• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Behavior recognition algorithm based on the improved R3D and LSTM network fusion①

    2022-01-09 02:08:18WuJinAnYiyuanDaiWeiZhaoBo
    High Technology Letters 2021年4期

    Wu Jin(吳 進(jìn)),An Yiyuan,Dai Wei,Zhao Bo

    (School of Electronic and Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,P.R.China)

    Abstract

    Key words:behavior recognition,three-dimensional residual convolutional neural network(R3D),long short-term memory(LSTM),dropout,batch normalization(BN)

    0 Introduction

    Due to the increasingly high status of video human behavior recognition in the field of artificial intelligence,people’s demand for behavior recognition intelligent system is growing.Therefore,video based behavior recognition is widely used in human-computer interaction,social public security,intelligent security and other fields[1].Currently,the traditional algorithms for human behavior recognition include histogram of optical flow (HOF)[2], dense trajectory(DT)[3],motion history image(MHI)[4]algorithm.Scale invariant feature transform(SIFT)[5],spacetime volume(STV)[6]and dense trajectories(DT)[7]proposed by other scholars are classified after feature extraction.

    In recent years,with the increase in the number of videos,the computer performance has improved rapidly,which has brought great help to the development of deep learning,and solved the problems of less data sets and slow computing performance.After Krizhevsky et al.[8]won the champion in Imagenet Challenge Image Classification,a large number of scholars began to imitate the convolutional neural networks(CNN)model,and a large number of excellent network models such as AlexNet[9],VGGNet[10],GoogLeNet[11]were proposed.

    In order to enable CNN to achieve end-to-end training,Ref.[12] proposed a long-term recurrent neural network(LRCN)in 2015.This model has obvious advantages in recognition,optimization and other tasks.However,because the number of layers of CNN is too small,it can not fully extract useful feature information.Ref.[13]proposed a 3D-CNN,which can simultaneously extract spatiotemporal features,but 2DCNN is still used in the last few layers of the network.Ref.[14]proposed a C3D network.Experimental results show that the C3D network can extract spatiotemporal feature information better than 2D-CNN.However,as the number of network layers becomes deeper,problems such as network degradation will occur.Ref.[15]proposed a ResNet network,which overcomes the above problems caused by increasing the network depth.

    In order to improve the performance of the network,this paper introduces the three-dimensional residual convolutional neural network(R3D),which can not only extract the temporal and spatial features,but also deepen the width of the network.On this basis,R3D network changes the size of the pool layer window,and adds Softplus activation function,batch normalization(BN)layer,dropout layer,convolutional layer and maxpool layer.Later,in order to further extract advanced timing features,the long short-term memory(LSTM)[16]network was introduced into R3D network.Finally,the R3D+LSTM network achieves 91%recognition rate on UCF-101[17]dataset.

    1 R3D+LSTM network

    1.1 R3D network

    The structure of the residual network is to emulate the VGGNet,using a small convolution kernel instead of a large convolution kernel,reducing the amount of parameters.Moreover,through residual connection,the network layers are stacked to 152 layers,which has achieved good results in Imagenet competition.The residual module is shown in Fig.1.

    Fig.1 Residual module

    The objective functionH(X)=F(X)+X,F(X)is fitted to 0,that is,H(X)=X,which is transformed into the fitting of the network toX,realizing the identity mapping ofX,solving the problem of network degradation.Since the derivative ofXis 1,the derivative value of the function is made greater than 1 in the backpropagation,which avoids the disappearance of the network gradient and makes the weight of the network updated.Because the number of layers of the traditional deep ResNet network is too deep,there are problems such as excessive parameter amount and redundant parameters,which causes the training speed of the network to slow down[18].Moreover,the ResNet network uses 2D convolution layer,which can only extract the spatial features of each image frame,so that the extracted features are not enough.In view of the above problems,this paper adopts R3D network,as shown in Fig.2.

    Fig.2 Structure diagram of R3D network

    Since the operations and parameters of the 5 identity modulesⅠare the same,one identity moduleⅠis used to represent the 5 identity modulesⅠin the R3D network structure.Four identity modulesⅡand 4 identity modulesⅢare also represented in this way.The identity module uses 3×3×3 convolution kernel,and the convolution module uses 3×3×3 and 1×1×1 convolution kernel.The above convolutional layers all use Softplus to replace the ReLU activation function,because the value of the ReLU function in the negative interval is 0,so that some neurons cannot be activated,and therefore,the corresponding weight parameters cannot be updated.

    1.2 LSTM network structure

    As an improved version of recurrent neural network(RNN)[19],LSTM has a very good effect on processing video,which has time-dimensional feature.It perfectly solves the problem of long-term dependence of RNN.The key of LSTM is the state of each cell,as shown in Fig.3.

    Among them,liis an element in the input sequence{l1,l2,l3,…,ln-1,ln},and the sequence length isn.LSTM,like RNN,needs to calculate the current hidden stateht,the hidden layer state can extract the feature of the sequence data,and then convert them to output.Usehtto represent the hidden layer state ofliat different times.The hidden layer state is related to the previous historical information.

    In the human behavior recognition task of video class,each category of video is converted into hundreds of frames.In this paper,the number of consecutive frames input each time is a sequence ofnvideo frames,and the output is the corresponding video category.

    Fig.3 LSTM neuron connection method

    Therefore,the last hidden layer statehnis selected as the high-level feature of the entire video frame.The specific calculation formula of time sequence of LSTM network is shown in Eq.(1).

    Among them,the bias value is represented byb,and the weight value is represented byWandU.

    1.3 R3D+LSTM network structure

    Ref.[8]used the CNN+LSTM method to design the network model to further improve the network classification effect,but with the increase in the number of network layers,gradient dispersion will occur,so this paper proposes the R3D+LSTM network.The network convergence architecture diagram is shown in Fig.4.

    Fig.4 Structure diagram of R3D+LSTM network

    Firstly,R3D network compresses and extracts time domain features.Global average pooling(GAP)network layer further compresses model parameters to avoid over fitting of network and speed up training speed,but it can not process time domain features well.Secondly,the depth of R3D+LSTM network is not enough,which leads to a small improvement in recognition rate.Thirdly,the maxpool layer will lose a lot of useful sequence information after downsampling.Therefore,in view of these three problems,the R3D network is modified as follows.

    (1)Since the GAPnetwork is affected by the size of the feature map,the network can not be further deepened,and larger features will lead to smaller receptive field of convolution layer.Therefore,on the basis of the R3D network,convolutional layer and maxpool layer are added to deepen the depth of the network,improve the generalization ability of the network,enlarge the receptive field of convolution layer,and extract features.

    (2)Rewrite all the sampling windows of the maxpool layer of the R3D network from(2×2×2)to(1×2×2)to maintain the features extracted by the shallow network and keep the time-domain sequence features intact.It avoids the loss of useful feature information when the pooling layer is down sampling.

    In the dimension of input data,the feature map is expanded into one dimension,and all information features are directly input into LSTM network for feature screening,which can retain important features.

    1.4 Overall network structure design

    R3D+LSTM network uses identity module,convolution module,BN,Dropout and LSTM algorithm.The network has 34 convolutional layers,of which the identity module has 26 convolutional layers and the convolutional module has 6 layers.The following details the network layer structure.

    Identity module I uses two 3D convolution layers to extract features,which are conv3d _2,conv3d_3,as shown in Fig.5.Each convolution layer contains 128 convolution cores with a size of 3×3×3.After that,BN layer and softplus layer are added after the convolution layer.The BN layer only normalizes the input data in batches,and the softplus function only performs nonlinear processing.Therefore,the size of the output feature graph is 16×128×128.The final output result is addition of the outputs of two convolution layers and the input of identity module I to obtain.None×16×128×128×128,which also reflects the meaning of R3D network residual module.

    Fig.5 Structure diagram of identity module I

    The convolution module I structure contains 3 convolution layers,which are conv3d_12,conv3d_13 and conv3d_14.The size of the conv3d_12 and conv3d_13 convolution kernels is the same as that of the identity module I,and the number of convolution core is twice that of identification module I,so more image features can be obtained.The difference between convolution module I and identity module I is that the input data has to be processed by conv3d_14 convolution operation.If adding by add,the premise is that the input feature map size and the number of channels are the same.Since the stride size of conv3d_12 is 2,the size of the output feature map becomes 1/2 of the original size,which is 8×64×64.At the same time,the stride size of conv3d_13 is 1,so the feature map size remains unchanged.While the conv3d_14 convolution kernel size is 1×1×1,and the stride size is 2,which reduces the amount of parameter calculation,as shown in Fig.6.

    Each convolution module is connected with the maxpool layer to remove the lower value of the activation function response in the local neighborhood,which can reduce the dimension.

    Because the GAPnetwork is affected by the size of the characteristic graph,the network can not be further deepened,so GAPlayer is removed and a layer of convolution layer and maxpool layer are added to deepen the network depth.Then,in order to further improve the network performance,LSTM network is introduced into R3D network,as shown in Fig.7.

    Fig.6 Structure diagram of convolution module I

    Fig.7 Converged network structure diagram

    2 Experiment and analysis

    2.1 Experimental environment

    The experimental environment of R3D+LSTM network is listed in Table 1.

    2.2 UCF-101 dataset

    The dataset used in this paper is UCF-101.This dataset contains 13 320 human behavior videos(each video is 5-10 s long),including 101 categories,as shown in Fig.8.

    Table 1 Experimental environment

    Fig.8 All categories of UCF101 dataset

    2.3 Experimental data preprocessing

    Since it is not advisable to input video directly into the network,it is necessary to convert the video into a sequence of picture frames,which can speed up the training of the network.First,13 320 videos in the UCF-101 dataset are converted,and then the naming of each converted image sequence is determined by the sequence in the video.After that,because the total number of images is too much,if all the images are input into the network at one time,the network calculation will be too large.Therefore,this paper uses the sequence with length of 16 as the input data,selects the sequence with the length ofR,and then randomly generatesLbetween(0,R-16),which is used as the starting frame,and then the ending frame is selected in(L,L+16).This not only prevents data from being missed,but also avoids repeating training of the same data.

    2.4 Analysis of experimental results

    In order to improve the training speed of the network,this paper uses an initial learning rate of 0.001.When each cycle is 24 000 times,the learning rate is reduced to 1/2 of the original,cycle 10 times,a total of 240 000 times.The hyper-parameters of the network are shown in Table 2.

    Table 2 SE-R3D network hyper-parameters

    There are 400 epochs in the network,and each epoch iterates600 times.At the 250th epoch,the convergence speed of the network begins to slow down.At the 300th epoch,the network has basically converged.At this time,the number of iterations is 180 000.Finally,R3D+LSTM network achieves 91%accuracy,as shown in Fig.9.

    The typical category accuracy rate of R3D+LSTM network on UCF-101 dataset is shown in Fig.10.The algorithm achieves more than 90% on Cleanandjerk and Cliffdiving,more than 80% on Skydiving and Throwdiscus,while the recognition rate in the category of Blowdryhair is low,60%.Therefore,it can be found that the accuracy of single action is usually higher than that of a complex action.

    The accuracy of R3D+LSTM network is compared with other networks on UCF-101 dataset,as shown in Table 3.

    Table 3 Comparison of accuracy

    Fig.9 R3D+LSTM training process

    Fig.10 Test accuracy curve

    It can be seen from Table 3 that the Two-Stream-I3D model has achieved a 98%recognition rate on the UCF-101 dataset.Although the accuracy of the network designed in this paper is not as high as Two-Stream-I3D.However,compared with the popular C3D and C3D+IDT networks in the past two years,R3D+LSTM has a greater improvement in the recognition rate,and at the same time,the recognition rate is 1%higher than that of the DMC-Net network.Secondly,the recognition rate of R3D+LSTM network is much better than that of the LRCN network,which shows that the combination of the three-dimensional residual network and the LSTM network is feasible in the field of behavior recognition.

    3 Conclusions

    Automatic recognition of behavior in video is a long-term goal of computer vision and artificial intelligence.In order to improve the network performance,this paper designs R3D+LSTM network.First,the R3D network is modified,the ReLU activation function with Softplus is replaced,and a convolutional layer and maxpool layer is added to increase the depth of the network.Then,the pooling window of all maxpool layers is changed to(1,2,2)to maintain the features extracted by the shallow network,and BN layer and Dropout layer are added to improve the convergence speed of the network and effectively restrain over fitting.Later,in order to extract the high-level temporal features,LSTM network is introduced.Finally,the R3D+LSTM network achieves 91%recognition rate on the UCF-101 dataset.

    Although the R3D+LSTM network designed in this paper has achieved good performance in recognition rate,compared with some perfect algorithms in this field,there is still room for improvement.The future work and prospects are as follows.

    (1)Optimization of the model.The designed network model can be further optimized to obtain a higher recognition rate,and more datasets will be used to test the performance of the model.

    (2)The datasets used are preprocessed,but in actual scene,the behavior will become more complex and the resolution of the video will be reduced.Therefore,further research needs to be done to identify the human behavior categories accurately and efficiently.

    国产国语露脸激情在线看| 欧美黄色片欧美黄色片| 黄网站色视频无遮挡免费观看| 高清在线国产一区| 免费在线观看亚洲国产| 欧美日韩中文字幕国产精品一区二区三区 | 国产麻豆69| 久久久水蜜桃国产精品网| 欧美精品高潮呻吟av久久| 老熟妇仑乱视频hdxx| 搡老熟女国产l中国老女人| 婷婷丁香在线五月| 久久久久国内视频| 欧美黄色片欧美黄色片| 极品少妇高潮喷水抽搐| 老司机亚洲免费影院| 9191精品国产免费久久| av网站在线播放免费| 母亲3免费完整高清在线观看| 他把我摸到了高潮在线观看| 日韩免费av在线播放| 亚洲中文字幕日韩| 天天躁日日躁夜夜躁夜夜| 久久午夜综合久久蜜桃| 精品欧美一区二区三区在线| 99久久精品国产亚洲精品| 在线观看午夜福利视频| 99精国产麻豆久久婷婷| 欧美精品高潮呻吟av久久| 老汉色∧v一级毛片| 一区二区三区国产精品乱码| 老司机午夜十八禁免费视频| 亚洲精品自拍成人| 亚洲av电影在线进入| 看片在线看免费视频| 男人操女人黄网站| 人成视频在线观看免费观看| 亚洲av日韩精品久久久久久密| 村上凉子中文字幕在线| 妹子高潮喷水视频| 国精品久久久久久国模美| 法律面前人人平等表现在哪些方面| 99精品久久久久人妻精品| 一级片免费观看大全| 国产精品 国内视频| 精品国内亚洲2022精品成人 | 在线av久久热| 欧美日韩成人在线一区二区| 男女免费视频国产| 国产精品九九99| 免费在线观看完整版高清| avwww免费| 国产深夜福利视频在线观看| 97人妻天天添夜夜摸| 亚洲av成人一区二区三| 中出人妻视频一区二区| 国产国语露脸激情在线看| 电影成人av| 99国产综合亚洲精品| 亚洲视频免费观看视频| 亚洲国产精品sss在线观看 | 精品一区二区三区四区五区乱码| 老鸭窝网址在线观看| 精品国产乱码久久久久久男人| 岛国毛片在线播放| 91麻豆精品激情在线观看国产 | 变态另类成人亚洲欧美熟女 | 国产高清视频在线播放一区| 老司机亚洲免费影院| 在线观看舔阴道视频| 精品国产乱子伦一区二区三区| 视频区图区小说| 精品国产一区二区久久| 中文欧美无线码| 亚洲精华国产精华精| 亚洲欧美一区二区三区黑人| 日本欧美视频一区| 波多野结衣av一区二区av| 精品福利观看| 女人爽到高潮嗷嗷叫在线视频| 久久 成人 亚洲| 人人澡人人妻人| 丰满迷人的少妇在线观看| 久久久国产成人精品二区 | 日本精品一区二区三区蜜桃| avwww免费| 超碰97精品在线观看| 97人妻天天添夜夜摸| 国产精品1区2区在线观看. | www.自偷自拍.com| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区三区视频了| 久久婷婷成人综合色麻豆| 飞空精品影院首页| 在线观看免费视频日本深夜| 欧美国产精品va在线观看不卡| 色综合婷婷激情| 夜夜躁狠狠躁天天躁| 看片在线看免费视频| 久久精品亚洲精品国产色婷小说| 国产1区2区3区精品| 欧美国产精品一级二级三级| 欧洲精品卡2卡3卡4卡5卡区| 少妇的丰满在线观看| 女人精品久久久久毛片| 首页视频小说图片口味搜索| 成年女人毛片免费观看观看9 | 亚洲av成人一区二区三| 在线国产一区二区在线| 9191精品国产免费久久| 国产精品国产高清国产av | 国产有黄有色有爽视频| 欧美日韩亚洲综合一区二区三区_| 欧美黑人欧美精品刺激| 中文字幕人妻丝袜一区二区| 国产主播在线观看一区二区| 色精品久久人妻99蜜桃| 大陆偷拍与自拍| 女性生殖器流出的白浆| 国产精品二区激情视频| 亚洲成av片中文字幕在线观看| 亚洲美女黄片视频| 男人舔女人的私密视频| 久久久久久人人人人人| 热re99久久精品国产66热6| 在线观看www视频免费| 成人av一区二区三区在线看| 一二三四在线观看免费中文在| 欧美日韩av久久| 91字幕亚洲| 巨乳人妻的诱惑在线观看| 黄网站色视频无遮挡免费观看| 黄色成人免费大全| 一边摸一边做爽爽视频免费| 热re99久久精品国产66热6| 日韩制服丝袜自拍偷拍| 好男人电影高清在线观看| 精品一区二区三区视频在线观看免费 | 日本五十路高清| 精品国产超薄肉色丝袜足j| 建设人人有责人人尽责人人享有的| 侵犯人妻中文字幕一二三四区| 欧美激情久久久久久爽电影 | 亚洲七黄色美女视频| 亚洲国产欧美一区二区综合| 高清毛片免费观看视频网站 | 搡老岳熟女国产| 亚洲一区中文字幕在线| 国产成人精品无人区| 国产aⅴ精品一区二区三区波| 69av精品久久久久久| 久久久久久久国产电影| 在线观看免费视频日本深夜| 欧美日韩亚洲高清精品| www.自偷自拍.com| 自线自在国产av| ponron亚洲| 老司机靠b影院| 久久精品国产a三级三级三级| 好男人电影高清在线观看| 久久国产精品男人的天堂亚洲| 巨乳人妻的诱惑在线观看| 精品一品国产午夜福利视频| 欧美老熟妇乱子伦牲交| 日本黄色日本黄色录像| 亚洲第一青青草原| 午夜免费观看网址| 天堂√8在线中文| 黄色视频,在线免费观看| 亚洲七黄色美女视频| 亚洲精华国产精华精| 一区二区三区精品91| 波多野结衣一区麻豆| 女人精品久久久久毛片| 国产成人欧美在线观看 | ponron亚洲| 久久国产乱子伦精品免费另类| 十八禁高潮呻吟视频| 亚洲精品久久成人aⅴ小说| 国产蜜桃级精品一区二区三区 | 18禁裸乳无遮挡动漫免费视频| 老司机福利观看| 欧美最黄视频在线播放免费 | 最近最新免费中文字幕在线| 国产成人精品无人区| 日本一区二区免费在线视频| 成年女人毛片免费观看观看9 | 国产精品乱码一区二三区的特点 | 午夜福利,免费看| av有码第一页| 69av精品久久久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 女人精品久久久久毛片| 亚洲欧洲精品一区二区精品久久久| 久久国产亚洲av麻豆专区| 欧美国产精品va在线观看不卡| 国产精品久久久久久精品古装| 巨乳人妻的诱惑在线观看| 久久香蕉国产精品| 又大又爽又粗| aaaaa片日本免费| e午夜精品久久久久久久| 伦理电影免费视频| 看片在线看免费视频| 日韩欧美一区视频在线观看| 男女午夜视频在线观看| 久久精品熟女亚洲av麻豆精品| 热99久久久久精品小说推荐| 天天添夜夜摸| 国产精华一区二区三区| 国产国语露脸激情在线看| 伦理电影免费视频| 亚洲国产欧美网| 亚洲欧美激情在线| 欧美+亚洲+日韩+国产| 日韩欧美一区视频在线观看| 成人免费观看视频高清| 免费人成视频x8x8入口观看| 如日韩欧美国产精品一区二区三区| xxx96com| 欧美人与性动交α欧美软件| 中文字幕精品免费在线观看视频| 精品少妇一区二区三区视频日本电影| 一级a爱视频在线免费观看| 亚洲 国产 在线| 99re在线观看精品视频| 99re6热这里在线精品视频| 极品教师在线免费播放| 18在线观看网站| 亚洲第一欧美日韩一区二区三区| 国产av又大| 国产精品香港三级国产av潘金莲| 久久精品国产亚洲av香蕉五月 | 中文字幕色久视频| 99riav亚洲国产免费| 成熟少妇高潮喷水视频| 亚洲情色 制服丝袜| 国产精品一区二区精品视频观看| 日韩欧美国产一区二区入口| 亚洲精品一二三| 99国产综合亚洲精品| 欧美色视频一区免费| 老司机午夜福利在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 9热在线视频观看99| 三上悠亚av全集在线观看| 国产真人三级小视频在线观看| 男女午夜视频在线观看| 天堂√8在线中文| 亚洲精品自拍成人| 精品无人区乱码1区二区| 国产精品永久免费网站| 无限看片的www在线观看| 久久人人97超碰香蕉20202| 另类亚洲欧美激情| 一夜夜www| 亚洲欧美激情综合另类| 久久久久精品国产欧美久久久| 搡老熟女国产l中国老女人| 美女视频免费永久观看网站| 国产av一区二区精品久久| 天堂中文最新版在线下载| bbb黄色大片| 中文字幕最新亚洲高清| 国产乱人伦免费视频| 婷婷精品国产亚洲av在线 | tocl精华| 国产精品一区二区在线不卡| 欧美乱码精品一区二区三区| 动漫黄色视频在线观看| 免费黄频网站在线观看国产| 国产一区二区激情短视频| 久久九九热精品免费| 高清在线国产一区| 国产亚洲精品一区二区www | 亚洲av欧美aⅴ国产| 久久这里只有精品19| www.熟女人妻精品国产| 咕卡用的链子| 99久久人妻综合| 女人久久www免费人成看片| 91国产中文字幕| 国产人伦9x9x在线观看| 欧美日韩av久久| 国产又爽黄色视频| 成在线人永久免费视频| bbb黄色大片| 欧美在线一区亚洲| 国产黄色免费在线视频| 日韩人妻精品一区2区三区| 十分钟在线观看高清视频www| 免费在线观看日本一区| 亚洲精品中文字幕一二三四区| 91国产中文字幕| 高清av免费在线| 欧美人与性动交α欧美软件| 免费看a级黄色片| 色94色欧美一区二区| 欧美人与性动交α欧美精品济南到| 黑人欧美特级aaaaaa片| 999久久久精品免费观看国产| 免费在线观看完整版高清| 狠狠狠狠99中文字幕| 欧美成人免费av一区二区三区 | 最新在线观看一区二区三区| av国产精品久久久久影院| 亚洲熟女毛片儿| 亚洲精品一二三| 午夜精品在线福利| 成人影院久久| 变态另类成人亚洲欧美熟女 | 日韩制服丝袜自拍偷拍| 高清视频免费观看一区二区| 精品福利永久在线观看| 免费av中文字幕在线| 九色亚洲精品在线播放| 欧美精品高潮呻吟av久久| 性色av乱码一区二区三区2| 女人精品久久久久毛片| 亚洲国产欧美网| 午夜影院日韩av| 欧美日韩乱码在线| 久久久久国产一级毛片高清牌| 黑人操中国人逼视频| 国产精品影院久久| 香蕉丝袜av| 免费久久久久久久精品成人欧美视频| 岛国在线观看网站| 国产精品国产av在线观看| a级毛片在线看网站| 久久人人爽av亚洲精品天堂| 国产成人欧美| 成人免费观看视频高清| 免费在线观看黄色视频的| 午夜日韩欧美国产| 十八禁高潮呻吟视频| 高清黄色对白视频在线免费看| 亚洲成a人片在线一区二区| netflix在线观看网站| 国产成人系列免费观看| 久久人妻熟女aⅴ| 国产97色在线日韩免费| 搡老熟女国产l中国老女人| 啦啦啦免费观看视频1| av网站免费在线观看视频| 老司机福利观看| 亚洲色图av天堂| 久热这里只有精品99| 亚洲一区二区三区欧美精品| 欧美精品av麻豆av| 国产亚洲精品久久久久久毛片 | 国产区一区二久久| 国产成+人综合+亚洲专区| 国产真人三级小视频在线观看| 欧美在线一区亚洲| 欧美日韩亚洲国产一区二区在线观看 | 多毛熟女@视频| 亚洲一区二区三区不卡视频| 人人妻,人人澡人人爽秒播| 久久中文字幕人妻熟女| 高清av免费在线| 午夜两性在线视频| 99re6热这里在线精品视频| 美女 人体艺术 gogo| 亚洲国产精品合色在线| 丰满的人妻完整版| 视频在线观看一区二区三区| 久久午夜综合久久蜜桃| 热re99久久精品国产66热6| 精品人妻熟女毛片av久久网站| tocl精华| 中文字幕av电影在线播放| 亚洲专区中文字幕在线| 极品教师在线免费播放| 亚洲avbb在线观看| 动漫黄色视频在线观看| 国产午夜精品久久久久久| 国产亚洲欧美98| 九色亚洲精品在线播放| 国产一区二区激情短视频| 99国产精品一区二区蜜桃av | 精品亚洲成a人片在线观看| 亚洲人成77777在线视频| 老司机福利观看| 国产成人欧美| 久久中文字幕一级| 免费av中文字幕在线| 国产高清视频在线播放一区| 国产精品av久久久久免费| 丰满人妻熟妇乱又伦精品不卡| 国产无遮挡羞羞视频在线观看| 国产免费现黄频在线看| 可以免费在线观看a视频的电影网站| 国产精品免费视频内射| 亚洲精品美女久久av网站| 女人被狂操c到高潮| 一级黄色大片毛片| 国产精品九九99| 亚洲第一欧美日韩一区二区三区| 九色亚洲精品在线播放| 黄片小视频在线播放| 黄色片一级片一级黄色片| 下体分泌物呈黄色| 久久久久国产精品人妻aⅴ院 | 欧美日韩亚洲国产一区二区在线观看 | 成年人午夜在线观看视频| 精品国产美女av久久久久小说| 一进一出抽搐动态| 手机成人av网站| 久久久水蜜桃国产精品网| 国产精品亚洲av一区麻豆| 在线观看免费视频日本深夜| 人人妻人人澡人人爽人人夜夜| 中文字幕色久视频| 国产精品98久久久久久宅男小说| 天堂√8在线中文| 欧美一级毛片孕妇| 国产99白浆流出| 人人妻人人澡人人爽人人夜夜| 夫妻午夜视频| 男女午夜视频在线观看| 国产精华一区二区三区| 丁香六月欧美| 精品亚洲成国产av| 午夜福利在线观看吧| 50天的宝宝边吃奶边哭怎么回事| 涩涩av久久男人的天堂| 国产精品久久视频播放| 亚洲午夜理论影院| 欧美黄色片欧美黄色片| 国产成人免费观看mmmm| 国产精品免费视频内射| 露出奶头的视频| 中文字幕最新亚洲高清| 女人高潮潮喷娇喘18禁视频| 这个男人来自地球电影免费观看| 亚洲国产欧美网| 成年动漫av网址| 久久午夜亚洲精品久久| 无限看片的www在线观看| 亚洲av美国av| 美女 人体艺术 gogo| a级毛片黄视频| 国产精品九九99| 在线播放国产精品三级| 亚洲精品中文字幕在线视频| 亚洲精品美女久久av网站| 免费久久久久久久精品成人欧美视频| 亚洲熟女毛片儿| 91av网站免费观看| 久久ye,这里只有精品| 无遮挡黄片免费观看| 国产熟女午夜一区二区三区| 手机成人av网站| 国产精品九九99| 亚洲欧洲精品一区二区精品久久久| 久久ye,这里只有精品| 又黄又爽又免费观看的视频| 午夜福利,免费看| 国产单亲对白刺激| 成人av一区二区三区在线看| 亚洲黑人精品在线| 亚洲国产欧美网| 欧美老熟妇乱子伦牲交| 亚洲免费av在线视频| 欧美日韩亚洲高清精品| 男女免费视频国产| 一级毛片精品| 热99久久久久精品小说推荐| 久久久久视频综合| 一进一出抽搐gif免费好疼 | 精品免费久久久久久久清纯 | 91麻豆精品激情在线观看国产 | 精品久久蜜臀av无| 欧美日韩亚洲高清精品| av网站免费在线观看视频| 日韩免费高清中文字幕av| 欧美激情极品国产一区二区三区| 欧美精品av麻豆av| 天天影视国产精品| 午夜精品久久久久久毛片777| 国产精品一区二区精品视频观看| 午夜福利在线免费观看网站| 久久久久久久久免费视频了| videos熟女内射| 高清黄色对白视频在线免费看| 一级片'在线观看视频| 水蜜桃什么品种好| 久久久精品免费免费高清| 亚洲一码二码三码区别大吗| 久久久久视频综合| 在线国产一区二区在线| 国产亚洲精品久久久久久毛片 | 亚洲一区高清亚洲精品| 亚洲熟女毛片儿| 极品教师在线免费播放| 啦啦啦在线免费观看视频4| 少妇被粗大的猛进出69影院| 91麻豆av在线| 国产男靠女视频免费网站| 在线观看免费午夜福利视频| 亚洲一区中文字幕在线| 精品久久久久久久毛片微露脸| 久久久久久久久免费视频了| 日韩欧美一区视频在线观看| 欧美黄色淫秽网站| 日韩制服丝袜自拍偷拍| 日韩有码中文字幕| 国产视频一区二区在线看| 18禁美女被吸乳视频| 精品国产国语对白av| 亚洲中文av在线| 亚洲欧美日韩高清在线视频| 国产欧美日韩一区二区三| 一级片'在线观看视频| 男女午夜视频在线观看| 在线观看免费午夜福利视频| 丰满饥渴人妻一区二区三| 亚洲av欧美aⅴ国产| 欧美人与性动交α欧美软件| 老司机影院毛片| 美女福利国产在线| 99在线人妻在线中文字幕 | 久久狼人影院| 最新在线观看一区二区三区| 欧美+亚洲+日韩+国产| 亚洲熟女精品中文字幕| 欧美成人午夜精品| 国产精品久久视频播放| 欧美不卡视频在线免费观看 | 欧美日韩黄片免| 嫁个100分男人电影在线观看| 在线观看66精品国产| 香蕉丝袜av| av国产精品久久久久影院| 国产精品二区激情视频| 久久人人爽av亚洲精品天堂| 亚洲第一青青草原| 黑人猛操日本美女一级片| 国产成人系列免费观看| 国产单亲对白刺激| 老熟女久久久| 亚洲人成伊人成综合网2020| 亚洲专区中文字幕在线| 国产成人av教育| 老熟女久久久| 日本vs欧美在线观看视频| 91字幕亚洲| 人人妻人人澡人人看| 精品电影一区二区在线| av福利片在线| 成人特级黄色片久久久久久久| 在线观看午夜福利视频| 一级黄色大片毛片| 一级,二级,三级黄色视频| 一边摸一边抽搐一进一出视频| а√天堂www在线а√下载 | 岛国毛片在线播放| 啦啦啦在线免费观看视频4| 久久天堂一区二区三区四区| 国产亚洲欧美精品永久| 国产在线观看jvid| 亚洲成a人片在线一区二区| av线在线观看网站| 老司机午夜十八禁免费视频| 韩国精品一区二区三区| 精品国产一区二区久久| 老熟女久久久| av片东京热男人的天堂| 亚洲美女黄片视频| 女人被狂操c到高潮| 午夜影院日韩av| 婷婷丁香在线五月| 日韩 欧美 亚洲 中文字幕| 狂野欧美激情性xxxx| 亚洲国产毛片av蜜桃av| 大码成人一级视频| 精品国产一区二区三区四区第35| 多毛熟女@视频| 国产一卡二卡三卡精品| 搡老乐熟女国产| 一二三四社区在线视频社区8| xxxhd国产人妻xxx| 日韩熟女老妇一区二区性免费视频| 久久青草综合色| 欧美日韩中文字幕国产精品一区二区三区 | 窝窝影院91人妻| 91成年电影在线观看| 国产亚洲精品一区二区www | 欧美乱色亚洲激情| 交换朋友夫妻互换小说| 久久香蕉精品热| 久99久视频精品免费| 亚洲精品在线观看二区| 色婷婷av一区二区三区视频| 亚洲欧美色中文字幕在线| 高清av免费在线| 国产一卡二卡三卡精品| 午夜免费鲁丝| 美女高潮到喷水免费观看| av电影中文网址| 狠狠婷婷综合久久久久久88av| 色婷婷久久久亚洲欧美| 久久精品91无色码中文字幕| 亚洲精品国产区一区二| 人人妻人人澡人人看| 精品亚洲成国产av| 熟女少妇亚洲综合色aaa.| 18禁国产床啪视频网站| 国产99久久九九免费精品| 成在线人永久免费视频| 欧美激情久久久久久爽电影 | 国产精品影院久久| 91麻豆av在线| 一进一出好大好爽视频|