• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A neural network-based commutation optimization strategy and drive system design for brushless DC motor①

    2022-01-09 02:08:42LiuYuxiang劉宇翔YaoZhaolinYuanFangLiuMingLiXiangZhangXu
    High Technology Letters 2021年4期

    Liu Yuxiang(劉宇翔),Yao Zhaolin,Yuan Fang,Liu Ming,Li Xiang,Zhang Xu

    (State Key Laboratory on Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,P.R.China)

    Abstract

    Key words:brushless DCmotor,senseless control,back electromotive force,neural network,hardware implantation,field programmable gate array(FPGA)

    0 Introduction

    Sensorless brushless direct current motor(BLDC motor)has a simple structure,small size,light weight due to sensor free compared with normal BLDC motor,thus is widely used among household appliances and aeromodelling where volume and weight are strictly limited[1].Current commutation strategies for sensorless BLDC include the zero-crossing detection method based on back electromotive force(back-EMF)[2],triple frequency harmonic method based on back-EMF[3-4],fuzzy control method[5-8],etc.With the development of neural network,motor commutation strategies based on neural network[9-12]have also been proposed.Among these methods,the zero-crossing detection method based on back-EMF has the most extensive application due to its simplicity and usability.

    In the conventional back-EMF based zero-crossing detection method,as the result of the algorithm,there will be a deviation between the predicted commutation point and the ideal commutation point[13-15]when the motor accelerates or decelerates,resulting in jittering and increasing in motor power consumption.However,most of the conventional optimization strategies only compensate for the commutation error generated when the motor is at a stable speed,and there is no targeted research on the commutation error generated when the motor is accelerating or decelerating.Also,the conventional neural network prediction is generally performed online through a host personal computer(PC)or digital signal processing(DSP)module,which will be limited by the transmission time of the signal and the performance of the DSP,and,therefore,limits the available speed range of the motor.When the motor speed is too fast,the commutation point can not be calculated in time,causing the motor failing in commutation and operating abnormally.

    To solve the above problem,this paper proposes a neural network based back-EMF optimization algorithm and quantifies the influence of motor acceleration or deceleration on the commutation point by introducing motor acceleration into the network.At the same time,this article builds a complete BLDC motor drive system based on the GD32F103 micro control unit(MCU),and uses Xilinx’s XC7A35T field programmable gate array(FPGA)to implement the neural network hardware acceleration module.The proposed network performance is tested and verified.The experimental results show that the proposed commutation strategy can improve the system stability effectively,and reduce the system power consumption by 11.7%.

    1 Proposed method

    1.1 Conventional BLDC motor commutation strategy

    When motor is working,the change of back-EMF is calculated by electromagnetic induction theory and shown as Fig.1,due to the armature winding cutting the magnetic line in the stator magnetic field.When the motor rotates in a constant speed,the time commutation occurs after detecting the zero-crossing event(hereinafter called delay-time)should equal to the time from the last commutation point to the zero-crossing event(hereinafter called wait-time)under ideal conditions,thus the sensorless commutation can be realized by measuring the wait-time and then estimating the delay-time with it.

    Fig.1 Relationship between back-EMF and working phase

    However,when the motor speed changes,the fluctuation of the motor will cause a large gap between wait-time and delay-time,introducing commutation errors as shown in Fig.2[9].The generated commutation error will result in fluctuations,low system stability and high power consumption.Also,the current spikes generated during commutation may also be dangerous to the control system.In worst-case scenario,serious commutation errors may even cause operational errors such as stalling and reversing,which greatly affects the normal operation of the motor.

    Fig.2 Back-EMF waveform when BLDC motor accelerates

    1.2 Proposed method

    To achieve an accurate prediction of the commutation point when the motor speed changes,this paper proposes an optimization strategy based on the neural network on the basis of the conventional back-EMF commutation method.The input of the network includes the current acceleration of the motor to make an accurate prediction on the commutation point when the motor speed changes.The structure of the network is shown in Fig.3,in which the input is the wait-time,the average acceleration of the motor during the waittime,and the output is the delay-time.When determining the number of hidden layers and the number of nodes,in consideration of a large network may lead to a large calculation delay,which will limit the maximum motor speed(that is,the network calculation delay cannot exceed the delay time,otherwise the optimal commutation point will be missed),the final network structure includes two hidden layers,each with 5 nodes(shown in Fig.3).This article implements network training through the backpropagation(BP)method.

    Fig.3 Structure of proposed BP neural network

    2 Implementation and experimental results

    2.1 Hardware test system

    The diagram of the hardware test system is shown in Fig.4.The motor used in the experiment is the X2212 brushless DC motor of SUNNYSKY,which is mainly used in rotorcraft,and its parameters are shown in Table 1.Since the speed of the rotorcraft often changes rapidly and drastically when working,it is suitable to verify the proposed algorithm in this paper.This article also builds a BLDC motor drive control system based on the GD32F103K8U6 MCU(GigaDevice),which realizes the drive of the motor and serves as a data transmission platform between FPGA and PC.Since the algorithm is optimized on the basis of the conventional back-EMF method,the MCU needs to output a fixed sequence to make the motor reach a certain initial speed when starting,and use the neural network to predict the commutation point after that.The experimental system is shown in Fig.5.

    Fig.4 Brushless DCmotor hardware test system

    Table 1 Parameters of the motor used in the experiment

    Fig.5 Neural network prediction experiment platform

    In the experiment,the incremental encoder is used(shown in Fig.4)to generate the ideal commutation signal as the training data of the network during the pre-experiment,and FPGA is used to decode output signal and transmit it to the host PC through the MCU,where the data is preprocessed and network training is completed.The encoder uses the incremental encoder E6B2-CWZ6Cfrom Omron,with a resolution of 2500P/R.The training data acquisition platform during actual testing is shown in Fig.6.

    Fig.6 Neural network training data acquisition platform

    When training the network,wait-timet1and delay-timet2can be acquired directly by receiving data,but the average acceleration needs to be calculated separately.The simplified diagram of motor operation process is shown in Fig.7.

    Fig.7 Simplified diagram of motor operation process in training

    Here it can be assumed that the acceleration duringt1andt2can be seen as approximately constant.There are two reasons for this assumption.On the one hand,t1andt2are very short for multi pole pair motors.For BLDC motor,the number of commutations per minute should be equal to the speed per minute multiplied by the number of motor pole pairs and then multiplied by the number of commutation phases per pair.Taking the motor used in this paper as instance,when motor speed is 7000 rpm,the interval between each phase is about 204μs.On the other hand,it can be seen from Fig.1 that at the beginning oft1(the previous commutation point)and at the end oft2(the later commutation point),the back-EMF force on motor is only affected by the motor speed.As assumed above,the motor speed is approximately constant in these phases,thus the two commutation points have the same back-EMF force.Additionally,the back-EMF force at the commutation point is also the same,so int1andt2,the work of back-EMF on the motor is the same.According to the definition of work and acceleration formula in physics,the assumption that the average acceleration oft1andt2are the same can be obtained.

    Based on the above conditions,a set of formulas can be derived(Eq.(1))and the acceleration could be calculated(shown in Eq.(2)after simplification).

    2.2 FPGA-based neural network hardware accelerator design

    Because the performance as well as the device resources of the MCU is not enough to realize the realtime calculation of the neural network,and in order to shorten the calculation delay to increase the available speed range of the system,FPGA is used to realize the hardware acceleration system of the neural network to meet the time requirements of the system.

    The flow chart of the acceleration system is shown in Fig.8,which is composed of 4 sub-modules,including universal asynchronous receiver/transmitter(UART)module,pre-treatment module,neural network calculation module,and output module.To minimize the system transmission delay,the UART transmission rate in the system is set to 3 375 000 baud,so the 32-bit input information can be transmitted in 20μs.The fixedpoint design is adopted in the hardware accelerator,and the parameter format in the network is Q13.18.

    Fig.8 FPGA-based prediction acceleration system

    At the same time,because the delay-time is not known when usingtheproposed algorithmtopredict,the above acceleration calculation method can no longer be used,thus a new estimation method is proposed by using the last phase change point and the phase change point before it.The operation diagram of the motor is shown in Fig.9.The calculation formula and the result are shown in Eq.(3)and Eq.(4).

    Fig.9 Simplified diagram of motor operation process in predicting

    After getting delay-time,subtract it with the calculation and transmission delay provides the time that still needs to be delayed in the system.Then the system delays and outputs the commutation signal to the MCU to realize the commutation operation of the motor.The four modules of the FPGA hardware accelerator are at the same level,and with the sequential activation ensures that only one module is working,and the other three modules are in standby state to reduce power consumption of the system.

    2.3 Experimental result

    In experiments,the control method with sensor(incremental encoder),the conventional back-EMF control method,and the proposed commutation method based on the back-EMF neural network are tested and compared.Here the conventional back-EMF control method records wait-timet1by MCU,and calculates delay-timet2correspondingly.In this paper,t2equals 1/3t1,due to extra delays including calculation,transmission and other errors caused by non-ideal factors in practical application.This scale factor is derived from pre-experiment,where motor performance can be verified when the factor equals 2,1,1/2,1/3,1/4.The traditional back-EMF control method acts as the ablation study in the experiment.The proposed algorithm in this paper is based on the back-EMF control method,through which the measured parameters are sent to the network for training,and the control results are obtained to control the motor.

    The online debugging function of the PC software is used to modify the input throttle of the motor accurately in the test,and the adjustment range is 1150-1600(corresponding to the speed range of 2000-7500 rpm).The performance of the motor under acceleration and deceleration is tested.Under acceleration,the waveform of the total current and total voltage of the motor system is shown in Fig.10.It can be seen that compared with the conventional back-EMF control method,the motor runs more smoothly under the sensor-based method and the proposed method,and the current and voltage fluctuations are minimized when the speed changes.The stability of the conventional back-EMF control strategy is poor,with severe fluctuations and even negative currents which might damage the drive system.

    Fig.10 Total current(upper curve)and voltage(lower curve)during acceleration

    In order to quantitatively compare the control performance of each control strategy,this paper also calculates the motor operating power under different control strategies and the result is shown in Table 2.The control method with sensor has the smallest commutation power.The power consumption of conventional commutation method is the highest due to its low stability.The proposed method has a low power consumption,which reduced by 6.9%compared with the conventional control strategy.

    Table 2 Performance of each commutation strategy during acceleration

    Similarly,when the motor is decelerating,the waveform of the total current and total voltage of the motor is shown in Fig.11.It can be seen that the conventional commutation method is very unstable when the motor speed changes drastically,and the motor current has severe fluctuations.The instantaneous maximum reverse current can exceed 10 A,which generates higher requirements for the safety of the system.

    Table 3 shows the motor performance parameters under each commutation strategy when the motor is decelerating.The sensor-based control method and the control strategy proposed in this paper have low power consumption, while the conventional commutation strategy results in a large power consumption due to the current fluctuation during the commutation process.The proposed method in this paper can reduce the power consumption by 11.7%compared with the conventional back-EMF control method.

    Fig.11 Total current(upper curve)and voltage(lower curve)during deceleration

    Table 3 Performance of each commutation strategy during deceleration

    At the same time,with the neural network acceleration system built in this article,the maximum support motor speed can reach 7500 rpm,which improves the motor application range.By comparing the speed range of the motor under each control strategy and the working platform shown in Table 4,it can be seen that the BLDC motor drive system and neural network hardware acceleration system implemented in this paper have a wide range of motor speed without online host PC or floating-point DSP(FDSP)unit.

    Table 4 Realization result comparison

    3 Conclusions

    In this paper,to solve the poor motor stability and high power consumption in the conventional back-EMF based on commutation strategy,a neural network based commutation strategy of the sensorless BLDC motor is proposed.Trained by the data acquired by incremental encoder,the proposed method is verified by the motor drive system built with the FPGA-based neural network hardware acceleration module.

    The experimental results show that the proposed strategy can effectively improve the system stability.The current and voltage fluctuations caused by commutation error are minimized,thus power consumption during acceleration and deceleration is reduced by about 11.7%.Meanwhile,the system supports a maximum motor speed about 7500 rpm,which supports a wide speed range due to the FPGA acceleration module.

    最新在线观看一区二区三区| 国产私拍福利视频在线观看| 欧美黄色片欧美黄色片| 亚洲熟妇熟女久久| 亚洲黑人精品在线| 欧美色视频一区免费| 亚洲人成伊人成综合网2020| 天堂影院成人在线观看| 丁香六月欧美| 久久精品亚洲精品国产色婷小说| 动漫黄色视频在线观看| 亚洲美女视频黄频| 国产黄色小视频在线观看| 男插女下体视频免费在线播放| 最近最新中文字幕大全免费视频| 后天国语完整版免费观看| 久久精品国产99精品国产亚洲性色| 久久热在线av| 婷婷精品国产亚洲av| 日韩欧美国产一区二区入口| 国产欧美日韩一区二区三| 成在线人永久免费视频| 国产真实乱freesex| 亚洲av电影不卡..在线观看| 中文字幕高清在线视频| 999精品在线视频| 日韩 欧美 亚洲 中文字幕| 亚洲18禁久久av| 欧美 亚洲 国产 日韩一| 不卡av一区二区三区| 亚洲精品在线美女| 99久久精品热视频| 亚洲av熟女| 久久久国产成人免费| 国产单亲对白刺激| 看片在线看免费视频| 国产乱人伦免费视频| 大型黄色视频在线免费观看| 国产欧美日韩精品亚洲av| 欧美在线一区亚洲| 最新在线观看一区二区三区| 中文字幕久久专区| 国产精品久久久久久久电影 | 欧美在线一区亚洲| 国产97色在线日韩免费| 国产精品电影一区二区三区| 亚洲欧美日韩东京热| 亚洲电影在线观看av| 97人妻精品一区二区三区麻豆| 99精品欧美一区二区三区四区| 国产欧美日韩一区二区三| 欧美黑人精品巨大| 99国产极品粉嫩在线观看| 12—13女人毛片做爰片一| 国产亚洲av高清不卡| av福利片在线观看| 小说图片视频综合网站| 国产精品98久久久久久宅男小说| 国产激情偷乱视频一区二区| 日日夜夜操网爽| 亚洲在线自拍视频| 国产精品一区二区免费欧美| 日本一本二区三区精品| 日韩欧美国产在线观看| 丰满人妻熟妇乱又伦精品不卡| 精品高清国产在线一区| 老熟妇仑乱视频hdxx| 日本 av在线| 最近视频中文字幕2019在线8| 午夜福利视频1000在线观看| 一级毛片女人18水好多| 精品国产亚洲在线| 美女高潮喷水抽搐中文字幕| 欧美zozozo另类| 国产麻豆成人av免费视频| 国产片内射在线| 国产伦在线观看视频一区| 老司机靠b影院| 婷婷六月久久综合丁香| 亚洲欧美一区二区三区黑人| 国产日本99.免费观看| 日韩大尺度精品在线看网址| 亚洲国产高清在线一区二区三| 欧美日韩黄片免| 两个人免费观看高清视频| 嫩草影院精品99| 制服诱惑二区| 看免费av毛片| 99久久久亚洲精品蜜臀av| 久久这里只有精品中国| 免费搜索国产男女视频| 午夜精品在线福利| 精品无人区乱码1区二区| 一级作爱视频免费观看| 免费在线观看成人毛片| 三级毛片av免费| 在线观看日韩欧美| 国产精品久久电影中文字幕| 欧美日韩国产亚洲二区| 国产爱豆传媒在线观看 | 中亚洲国语对白在线视频| 国产单亲对白刺激| 天天一区二区日本电影三级| 巨乳人妻的诱惑在线观看| 久久精品综合一区二区三区| tocl精华| 两人在一起打扑克的视频| 制服人妻中文乱码| 麻豆成人av在线观看| 国产亚洲精品第一综合不卡| 黄色视频,在线免费观看| 69av精品久久久久久| 午夜激情福利司机影院| 波多野结衣巨乳人妻| 国产亚洲精品综合一区在线观看 | 一夜夜www| 亚洲免费av在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品九九99| 男插女下体视频免费在线播放| 高潮久久久久久久久久久不卡| 欧美一区二区精品小视频在线| 亚洲精品粉嫩美女一区| 亚洲国产欧美一区二区综合| 夜夜夜夜夜久久久久| 一级毛片女人18水好多| 好看av亚洲va欧美ⅴa在| 成人特级黄色片久久久久久久| 五月伊人婷婷丁香| 久久久久久国产a免费观看| 免费搜索国产男女视频| 最新在线观看一区二区三区| 成年人黄色毛片网站| 婷婷丁香在线五月| 91老司机精品| 黄色成人免费大全| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品,欧美在线| 亚洲七黄色美女视频| 欧美中文日本在线观看视频| 身体一侧抽搐| 叶爱在线成人免费视频播放| 欧美大码av| 成人av一区二区三区在线看| 国产精品自产拍在线观看55亚洲| www.熟女人妻精品国产| 波多野结衣高清无吗| 午夜亚洲福利在线播放| 淫妇啪啪啪对白视频| 伊人久久大香线蕉亚洲五| 哪里可以看免费的av片| 亚洲成av人片免费观看| 国产精品久久电影中文字幕| 又紧又爽又黄一区二区| 色综合站精品国产| 亚洲国产精品久久男人天堂| 国产精品综合久久久久久久免费| 一个人观看的视频www高清免费观看 | 午夜老司机福利片| 中文字幕久久专区| 亚洲国产高清在线一区二区三| 亚洲欧美日韩无卡精品| 国产一区二区激情短视频| 丝袜人妻中文字幕| 久久草成人影院| 亚洲欧美精品综合一区二区三区| 亚洲精品美女久久av网站| xxxwww97欧美| 999久久久精品免费观看国产| videosex国产| 国产成人啪精品午夜网站| 国产午夜福利久久久久久| videosex国产| 成人18禁在线播放| 国产男靠女视频免费网站| 最近最新中文字幕大全免费视频| 脱女人内裤的视频| 久久精品aⅴ一区二区三区四区| 午夜精品在线福利| 久久久久国产精品人妻aⅴ院| 美女高潮喷水抽搐中文字幕| 久久草成人影院| 欧美成人午夜精品| 免费观看人在逋| 亚洲天堂国产精品一区在线| 色在线成人网| 最近在线观看免费完整版| 99久久99久久久精品蜜桃| 午夜福利欧美成人| bbb黄色大片| 成年版毛片免费区| 亚洲无线在线观看| 精品第一国产精品| 久久国产乱子伦精品免费另类| 国模一区二区三区四区视频 | 午夜视频精品福利| 日本a在线网址| 黑人欧美特级aaaaaa片| 99国产极品粉嫩在线观看| 亚洲黑人精品在线| 亚洲国产日韩欧美精品在线观看 | 最好的美女福利视频网| 男插女下体视频免费在线播放| 亚洲av片天天在线观看| 波多野结衣高清作品| 又爽又黄无遮挡网站| 熟女电影av网| 国产精品精品国产色婷婷| 欧美国产日韩亚洲一区| 日本五十路高清| 老鸭窝网址在线观看| 高潮久久久久久久久久久不卡| 久久人人精品亚洲av| 午夜福利在线观看吧| 可以在线观看毛片的网站| 五月伊人婷婷丁香| 精品一区二区三区四区五区乱码| 动漫黄色视频在线观看| 一级片免费观看大全| 国产精品野战在线观看| 亚洲精品色激情综合| 免费看日本二区| 全区人妻精品视频| 欧美在线一区亚洲| 成人永久免费在线观看视频| 黄色视频不卡| 最新美女视频免费是黄的| 亚洲精品在线观看二区| 久久午夜亚洲精品久久| 欧美日韩瑟瑟在线播放| 国产一区二区在线av高清观看| 精品日产1卡2卡| 日本成人三级电影网站| 少妇裸体淫交视频免费看高清 | 日韩精品免费视频一区二区三区| 美女 人体艺术 gogo| 国产精品98久久久久久宅男小说| 欧美日韩亚洲综合一区二区三区_| xxx96com| 亚洲片人在线观看| xxxwww97欧美| 久久久久久人人人人人| 久久精品成人免费网站| 又黄又爽又免费观看的视频| 在线观看美女被高潮喷水网站 | 日韩精品免费视频一区二区三区| 夜夜夜夜夜久久久久| 日本黄大片高清| 制服丝袜大香蕉在线| 精品久久久久久成人av| 国产精品98久久久久久宅男小说| 久久亚洲精品不卡| 啪啪无遮挡十八禁网站| 国产精品永久免费网站| 国内精品一区二区在线观看| 日韩欧美精品v在线| 九九热线精品视视频播放| 国产真实乱freesex| 成人一区二区视频在线观看| 国产99白浆流出| 国产一区二区在线av高清观看| 午夜老司机福利片| 中文资源天堂在线| 男人舔奶头视频| 国产亚洲精品久久久久5区| 亚洲免费av在线视频| 亚洲成av人片在线播放无| 亚洲美女黄片视频| 18禁美女被吸乳视频| www.精华液| 我的老师免费观看完整版| 哪里可以看免费的av片| 在线播放国产精品三级| 男人舔女人下体高潮全视频| 国产精品,欧美在线| 国产69精品久久久久777片 | 麻豆国产97在线/欧美 | 男女做爰动态图高潮gif福利片| 99热6这里只有精品| 又黄又爽又免费观看的视频| 深夜精品福利| www日本黄色视频网| 精华霜和精华液先用哪个| 性色av乱码一区二区三区2| 一卡2卡三卡四卡精品乱码亚洲| 色哟哟哟哟哟哟| 51午夜福利影视在线观看| 亚洲欧洲精品一区二区精品久久久| 色哟哟哟哟哟哟| 免费电影在线观看免费观看| 青草久久国产| 国产v大片淫在线免费观看| 国产欧美日韩一区二区精品| 99久久99久久久精品蜜桃| 婷婷精品国产亚洲av在线| 国产伦人伦偷精品视频| 亚洲精品色激情综合| 99riav亚洲国产免费| 淫妇啪啪啪对白视频| 国产精品久久久久久亚洲av鲁大| 日日干狠狠操夜夜爽| 中文在线观看免费www的网站 | 十八禁网站免费在线| 18禁裸乳无遮挡免费网站照片| xxx96com| 欧美日韩黄片免| 亚洲国产欧洲综合997久久,| 欧美一级毛片孕妇| 一区二区三区激情视频| 国产三级黄色录像| 99久久精品国产亚洲精品| 波多野结衣巨乳人妻| 18禁黄网站禁片免费观看直播| cao死你这个sao货| 国产精品 欧美亚洲| 老汉色∧v一级毛片| 久久久精品欧美日韩精品| 亚洲国产中文字幕在线视频| 欧美三级亚洲精品| 国产精品爽爽va在线观看网站| 老司机福利观看| 国产精品亚洲一级av第二区| 国产三级黄色录像| 精品久久久久久成人av| 欧美日韩黄片免| 久久中文字幕人妻熟女| 正在播放国产对白刺激| 欧美一区二区精品小视频在线| 黄频高清免费视频| 精品久久久久久久久久免费视频| 日韩欧美精品v在线| 日韩高清综合在线| 好看av亚洲va欧美ⅴa在| 国产精品一及| 99久久国产精品久久久| 色综合婷婷激情| 最好的美女福利视频网| 在线观看午夜福利视频| 人人妻人人看人人澡| 国产精品香港三级国产av潘金莲| 男插女下体视频免费在线播放| 国产精品亚洲美女久久久| 亚洲一区高清亚洲精品| 天天躁夜夜躁狠狠躁躁| 禁无遮挡网站| 全区人妻精品视频| 男人的好看免费观看在线视频 | 婷婷六月久久综合丁香| 国产高清激情床上av| 久9热在线精品视频| 亚洲欧美日韩东京热| 变态另类丝袜制服| 18禁黄网站禁片午夜丰满| 久久伊人香网站| 精品国产亚洲在线| 大型av网站在线播放| 国产1区2区3区精品| 国产精品久久久久久精品电影| 极品教师在线免费播放| 成人三级做爰电影| 小说图片视频综合网站| 亚洲精品粉嫩美女一区| 成人三级做爰电影| 欧美激情久久久久久爽电影| 国产精品,欧美在线| 国产97色在线日韩免费| 亚洲 欧美一区二区三区| 91字幕亚洲| 日本免费a在线| 精品久久久久久久久久免费视频| av欧美777| 无人区码免费观看不卡| 欧美日韩瑟瑟在线播放| 十八禁网站免费在线| 国产激情久久老熟女| 午夜福利在线在线| 高清毛片免费观看视频网站| 日本熟妇午夜| 天堂√8在线中文| 狂野欧美激情性xxxx| 国产爱豆传媒在线观看 | 午夜精品一区二区三区免费看| 亚洲国产精品999在线| 欧美日韩福利视频一区二区| 成人高潮视频无遮挡免费网站| 麻豆国产97在线/欧美 | 午夜精品一区二区三区免费看| 午夜福利欧美成人| 亚洲国产精品成人综合色| 一级毛片精品| 天天躁夜夜躁狠狠躁躁| a在线观看视频网站| 老司机深夜福利视频在线观看| 日韩欧美一区二区三区在线观看| 两人在一起打扑克的视频| 国产乱人伦免费视频| 天天添夜夜摸| 日本在线视频免费播放| 亚洲av成人不卡在线观看播放网| 1024视频免费在线观看| 国产伦在线观看视频一区| 天堂动漫精品| 成年免费大片在线观看| 成人国产一区最新在线观看| 在线观看免费午夜福利视频| 国产精品亚洲一级av第二区| 亚洲人成77777在线视频| 亚洲精品国产一区二区精华液| 老熟妇仑乱视频hdxx| www.www免费av| 国产精品乱码一区二三区的特点| 老汉色av国产亚洲站长工具| 国内久久婷婷六月综合欲色啪| 人妻久久中文字幕网| 国产午夜精品论理片| 亚洲av五月六月丁香网| 欧美黑人欧美精品刺激| 成人18禁在线播放| 国产蜜桃级精品一区二区三区| 亚洲avbb在线观看| 亚洲成人中文字幕在线播放| 桃色一区二区三区在线观看| 老熟妇仑乱视频hdxx| tocl精华| 妹子高潮喷水视频| 日本一二三区视频观看| 精品少妇一区二区三区视频日本电影| 亚洲aⅴ乱码一区二区在线播放 | 在线免费观看的www视频| 成人亚洲精品av一区二区| 精华霜和精华液先用哪个| 三级毛片av免费| 午夜视频精品福利| 两性夫妻黄色片| 久久久久国产精品人妻aⅴ院| 久久中文字幕人妻熟女| 亚洲成av人片在线播放无| 国产三级黄色录像| 亚洲在线自拍视频| 久久中文看片网| svipshipincom国产片| www日本黄色视频网| 国产97色在线日韩免费| 欧美又色又爽又黄视频| 真人一进一出gif抽搐免费| 亚洲 欧美 日韩 在线 免费| а√天堂www在线а√下载| 欧美日本视频| 19禁男女啪啪无遮挡网站| 一级毛片女人18水好多| 亚洲人成伊人成综合网2020| 亚洲无线在线观看| 午夜久久久久精精品| 亚洲国产日韩欧美精品在线观看 | 99在线视频只有这里精品首页| 成年版毛片免费区| 极品教师在线免费播放| 成人欧美大片| 国产精品,欧美在线| 亚洲第一欧美日韩一区二区三区| 一区二区三区高清视频在线| 天堂√8在线中文| 在线观看免费日韩欧美大片| 国产乱人伦免费视频| 久久久久久久精品吃奶| 国产精品亚洲美女久久久| 欧美性猛交黑人性爽| 精品国内亚洲2022精品成人| 哪里可以看免费的av片| 国产aⅴ精品一区二区三区波| 久久精品国产亚洲av香蕉五月| 日本三级黄在线观看| 男人舔女人下体高潮全视频| 欧美色欧美亚洲另类二区| ponron亚洲| 欧美人与性动交α欧美精品济南到| 国产亚洲精品综合一区在线观看 | 国产私拍福利视频在线观看| 两人在一起打扑克的视频| 悠悠久久av| 男人的好看免费观看在线视频 | 亚洲国产精品成人综合色| 人人妻人人看人人澡| 亚洲av成人av| 欧美久久黑人一区二区| 91麻豆精品激情在线观看国产| 久久伊人香网站| 久久99热这里只有精品18| 蜜桃久久精品国产亚洲av| 国产又色又爽无遮挡免费看| 欧美另类亚洲清纯唯美| 亚洲国产看品久久| 老司机福利观看| 国产一区二区在线观看日韩 | 久久久久久国产a免费观看| 啦啦啦观看免费观看视频高清| 亚洲18禁久久av| 国产片内射在线| 亚洲精品在线观看二区| 18禁黄网站禁片午夜丰满| 免费看a级黄色片| 成熟少妇高潮喷水视频| 午夜a级毛片| 一卡2卡三卡四卡精品乱码亚洲| 国内揄拍国产精品人妻在线| 丰满人妻熟妇乱又伦精品不卡| 美女高潮喷水抽搐中文字幕| 脱女人内裤的视频| 亚洲国产欧美人成| 久久午夜综合久久蜜桃| 久久天堂一区二区三区四区| 国产av一区在线观看免费| 波多野结衣高清无吗| 成人国语在线视频| 久久久国产欧美日韩av| 久久久久国产一级毛片高清牌| 神马国产精品三级电影在线观看 | 曰老女人黄片| 中亚洲国语对白在线视频| 国产99白浆流出| 三级毛片av免费| 国产精品99久久99久久久不卡| 亚洲国产精品成人综合色| 国产精品免费视频内射| 成人手机av| 亚洲中文字幕一区二区三区有码在线看 | 啦啦啦免费观看视频1| 欧美黑人巨大hd| 国产乱人伦免费视频| a级毛片在线看网站| 亚洲电影在线观看av| 18禁裸乳无遮挡免费网站照片| 人妻夜夜爽99麻豆av| 91av网站免费观看| 三级男女做爰猛烈吃奶摸视频| 亚洲色图 男人天堂 中文字幕| 妹子高潮喷水视频| 久久久精品国产亚洲av高清涩受| 午夜影院日韩av| 亚洲av电影不卡..在线观看| 国产高清激情床上av| 亚洲男人的天堂狠狠| 午夜免费观看网址| 一本精品99久久精品77| 美女黄网站色视频| 国产探花在线观看一区二区| 中文字幕熟女人妻在线| 亚洲一区二区三区不卡视频| 一个人免费在线观看电影 | 一级黄色大片毛片| 午夜福利在线观看吧| 国产一级毛片七仙女欲春2| 亚洲人成电影免费在线| 精品国产亚洲在线| 国内精品久久久久久久电影| 日本 av在线| 亚洲av成人精品一区久久| 亚洲av成人av| 国产亚洲精品av在线| 国产伦人伦偷精品视频| 婷婷亚洲欧美| 18禁裸乳无遮挡免费网站照片| ponron亚洲| 成年女人毛片免费观看观看9| 在线观看66精品国产| 亚洲黑人精品在线| 午夜两性在线视频| 免费在线观看黄色视频的| 国产高清视频在线播放一区| av福利片在线| 999精品在线视频| 无人区码免费观看不卡| 久久人人精品亚洲av| 日韩欧美国产在线观看| 国产精品爽爽va在线观看网站| 欧美不卡视频在线免费观看 | 麻豆成人av在线观看| 毛片女人毛片| 亚洲专区中文字幕在线| 国产精品亚洲av一区麻豆| 99久久精品热视频| 校园春色视频在线观看| 在线免费观看的www视频| 在线国产一区二区在线| 国产高清有码在线观看视频 | 天堂√8在线中文| 在线国产一区二区在线| 啪啪无遮挡十八禁网站| 免费在线观看影片大全网站| 最新在线观看一区二区三区| 色噜噜av男人的天堂激情| 高潮久久久久久久久久久不卡| 天天添夜夜摸| 三级男女做爰猛烈吃奶摸视频| 久久久精品国产亚洲av高清涩受| 人人妻,人人澡人人爽秒播| www国产在线视频色| 国产精品一及| 国产探花在线观看一区二区| 极品教师在线免费播放| 欧美精品啪啪一区二区三区| 一级片免费观看大全| 久久久久久免费高清国产稀缺| aaaaa片日本免费| av欧美777| 亚洲 欧美一区二区三区| 久久久久久久精品吃奶| 999精品在线视频| e午夜精品久久久久久久| 午夜福利欧美成人| 啦啦啦观看免费观看视频高清| 51午夜福利影视在线观看| av福利片在线观看| 午夜精品在线福利| 久久精品人妻少妇|