,washed with ethanol and distilled water,then dried.The sample was collect?ed and then put into the annealing furnace at 500℃for 2 h to obtain CeO2.

    Preparation of CeO2/TiO2:polyethylene glycol,cetyltrimethyl ammonium bromide,and carboxamide were immersed into 70 mL acetic acid solution,and after vigorous stirring to dissolve them,CeO2was added into the above?mixed solution,finally added 2 mL butyl titanate by dropping and stirring for 20 min,and then moved the solution to 100 mL stainless steel autoclave lined with polytetrafluoroethylene.The reaction time was different at 150℃,and cooling with the furnace to room temperature.The precipitates were washed with ethanol and water thoroughly three times,drying at 80℃and calcining at 450℃for 1 h.According to the above preparation method,the samples prepared with Ce/Ti molar ratiosnCe/nTiof 0.05,0.1 and 0.2 in the reaction system were marked as 0.05CeO2/TiO2,0.1CeO2/TiO2,0.2CeO2/TiO2respectively.

    1.2 Characterization

    Under the conditions of Cu target,40 kV and 40 mA with CuKαX?ray radiation source(λ=0.154 nm)and 2θrange of 20°?80°,the samples were recorded by X?ray diffractometer of Dandong Haoyuan instrument company;the morphologies of the synthetic samples were used by scanning electron microscope(SEM,Zeiss Merlin field emission)at the acceleration voltage of 5 kV;the specific surface area was measured using the measurement instrument(ASAP2460).The U?3900 ultraviolet?visible spectrophotometer with integrating sphere in Japan was used to measure the absorbance of powder.X?ray photoelectron spectroscopy(XPS)mea?surements were measured on an Escalab 250 Xi spec?trometer.Photoluminescence(PL)spectra were mea?sured using FLS 980 fluorescence spectrophotometer.The photocurrent response and electrochemical imped?ance spectroscopy(EIS)were carried by an electro?chemical workstation(CHI660E).

    1.3 Photocatalytic activity measurement

    CeO2/TiO2was added to methyl orange(MO)solution,then the MO solution was illuminated.The photocatalytic performance of the sample was tested by measuring the degradation rate of MO.The specific processes were listed as follows:0.02 g of catalyst sample was added to 80 mL MO solution(10 mg·L-1),and ultrasonic agitation was performed for 30 min to achieve adsorption?desorption equilibrium in the dark.A 300 W xenon lamp was used to simulate and irradi?ate from the top of the MO solution.The xenon lamp was 10 cm away from the liquid surface.A small portion of the solution was taken every 10 min to be centrifuged and separated.The absorbance of the resid?ual MO was analyzed by an ultraviolet?visible spectro?photometer.

    2 Results and discussion

    2.1 Characterization of the samples

    Fig.1 shows the XRD patterns of CeO2/TiO2heterojunction prepared by adding different amounts of CeO2.There were several different diffraction peaks of CeO2/TiO2heterojunction nanoflowers at 2θ=25.3°,37.9°,48.1°,54.1°,55.2°,62.6°,and 70.3°respective?ly,corresponding to anatase TiO2(PDF No.21?1272).The diffraction peaks with 2θ=28.6°,33.2°,56.6°,and 59.5°belong to the characteristic diffraction peaks of CeO2(PDF No.34 ?0394),indicating that the hetero?structure nanocomposite composed of TiO2and CeO2.It can be seen from the figure that the intensity of the diffraction peak of CeO2increased gradually with the increase of CeO2content.

    Fig.1 XRD patterns of CeO2/TiO2

    Fig.2 showed that the prepared CeO2/TiO2hetero?junction had a three?dimensional flower?like structure,and nano?CeO2particles adhered to the petals of TiO2.With the increase of CeO2content,the number of CeO2nanoparticles on the petals of TiO2increased gradually.

    Fig.2 SEM and TEM images of(a,b)0.05CeO2/TiO2,(c,d)0.1CeO2/TiO2,and(e,f)0.2CeO2/TiO2

    Solvothermal time can affect the morphology and properties of the samples.When the molar ratio of Ce and Ti was 0.1,and the samples were labeled as CeO2/TiO2?t,wheretmin was the reaction time.Fig.3 shows that the diffraction peaks correspond to the characteris?tic diffraction peaks of TiO2and CeO2respectively.

    Fig.3 XRD patterns of(a)CeO2/TiO2?4,(b)CeO2/TiO2?6 and(c)CeO2/TiO2?12

    Fig.4 shows the SEM images of CeO2/TiO2.It can be seen that under solvothermal conditions for 4 h,the CeO2/TiO2heterojunction was a three?dimensional flow?er?like microsphere structure.The diameter of the mi?crospheres was between 0.61 and 0.96 μm.The aver?age diameter was 0.77 μm.The flower structure was formed by the directional aggregation of nanoparticles.When the reaction time increased up to 6 h,the diame?ter of the flower?like microspheres ranged from 0.58 to 1.29 μm,with an average diameter of 0.59 μm.When the solvothermal time was 12 h,the diameter of the three?dimensional flower?like structure was 0.88?1.89 μm,with an average diameter of 1.36 μm.CeO2parti?cles were oriented and integrated into a shuttle shape embedded between thin plates.With the increase of solvothermal time,the diameter of flower?like TiO2became smaller at the beginning and larger at the next stage,and CeO2gradually aggregated from nanoparti?cles to shuttle shape.

    Fig.4 SEM images of(a,b)CeO2/TiO2?4,(c,d)CeO2/TiO2?6 and(e,f)CeO2/TiO2?12

    Fig.5 shows the N2adsorption ?desorption iso?therms and BJH(Barrette?Joyner?Halenda)pore size distribution curves of samples.The Brunauer?Emmett?Teller specific surface area(SBET),pore volume(VP),and average pore size of the samples are shown in Table 1.The results showed the prepared samples had highSBETand largeVP,providing more active sites and light?harvesting capacity,and improving the utilization efficiency of light,thereby contributing to the degrada?tion of organic pollutants.

    Fig.5 (a)N2adsorption?desorption isotherms and(b)pore size distribution curves for CeO2/TiO2?t

    Fig.6 shows the full spectrum of CeO2/TiO2?6 and the high?resolution XPS spectra of Ti2p,O1s,and Ce3d.It can be seen from Fig.6a that the sample only contained C,O,Ti,and Ce elements.C was mainly derived from the residual carbon of some organic pre?cursors during heat treatment and the oily carbon from the XPS instrument itself.The binding energies of 458.78 and 464.48 eV in Fig.6b correspond to the char?acteristic peaks of Ti2p2/3and Ti2p1/2orbits respective?ly,which are the standard bond energies of Ti2pin pure TiO2,indicating that Ti exists in form of Ti4+[31].In the O1sspectrum of Fig.6c,one peak at around 530.10 eV corresponds to the oxygen in the TiO2lattice,and the other peak at around 531.58 eV corresponds to the hydroxyl(—OH)on the surface of TiO2[32?33].In Fig.6d,V(881.52),V″(888.13),and V?(898.41)correspond to Ce3d5/2spin?orbital bands;U(900.11),U″(906.83),and U? (915.81)correspond to Ce3d3/2spin?orbital bands.The peaks labeled as V,V″,V?,U,U″,and U?are attributed to the existence of Ce4+.The peaks at V'(885.13)and U'(903.12)are attributed to the presence of Ce3+in the composite[34].Ce3+is mainly due to the strong interaction between TiO2and CeO2,which makes Ce4+reduced to Ce3+[35].

    Because the intensity of light emission depends on the recombination ability of excited electrons and holes,we can analyze the ability of semiconductor materials to capture and migrate photogenerated holes and electrons.The low intensity of the PL spectrum indicates that the recombination rate of electron?hole pairs is low and the separation efficiency of electron?hole pairs represents reverse.Fig.7 shows the PL spec?tra excited at 350 nm.The PL intensity of CeO2/TiO2?12 was lower than that of CeO2/TiO2?6,indicating that CeO2/TiO2?12 presented high separation efficiency.

    Fig.7 PL spectra of CeO2/TiO2?6 and CeO2/TiO2?12

    2.2 Photocatalytic activity

    To investigate the photocatalytic activity of the sample,the photocatalytic degradation of MO(xenon lamp simulated sunlight)was carried out.The degrada?tion rate of MO was calculated as follows:D=(1-A/A0)×100%,whereDis the degradation rate of MO solution;A0is the absorbance of MO solution before irradiation;Ais the absorbance of MO solution at the wavelength of 464 nm.The experimental results of photocatalysis under light were shown in Fig.8.

    Fig.8 Photocatalytic degradation rate of MO for the samples

    Fig.8a shows the curve of the photocatalytic degra?dation rate of MO under simulated sunlight for the sam?ples prepared with various molar ratios of CeO2and TiO2.Fig.8b shows the photocatalytic degradation rate curves of MO under simulated sunlight irradiation for the samples prepared under different solvothermal times when the molar ratio of CeO2to TiO2was 0.1(The material prepared without polyethylene glycol,cetyltrimethyl ammonium bromide,and carboxamide was recorded as CeO2/TiO2?B).It can be seen that the degradation rate of MO with catalyst increased with the extension of illumination time.The degradation rate of CeO2/TiO2was better than that of TiO2after 50 min illu?mination.The photocatalytic performance of flower?like CeO2/TiO2was higher than that of CeO2/TiO2?B.0.1CeO2/TiO2had the best photocatalytic performance under 50 min illumination and the photocatalytic activ?ity of CeO2/TiO2?6 was the best,and the degradation rate reached 95% after 50 min illumination(Fig.8b).The degradation rate of MO solution added with pure TiO2or CeO2was only 78% or 70% respectively after 50 min illumination,which indicated that the compos?ite of CeO2and TiO2enhances the photocatalytic activity of TiO2.

    Fig.9 is the UV?Vis diffuse reflectance spectra of the samples.It can be seen that the absorption band edges of TiO2,CeO2,CeO2/TiO2?4,CeO2/TiO2?6,and CeO2/TiO2?12 were 393,432,463,481,and 469 nm respectively.According to the formulaEg=1 240/λg(λgis absorption edge),the bandgaps(Eg)of TiO2,CeO2,CeO2/TiO2?4,CeO2/TiO2?6,and CeO2/TiO2?12 were about 3.16,2.87,2.68,2.58,and 2.64 eV respectively,which indicates that CeO2/TiO2broadens the absorp?tion range compared with TiO2and CeO2.

    Fig.9 UV?Vis diffuse reflectance spectra of the samples

    Fig.10 shows the effects of reuse times of CeO2/TiO2?6 catalyst on photocatalytic activity.It can be seen that the degradation rates of MO by CeO2/TiO2?6 were 95%,94%,and 92% respectively when the cata?lyst was reused for the first time,the second time,and the third time.The catalytic activity was not significantly reduced,indicating that the photocatalyst has certain stability and can be recycled many times.

    Fig.10 Effect of reuse degradation times of CeO2/TiO2?6 on the degradation rate of MO

    In the process of photocatalysis,water molecules or hydroxyl radicals can be oxidized by holes to gener?ate hydroxyl radicals,and superoxide anion radicals may be generated when dissolved oxygen in water receives photogenerated electrons.Electron spin reso?nance(ESR)is generally used to detect hydroxyl radi?cal(·OH)radical and superoxide radical(·O2-).Fig.11 presents the ESR spectra of DMPO?·OH and DMPO?·O2-obtained with 5,5?dimethyl?1?pyrrolineN?oxide(DMPO)as the radical scavenger.Under xenon lamp irradiation,the ESR spectra of·OH showed four char?acteristic peaks,and that of·O2-showed six character?istic peaks.However,there was no signal in the dark.It indicates that·OH and ·O2-exist in the reaction sys?tem with CeO2/TiO2.

    Fig.11 ESR spectra of(a)DMPO?·OH and(b)DMPO?·O2-for CeO2/TiO2?6 in the dark and under xenon lamp irradiation

    The interface charge transfer and photogenerated charge recombination of the catalyst were investigated by electrochemical characterization.Fig.12a shows the photocurrent response of the catalyst under xenon lamp irradiation.It suggests that CeO2,TiO2,and CeO2/TiO2?6 all had obvious photocurrent responses.When the light source was turned off,the current signal returned to the original level,and the response current of CeO2/TiO2?6 was higher than that of pure CeO2or pure TiO2under the light.Generally,the stronger the separation ability of photo?generated carriers,the stronger the photocur?rent of the material.That shows the separation ability of CeO2/TiO2?6 photo?generated carriers was better than pure CeO2and TiO2,which is mainly due to the formation of heterojunction between CeO2and TiO2.EIS can further confirm the effective separation of pho?togenerated electrons and holes.The arc radius in EIS(Fig.12b)is related to the charge transfer resistance of the material.In general,the smaller the arc radius,the faster the separation or transfer speed of photogenerat?ed carriers,and the photocurrent intensity is also increased.It can be seen that CeO2/TiO2?6 had the smallest arc radius,which indicates that CeO2/TiO2?6 has the smallest electron transfer resistance and the best charge separation efficiency,which is consistent with the photocurrent response.

    Fig.12 (a)Transient photocurrent responses of CeO2,TiO2,and CeO2/TiO2?6;(b)EIS spectra of CeO2,TiO2,and CeO2/TiO2?6

    Fig.13 shows the photocatalysis mechanism of CeO2/TiO2.Under simulated sunlight,CeO2/TiO2can absorb not only ultraviolet light but also visible light.Both CeO2and TiO2can be excited by ultraviolet light,then the electrons jump to the conduction band to form the conduction band electron(e-)while leaving holes(H+)in the valence band.Because the conduction band(CB)of CeO2is higher than that of TiO2,the electrons in CB of CeO2transfer to CB of TiO2through the inter?face.On the other hand,the valence gap(VB)of CeO2is lower than that of TiO2,and the holes of VB of TiO2are transferred to VB of CeO2,which is prone to the separation of photogenerated electron?hole pairs[30].Under visible light irradiation,electrons from VB of CeO2are transferred to CB of TiO2,and photogenerated electrons in CB of CeO2can be transferred to CB of TiO2,thus inhibiting the recombination of photogenerat?ed electrons and hole[36].The results were consistent with the photocurrent response and EIS.Subsequently,the e-was reacted with the O2to form·O2-.The H2O could be oxidized by h+to produce·OH.The pollutant was oxidized by·O2-and·OH to produce CO2and H2O.Simultaneously,the h+in VB of CeO2was directly involved in the oxidation of pollutants.

    Fig.13 Photocatalysis mechanism of CeO2/TiO2

    3 Conclusions

    The three?dimensional flower?like CeO2/TiO2heterojunction was prepared by the solvothermal meth?od.Compared with TiO2,flower?like CeO2/TiO2hetero?junction showed better photocatalytic performance un?der simulated sunlight.Among them,the degradation rate of MO reached 95% when CeO2/TiO2?6 was illumi?nated for 50 min,and the photocatalytic performance reached the best.The flower?like CeO2/TiO2heterojunc?tion had excellent catalytic performance,which is mainly due to the following factors.First of all,the three?dimensional hierarchical structure,with a large specific surface area and a different size of pore struc?ture,greatly improves the utilization of light.Secondly,the heterojunction effect can enhance the efficiency of charge separation and interface charge transfer greatly.

    男人的好看免费观看在线视频| 国产av一区在线观看免费| 直男gayav资源| 日日摸夜夜添夜夜添av毛片 | 亚洲国产高清在线一区二区三| 色在线成人网| 中文字幕熟女人妻在线| 精品一区二区三区视频在线| 99热精品在线国产| 老熟妇仑乱视频hdxx| 国产免费av片在线观看野外av| 最近中文字幕高清免费大全6 | 色av中文字幕| 人妻制服诱惑在线中文字幕| 亚洲美女黄片视频| 欧美一区二区亚洲| 99热这里只有是精品在线观看 | 狠狠狠狠99中文字幕| 亚洲人成伊人成综合网2020| 中文资源天堂在线| 97碰自拍视频| 国产三级黄色录像| 亚洲人成伊人成综合网2020| 搞女人的毛片| 午夜福利欧美成人| 性插视频无遮挡在线免费观看| 老司机午夜福利在线观看视频| 99久久99久久久精品蜜桃| 成人av一区二区三区在线看| 亚洲av日韩精品久久久久久密| 麻豆国产av国片精品| 国产又黄又爽又无遮挡在线| 999久久久精品免费观看国产| 精品一区二区免费观看| 高清毛片免费观看视频网站| 国产色爽女视频免费观看| av福利片在线观看| 一区二区三区激情视频| 美女免费视频网站| 免费观看人在逋| 能在线免费观看的黄片| 国产欧美日韩精品一区二区| av在线蜜桃| 久久中文看片网| 久久午夜福利片| 中文字幕免费在线视频6| 欧美绝顶高潮抽搐喷水| 久久精品久久久久久噜噜老黄 | 精品99又大又爽又粗少妇毛片 | 色噜噜av男人的天堂激情| 免费观看人在逋| 首页视频小说图片口味搜索| 免费观看精品视频网站| 黄色配什么色好看| av国产免费在线观看| 亚洲片人在线观看| 亚洲aⅴ乱码一区二区在线播放| 又爽又黄无遮挡网站| 国产精品不卡视频一区二区 | 蜜桃久久精品国产亚洲av| 757午夜福利合集在线观看| 久久国产乱子免费精品| 日本 欧美在线| 免费黄网站久久成人精品 | 美女cb高潮喷水在线观看| 别揉我奶头 嗯啊视频| 白带黄色成豆腐渣| 国内揄拍国产精品人妻在线| 一本久久中文字幕| 欧美一级a爱片免费观看看| 欧美三级亚洲精品| 国产一区二区亚洲精品在线观看| 中文字幕精品亚洲无线码一区| 免费一级毛片在线播放高清视频| 日本免费一区二区三区高清不卡| 亚洲性夜色夜夜综合| 国产精品久久视频播放| 色视频www国产| 中文字幕av在线有码专区| 又粗又爽又猛毛片免费看| 深夜精品福利| 欧美色视频一区免费| 免费在线观看日本一区| 1000部很黄的大片| 国产精品爽爽va在线观看网站| 在线免费观看不下载黄p国产 | 97碰自拍视频| 99国产综合亚洲精品| 成年免费大片在线观看| 久久久久国产精品人妻aⅴ院| 婷婷色综合大香蕉| 国模一区二区三区四区视频| 怎么达到女性高潮| av在线观看视频网站免费| 美女xxoo啪啪120秒动态图 | 九色成人免费人妻av| 18禁黄网站禁片午夜丰满| 波多野结衣巨乳人妻| 久久欧美精品欧美久久欧美| 岛国在线免费视频观看| 久久久久精品国产欧美久久久| 一区二区三区激情视频| 国产精品自产拍在线观看55亚洲| 欧美极品一区二区三区四区| 一区二区三区激情视频| 亚洲精品粉嫩美女一区| 久久久国产成人精品二区| 欧美精品啪啪一区二区三区| 热99在线观看视频| 麻豆国产av国片精品| 国产在线男女| 美女大奶头视频| 69av精品久久久久久| 日本三级黄在线观看| 在线观看免费视频日本深夜| 亚洲国产欧美人成| 91麻豆av在线| 国产极品精品免费视频能看的| www.999成人在线观看| 久99久视频精品免费| 人人妻人人看人人澡| 日本与韩国留学比较| 亚洲av第一区精品v没综合| 亚洲精品乱码久久久v下载方式| 麻豆成人av在线观看| 十八禁网站免费在线| 国产美女午夜福利| 国产伦在线观看视频一区| 村上凉子中文字幕在线| 国产av不卡久久| 亚洲性夜色夜夜综合| .国产精品久久| 日韩欧美国产一区二区入口| 亚洲,欧美精品.| 男人的好看免费观看在线视频| 国产亚洲精品久久久com| 高潮久久久久久久久久久不卡| 亚洲 欧美 日韩 在线 免费| 国产伦精品一区二区三区视频9| 国产伦人伦偷精品视频| 男人狂女人下面高潮的视频| 亚洲午夜理论影院| 亚洲真实伦在线观看| 国产黄a三级三级三级人| 毛片一级片免费看久久久久 | 欧美一区二区精品小视频在线| 美女高潮喷水抽搐中文字幕| 色播亚洲综合网| 性色avwww在线观看| 久久伊人香网站| 91九色精品人成在线观看| 亚洲 国产 在线| 国产黄a三级三级三级人| 99精品久久久久人妻精品| 2021天堂中文幕一二区在线观| 91午夜精品亚洲一区二区三区 | 性插视频无遮挡在线免费观看| 国产亚洲av嫩草精品影院| 中文字幕免费在线视频6| 国产免费男女视频| 国产精品影院久久| 国产私拍福利视频在线观看| 免费大片18禁| 搡老妇女老女人老熟妇| 1024手机看黄色片| av在线老鸭窝| 亚洲精品在线美女| 亚洲av美国av| 久久久久久久午夜电影| 成年人黄色毛片网站| 简卡轻食公司| 美女被艹到高潮喷水动态| 波野结衣二区三区在线| 97人妻精品一区二区三区麻豆| 亚洲18禁久久av| 亚洲精华国产精华精| 国产av一区在线观看免费| 国产乱人伦免费视频| 一进一出抽搐gif免费好疼| 国产真实伦视频高清在线观看 | 美女免费视频网站| 综合色av麻豆| 午夜福利在线观看吧| 日本在线视频免费播放| .国产精品久久| 亚洲自拍偷在线| 久久久久久久午夜电影| 简卡轻食公司| 中文在线观看免费www的网站| 国产精品一区二区三区四区免费观看 | 精品乱码久久久久久99久播| 亚洲激情在线av| 亚洲国产欧洲综合997久久,| 欧美黑人欧美精品刺激| 长腿黑丝高跟| a级毛片a级免费在线| 免费观看人在逋| www.www免费av| 91麻豆av在线| 久久精品国产亚洲av天美| 欧美+日韩+精品| 亚洲精品一区av在线观看| 舔av片在线| 在线免费观看不下载黄p国产 | 国产午夜精品论理片| 亚洲一区二区三区色噜噜| 午夜福利高清视频| 神马国产精品三级电影在线观看| avwww免费| 丰满人妻一区二区三区视频av| 国产一区二区三区在线臀色熟女| 日本免费a在线| 欧美成人性av电影在线观看| 黄色视频,在线免费观看| 久久久久久国产a免费观看| 国产黄a三级三级三级人| 99在线人妻在线中文字幕| 免费看美女性在线毛片视频| 91在线精品国自产拍蜜月| 在线观看午夜福利视频| av女优亚洲男人天堂| 啦啦啦观看免费观看视频高清| 免费在线观看影片大全网站| 变态另类丝袜制服| 青草久久国产| 少妇人妻精品综合一区二区 | 88av欧美| 90打野战视频偷拍视频| 制服丝袜大香蕉在线| 国产精品亚洲av一区麻豆| 国产黄片美女视频| 欧美日韩黄片免| 免费看a级黄色片| 91麻豆精品激情在线观看国产| www.999成人在线观看| 超碰av人人做人人爽久久| 99久久无色码亚洲精品果冻| 欧美成狂野欧美在线观看| 在线免费观看不下载黄p国产 | 99热这里只有是精品在线观看 | 我的老师免费观看完整版| 日韩免费av在线播放| 午夜免费成人在线视频| 我的女老师完整版在线观看| 欧美成人性av电影在线观看| 午夜精品在线福利| 久久久久性生活片| 黄色丝袜av网址大全| 国产白丝娇喘喷水9色精品| 欧美日韩黄片免| 午夜a级毛片| 亚洲aⅴ乱码一区二区在线播放| 日本黄色片子视频| 赤兔流量卡办理| 亚洲乱码一区二区免费版| 国产一区二区在线av高清观看| 国产精华一区二区三区| 变态另类丝袜制服| 国产欧美日韩精品亚洲av| 欧美性感艳星| 日韩欧美精品免费久久 | 国产精品久久久久久久电影| 国产乱人视频| 我的女老师完整版在线观看| 亚洲狠狠婷婷综合久久图片| 91久久精品国产一区二区成人| 精品一区二区三区视频在线| 日本黄色片子视频| 最近最新中文字幕大全电影3| 看黄色毛片网站| 免费av不卡在线播放| 久久久久久九九精品二区国产| av国产免费在线观看| 欧美精品国产亚洲| 欧美日韩乱码在线| 禁无遮挡网站| 亚洲精品456在线播放app | 中文资源天堂在线| 亚洲精品日韩av片在线观看| 久久精品国产清高在天天线| 欧美性猛交黑人性爽| 一边摸一边抽搐一进一小说| 在线看三级毛片| 最近最新中文字幕大全电影3| 国产伦在线观看视频一区| 精品国产亚洲在线| 亚洲成人中文字幕在线播放| 亚洲精品粉嫩美女一区| 色播亚洲综合网| 亚洲人成伊人成综合网2020| 国产 一区 欧美 日韩| 在线播放无遮挡| 中文亚洲av片在线观看爽| 少妇人妻一区二区三区视频| 亚洲熟妇中文字幕五十中出| 久久6这里有精品| 热99re8久久精品国产| 级片在线观看| 日韩国内少妇激情av| av在线蜜桃| 国产精品av视频在线免费观看| 琪琪午夜伦伦电影理论片6080| 亚洲精品久久国产高清桃花| 亚洲精品456在线播放app | av在线老鸭窝| 日韩精品中文字幕看吧| 午夜福利高清视频| 99久久精品热视频| 听说在线观看完整版免费高清| 午夜精品在线福利| 免费黄网站久久成人精品 | 国产黄a三级三级三级人| 老鸭窝网址在线观看| 夜夜夜夜夜久久久久| 淫妇啪啪啪对白视频| 国产精品98久久久久久宅男小说| 欧美日本亚洲视频在线播放| 变态另类丝袜制服| 性色avwww在线观看| 老司机福利观看| 久久久久免费精品人妻一区二区| 悠悠久久av| 他把我摸到了高潮在线观看| 免费大片18禁| 无人区码免费观看不卡| 国产又黄又爽又无遮挡在线| av在线蜜桃| 宅男免费午夜| 91在线精品国自产拍蜜月| 精品无人区乱码1区二区| 久久国产精品人妻蜜桃| 人妻制服诱惑在线中文字幕| 成人国产一区最新在线观看| 丰满人妻一区二区三区视频av| 欧美激情在线99| 国产精品亚洲av一区麻豆| 午夜视频国产福利| 悠悠久久av| 久久久久久久久久黄片| 亚洲黑人精品在线| 一级av片app| netflix在线观看网站| 欧美日韩黄片免| 色吧在线观看| 一个人观看的视频www高清免费观看| aaaaa片日本免费| 欧美最黄视频在线播放免费| 在线a可以看的网站| 亚洲精品成人久久久久久| 美女xxoo啪啪120秒动态图 | 欧美日韩黄片免| 亚洲狠狠婷婷综合久久图片| 青草久久国产| 国产又黄又爽又无遮挡在线| 免费av不卡在线播放| 午夜a级毛片| 两个人视频免费观看高清| 性欧美人与动物交配| 久久久久免费精品人妻一区二区| 91午夜精品亚洲一区二区三区 | 免费电影在线观看免费观看| 日韩av在线大香蕉| 成熟少妇高潮喷水视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲乱码一区二区免费版| 亚洲狠狠婷婷综合久久图片| 51国产日韩欧美| 窝窝影院91人妻| 国产一区二区三区视频了| 欧美黄色片欧美黄色片| 桃红色精品国产亚洲av| 在线播放国产精品三级| 波野结衣二区三区在线| 亚洲av五月六月丁香网| 少妇丰满av| 99久久无色码亚洲精品果冻| 欧美日韩亚洲国产一区二区在线观看| 一区二区三区高清视频在线| 精品乱码久久久久久99久播| 俺也久久电影网| 最近最新中文字幕大全电影3| 午夜两性在线视频| 一进一出好大好爽视频| 性插视频无遮挡在线免费观看| 亚洲男人的天堂狠狠| 久久久久国产精品人妻aⅴ院| 亚洲精品成人久久久久久| av视频在线观看入口| 一卡2卡三卡四卡精品乱码亚洲| 婷婷亚洲欧美| 国产高清激情床上av| 一区二区三区免费毛片| 久久精品国产亚洲av天美| 亚洲专区国产一区二区| 久久这里只有精品中国| 色精品久久人妻99蜜桃| 亚洲不卡免费看| 亚洲人成网站在线播放欧美日韩| 国产伦精品一区二区三区视频9| 一区二区三区免费毛片| 国产 一区 欧美 日韩| 国产一级毛片七仙女欲春2| 亚洲自偷自拍三级| 99精品久久久久人妻精品| 国产在线男女| 精品一区二区免费观看| 国产精华一区二区三区| 欧美一级a爱片免费观看看| 91久久精品电影网| a级毛片a级免费在线| 日本黄色片子视频| 国内精品一区二区在线观看| 久久亚洲精品不卡| a在线观看视频网站| 亚洲人成网站高清观看| 一进一出抽搐gif免费好疼| a级毛片a级免费在线| 又爽又黄无遮挡网站| 成年版毛片免费区| 我的女老师完整版在线观看| 国产欧美日韩一区二区精品| 天堂av国产一区二区熟女人妻| 亚洲精品一区av在线观看| 91在线精品国自产拍蜜月| 国产精品永久免费网站| 熟女电影av网| 床上黄色一级片| 夜夜夜夜夜久久久久| 激情在线观看视频在线高清| 黄色女人牲交| 麻豆国产av国片精品| 精品久久久久久久人妻蜜臀av| 精品人妻1区二区| 欧美zozozo另类| 国产综合懂色| 男人舔女人下体高潮全视频| 国产成人影院久久av| 成人一区二区视频在线观看| av天堂在线播放| 亚洲aⅴ乱码一区二区在线播放| 欧美国产日韩亚洲一区| 亚洲一区二区三区色噜噜| 中文字幕熟女人妻在线| 国产成人欧美在线观看| 三级男女做爰猛烈吃奶摸视频| 久久久久久久久久黄片| 美女 人体艺术 gogo| 亚洲最大成人中文| 黄片小视频在线播放| 午夜激情福利司机影院| 我的老师免费观看完整版| 亚洲激情在线av| 亚洲成人久久爱视频| 国产伦在线观看视频一区| 国产蜜桃级精品一区二区三区| 日韩亚洲欧美综合| 欧美日韩国产亚洲二区| 精品国产三级普通话版| 好男人在线观看高清免费视频| 搡老熟女国产l中国老女人| 精品国产三级普通话版| 99在线视频只有这里精品首页| 好看av亚洲va欧美ⅴa在| 久久99热这里只有精品18| 最近在线观看免费完整版| 国产成+人综合+亚洲专区| 国产私拍福利视频在线观看| 国产成人av教育| 成年版毛片免费区| 麻豆国产97在线/欧美| 首页视频小说图片口味搜索| 亚洲人成网站在线播放欧美日韩| 九九热线精品视视频播放| 亚洲久久久久久中文字幕| 国产午夜福利久久久久久| or卡值多少钱| 精品久久久久久久久久久久久| 亚洲 国产 在线| 欧美黑人巨大hd| 波多野结衣巨乳人妻| 久久这里只有精品中国| 老司机午夜福利在线观看视频| 精品国产亚洲在线| 少妇裸体淫交视频免费看高清| 久久国产精品人妻蜜桃| 2021天堂中文幕一二区在线观| 最后的刺客免费高清国语| 韩国av一区二区三区四区| 婷婷六月久久综合丁香| 国产成人av教育| 一级黄色大片毛片| 黄色视频,在线免费观看| 中文在线观看免费www的网站| 国产av在哪里看| 男插女下体视频免费在线播放| netflix在线观看网站| 亚洲激情在线av| 亚洲一区高清亚洲精品| 日韩中文字幕欧美一区二区| 国产一区二区三区在线臀色熟女| www.熟女人妻精品国产| 嫩草影视91久久| 18禁裸乳无遮挡免费网站照片| 国产熟女xx| 亚洲国产欧洲综合997久久,| 亚洲av不卡在线观看| 午夜福利在线观看吧| 久久久久免费精品人妻一区二区| 在线免费观看的www视频| 一级av片app| 国产精品综合久久久久久久免费| 欧美成人性av电影在线观看| 国产欧美日韩精品一区二区| 婷婷六月久久综合丁香| 麻豆av噜噜一区二区三区| 久久国产乱子伦精品免费另类| 美女高潮的动态| 国产精品一区二区性色av| 丝袜美腿在线中文| netflix在线观看网站| 精品乱码久久久久久99久播| 国产v大片淫在线免费观看| 日韩人妻高清精品专区| 午夜福利在线观看吧| 欧美乱色亚洲激情| 精品久久国产蜜桃| 日韩欧美国产在线观看| 2021天堂中文幕一二区在线观| 好男人在线观看高清免费视频| 波野结衣二区三区在线| 最近视频中文字幕2019在线8| 高潮久久久久久久久久久不卡| 中文字幕人成人乱码亚洲影| 亚洲人成伊人成综合网2020| 国内精品美女久久久久久| 99国产精品一区二区蜜桃av| 看黄色毛片网站| 一二三四社区在线视频社区8| 色尼玛亚洲综合影院| 美女大奶头视频| 免费在线观看成人毛片| 欧美三级亚洲精品| 欧美成人a在线观看| 99国产精品一区二区三区| 亚洲av电影在线进入| 国产探花在线观看一区二区| 国产伦精品一区二区三区视频9| 国产成人欧美在线观看| 日韩人妻高清精品专区| 给我免费播放毛片高清在线观看| 国内精品一区二区在线观看| 国产精品精品国产色婷婷| 内射极品少妇av片p| 国产高清有码在线观看视频| 亚洲国产日韩欧美精品在线观看| 国产黄a三级三级三级人| 国产在线精品亚洲第一网站| 日韩欧美一区二区三区在线观看| 老司机福利观看| 无遮挡黄片免费观看| 国内精品久久久久久久电影| 久久人人精品亚洲av| 老司机午夜十八禁免费视频| 国内精品美女久久久久久| 亚洲精品久久国产高清桃花| 99久久九九国产精品国产免费| 亚洲av一区综合| 中文资源天堂在线| 淫秽高清视频在线观看| 午夜免费男女啪啪视频观看 | 亚洲av成人精品一区久久| 国产欧美日韩一区二区三| 亚洲av电影不卡..在线观看| 美女大奶头视频| 又爽又黄无遮挡网站| 人人妻人人澡欧美一区二区| 非洲黑人性xxxx精品又粗又长| 日本免费一区二区三区高清不卡| 亚洲国产色片| 国产高潮美女av| 一级作爱视频免费观看| 精品一区二区三区人妻视频| 久久九九热精品免费| 精品一区二区三区视频在线观看免费| www.www免费av| 九九在线视频观看精品| 99riav亚洲国产免费| 一个人看的www免费观看视频| 99久久无色码亚洲精品果冻| 欧美不卡视频在线免费观看| 桃红色精品国产亚洲av| 中文亚洲av片在线观看爽| 国产成人影院久久av| 久久香蕉精品热| 欧美成人一区二区免费高清观看| 国产白丝娇喘喷水9色精品| 啪啪无遮挡十八禁网站| 黄色日韩在线| 一边摸一边抽搐一进一小说| 在线观看免费视频日本深夜| 99riav亚洲国产免费| 夜夜看夜夜爽夜夜摸| 亚洲成av人片免费观看| 精品一区二区三区人妻视频| 午夜精品久久久久久毛片777| 99久久久亚洲精品蜜臀av| 能在线免费观看的黄片| 又粗又爽又猛毛片免费看| 免费在线观看成人毛片| 人人妻人人澡欧美一区二区| 又爽又黄无遮挡网站| 3wmmmm亚洲av在线观看| 亚洲不卡免费看| 久久中文看片网| 中文字幕久久专区|