• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wedge template optimization and parallelization of depth map in intra-frame prediction algorithms①

    2022-01-09 02:08:36XieXiaoyan謝曉燕WangYuShiPengfeiZhuYunDengJunyongZhaoHuan
    High Technology Letters 2021年4期

    Xie Xiaoyan(謝曉燕),Wang Yu②,Shi Pengfei,Zhu Yun,Deng Junyong,Zhao Huan

    (*School of Computing Science&Technology,Xi’an University of Posts and Telecommunications,Xi’an 710121,P.R.China)

    (**School of Electronic Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,P.R.China)

    Abstract

    Key words:3D high-efficiency video coding(3D-HEVC),wedge segmentation,simplified search template,parallelization,depth model mode(DMM)

    0 Introduction

    As an advance of 2D video,3D video coding has been drawn in some new characteristics.In order to code for 3D video more efficiently,the multi-view video plus depth(MVD)representation is formed by ISO/IEC MPEG and ITU-T VCEG.Depth information is rendered or synthesized by depth image-based rendering(DIBR)[1].The increased depth map adds redundancy in processing.Therefore,the wedge segmentation with residual adaptation for depth blocks is presented to reduce the bit rate and increase the quality of rendered view[2].This strategy has been adopted to extend the high efficiency video coding(HEVC)standard for coding of MVD data[3].In order to select the optimal template in wedge segmentation,the exhaustive search of wedge-shaped template leads to very high complexity and storage cost of intra prediction.

    Recently,experts have been trying various optimization schemes.The main achievement solutions in this field are skipping some templates search for specific blocks[4-7],or making wedge template set simplified[8-9].Ref.[4]skipped most unnecessary candidates by a simple squared Euclidean distance of variances based rough mode decision,to cope with unacceptable computational burden,based on investigating the statistical characteristics of variance distributions in the two partitions of depth model mode(DMM).Ref.[5]proposed a simplified edge detect algorithm to judge the edge block by extracting the maximum difference between the four corner pixel values of the coding block.DMM mode is executed only for those coding blocks classified as an edge block.To a certain extent,skipping some model searching directly can reduce the coding time,but additional computation overhead for edge detection can not be ignored.Ref.[8]proposed a simplified algorithm which only searches the partition patterns in a limited set,based on such a consideration that the separation line in the best matching pattern should be similar to the edge in an actual depth prediction unit(PU).Ref.[9]pointed out that the division direction of the DMM mode should be similar to the prediction direction of the mode in the coarse selection result of the HEVC intra mode,which can be used to reduce unnecessary division calculations in DMM subsection 1(DMM-1).Those work always try to avoid DMM-1 evaluation in particular conditions.However,none of above can essentially reduce the number of wedge template.

    For the sake of real-time processing performance of codec,other researchers attempt to accelerate the DMMs with hardware design.In Ref.[10],five modules composed pipeline architecture was involved in parallel,three of them handle block sizes of 8×8,16×16,and 32×32,and two identical modules for all 4×4 sizes.The external memorized table stocked the wedgelets and their syntaxes for all block sizes are introduced to simplified calculation.However,the exhaustive approach resulting in high time consumption are not discussed.In Ref.[11],a 5-level pipeline architecture was proposed to accelerate the calculation,in view of the fact that there is no data correlation in wedge segmentation calculation.Although the coding cycle is reduced by 52.3%,but at the cost of 1568 gates are increased.They can only cope with 4×4 depth block.It can not be ignored,there needs to predict 8×8,16×16,and 32×32 PU size in HEVC.For which,search space and template number are far greater than 4×4.Ref.[12]designed a scalable structure supporting different block sizes,used shared resources to allow efficient area usage,smaller power dissipation,and to achieve higher throughput.It skipped the refinement stage of DMM-1,reserved coarse subnet which still requires a dedicated memory of 217 632 bits to store templates.These parallel schemes although achieve obvious effect in calculation speed,troubles such as different size of depth blocks,large number of templates,and huge search space have not been effectively overcome.

    All in all,a practical wedge segmentation prediction needs to consider the realizability and cost in addition of precision.In this paper,a train of thought to simplify the wedge template set on the premise of ensuring quality is proposed.The approach is also motivated by the fact that different from texture map,there often exists large regions with nearly constant values and sharp edges at boundaries in depth map,most of them will choose the simple prediction direction.In the same view,the depth map and texture map depict the same scene.With this kind of characteristics,the direction of the wedge separation line is similar to the prediction direction.The main contribution of the solution lies in three aspects.Utilizing the analysis and statistics to the wedge search template used in depth map prediction of 3D-HEVC,10 kinds of 4×4 wedge templates with larger prediction probability are screened out.Furthermore,different from represented by piece wise linear functions for each region adopted in DMM-1,a method is proposed to extend the 4×4 wedge template to anyN×NPU,which makes the total number of templates reduced from 3765 to 10.The storage cost and search times of prediction are greatly reduced in turn.Based on the computing pattern of the array processor(DPR-CODEC)developed by project team,an efficient paralleling scheme is also detailed to optimization method mentioned above.The proposed simplified search template and parallel DMM-1 scheme are verified with test sequence in HTM16.1.The experiment results show that the proposed methods save 99.2%of the storage space and 63.94%of the encoding time,the average serial/parallel acceleration ratio of each template is 1.84.

    The remainder of this paper is organized as follows.The principle of wedge segmentation is introduced in Section 1.The details about templates simplifying rules and improving idea of DMM-1 are given in Section 2.The mentality of extending the 4×4 wedge template to anyN×NPU and parallelization are also analysed.In Section 3,the improved DMM-1 algorithm is parallelly designed.Experiments are conducted in Section 4.Finally,Section 5 draws some concluding remarks.

    1 Wedge segmentation algorithm

    As detailed in Refs[2,3],the wedgelet model of a depth block is obtained by partitioning the area of the block into two segments,labeled byP1 andP2 in Fig.1(a),separated by a straight line.For a depth block of sizeN×N,the separation line is defined by the sample positions of start pointSand end pointE.From this,the segmentation pattern is represented as an array of binary elements with sizeN×N,namely partition information table,which determines whether the corresponding sample belongs to segmentP1 orP2.According to the segmentation pattern,the constant depth valuesd1 andd2,namely constant partition value(CPV),are assigned to samples belonging toP1 andP2 respectively.The wedgelet model of a block is generated,as shown in Fig.1(b).Deriving the optimal wedgelet model for a given depth block means carrying out a minimum distortion search for all possible wedge segmentations.This includes two steps,coarse subnet and refinement around best wedgelet.In the first step,the minimum distortion wedgelet is searched for a coarse subset of segmentations,with a certain interval in all possible positions,shown as Fig.1(c).In the second step,the segmentation is refined by searching with 8 adjacent precisions around the best coarse wedgelet as the example shown in Fig.1(d).

    Fig.1 Wedge segmentation of a depth block

    2 Improvement of DMM-1

    2.1 Simplified wedge templates set

    According to the start and end position of separation line,the wedgelet models can be differentiated into two major categories,the adjacent edge partitions and the opposite edge partitions.For adjacent edge partitions,the starting and ending positions of separation line belong to adjacent vertical and horizontal boundary lines of the current PU,indicated with awedgeOriranging from0 to 3 as shown in Fig.2.While opposite edge partitions have start position and end position belonging to parallel boundary lines of the current PU,indicated with awedgeOriequal to 4 or 5 as shown in Fig.2.The line end position offset for refining the wedgelet partition can’t be predicted,but sought by iterating over a range of offset values and comparing the distortion of the different results.

    In addition,the depth map coding also uses the quadtree coding tree unit(CTU)recursion similarly consistent with HEVC.Four types of block size need to be segmented.But the resolution step size used for generating the wedgelet patterns depends on the block size.For 16×16 and 32×32 blocks,the possible start and end positions are restricted to locations with 2-sample accuracy.For 8×8 blocks,full-sample accuracy is used,and for 4×4 blocks,half-sample accuracy is used.From this,the number of coded block wedge templates of different sizes is different.The larger the size,the larger the number of corresponding templates.The exhaustive searches for the optimal wedge template from tens of thousands of templates bring about a huge amount of computation.At the same time the huge storage consumption is also a problem,as shown in Table 1.

    Table 1 Number of wedgelet patterns for different PU sizes

    Although DMM-1 improves the accuracy of intra prediction greatly,the new wedge segmentation also brings about greater computational complexity and storage consumption.All these designs are tolerable for software encoder,just a matter of coding performance.But it is disastrous for hardware implementation,due the limitation of resource conditions and fixed functional circuit on chip.This paper is to make the algorithm suitable for hardware,and not deviate from the original intention of original designer.Therefore,it is necessary to find a more simply way to acquire wedgelet and fewer templates.To this end,the simulation test is performed with various types of video test sequences,under full DMM-1 in HTM16.1.The results of statistical analysis are shown as Table 2.Six optimal candidate directions,horizontal mode,vertical mode,Ang-5,Ang-14,Ang-2,and Ang-30,can be obtained.The average probability of those reaches 80.19%.The average probability of rest 27 directions is less than 20%.This is the fact that there often exists large regions with almost constant and stationary samples,and sharp edges at boundaries in depth map.These regions often select the simple directions in intra-prediction.

    Table 2 Statistical probabilities of the best prediction direction

    Referring to the conclusions in Ref.[8] and Ref.[9],based on 6 directions mentioned above and 6 types of wedge pattern in Fig.2,a wedge template set consisting of 10 4×4 templates is derived,shown as Fig.3.The horizontal and vertical directions only apply to opposite edge,by the centre line.The other 4 directions are applied to adjacent edge and opposite edge separately,employ angles defined in their candidate patterns.Verified by HTM16.1,this template set can work well.

    Fig.3 Wedge template set

    2.2 Template extension for N×N PU

    After analysis of the results of simulation test,it can be found that the matched best wedge block always appears in middle position of the coding depth.In view of the correlation between adjacent pixels,it is possible to generate a separation line from the basic 4×4 template,and skip the over-complicated optimal template search for theN×NPU.Take a wedge template of 8×8 PU as an example,shown as Fig.4.

    The dash line is the wedge separation line.Its function is derived by the starting position(X1,Y1)and the ending position(X2,Y2)of the wedge separation line of the middle basic wedge template.That is a linear function,Y=ax+b.aandbare calculated according to Eq.(1).

    Fig.4 Sketch of the wedge template extension

    On the basis of this separation line,the valuePi,jin binary mapping matrix is assigned according to Eq.(2).

    2.3 Minimum template set based wedge segmentation prediction

    According to above discussion,wedge segmentation prediction for any PU size only uses ten 4×4 templates given in Fig.3,which makes the total number of templates reduced from 3765 to 10.And total size of searching table is reduced from 1 947 360 to 160 bits.Combined with other steps detailed in DMM-1[13],the flow chart of new algorithm is given in Fig.5,8 steps are discussed in detail as follows.

    Step 1 Initialisation.Initialize the variables,which store the best matching template and the calculation results based on it,including the best template identifierNand its corresponding residual matrixA residual,BestSAD,BestCPVs.In the proposed algorithm,the coarse subnet and refinement for optimal template search is replaced with the most suitable template matching and extension in wedge segmentation procedure.So there only needs to deliver the identifier,instead of the binary mapping matrix of the best matching template.

    Step 2 Edge block checking.Load a PU by using corner detection operator to detect whether the current PU contains edge information with method in Ref.[13].If it is a flat block,the traditional HEVC intra prediction is applied.Otherwise,repeat Steps 3 to 7 for 10 templates in Fig.3.

    Step 3 Wedge separation line extracting.Select one of the templates from the wedge template set.Extract the starting position(X1,Y1)and the ending position(X2,Y2)of its wedge separation line.

    Step 4 Template extension.Judge whether the current PU size is 4×4.If it isn’t,using the method detailed in subsection 3.2 to extend the current template to PU size.Otherwise,use the current template directly.

    Step 5 CPVs calculating and reference block construction.Generating the binary mapping matrix according to the template,referring to Eq.(2).Calculating the CPVs according to it and the pixels of PU.Constructing the reference block matrix through CPVs filling.

    Step 6 Residual matrix and sum of absolute difference(SAD)value calculating.Calculate the residual matrix by pixels in PU and reference block.The SAD is used to evaluate the distortion predicted by the current template in this paper.It is calculated according to Eq.(3),where,kis the template identifier,PU(i,j)is the pixel value of theirow andjcolumn in the depth block PU,gk(i,j)is the value of theirow andjcolumn in the reference block matrix,Nis the size of PU.The smaller the SAD value,the lower the distortion.

    Step 7 The best prediction selection.Compare the current SAD value with theBestSAD,if it is smaller,record template identifier and its corresponding residual matrixA residual,BestSAD,BestCPVsby this calculation to the best matching variables.Otherwise,keep the best matching variables unchanged.

    Step 8 Output the best prediction results.

    Fig.5 Flowchart of minimum template set based wedge segmentation prediction algorithm

    3 Parallelization

    3.1 Hardware architecture

    As shown in Fig.5,the coarse subnet and refinement for optimal template search are replaced with the most suitable template matching and extension in wedge segmentation procedure.At the same time,the storage cost and search times are saved significantly for the new simplified strategy.It is possible to implement all PU size wedge segmentation on resource limited field programmable gate array(FPGA).Furthermore,only the original pixel value of PU and current wedge template are involved in during the template matching.The wedge segmentation operation and data calculations of different templates are no correlation.It means that the prediction process of different templates can be carried out in parallel for a depth PU.Furthermore,the prediction data for each template can be loaded at the same time,which can reduce the pretreatment time by 2/3.In this section,the improved DMM-1 for parallel processing is optimized by the dynamically programmable reconfigurable CODEC(DPR-CODEC),which is a dynamic reconfigurable array processor to cope with the special demand of HEVC.

    The DPR-CODEC is composed of 1024 PEs in the form of adjacent interconnection.Only 4×4 PEs are assigned to the DMM-1 for this paper,clearly demonstrated in Fig.6.The size of each PE instruction and data sharing storage can be adjusted dynamically.Data input memory(DIM)is a data buffer for caching coding block.Data output memory(DOM)is a data buffer for caching reference block and reconstructed image.The global controller decides the operating mode and chooses the appropriate functions for the PE or PEs.Each PE contains 16 registers,including 12 local registers and 4 shared registers.The shared registers distribute in east,south,west,and north directions,named RE,RW,RS,and RN respectively.PE can access each other through shared register.There are two ways of data interaction between PEs.Mode 1 is shown in the dashed arrow,and mode 2 is shown in the solid arrow.Mode 1 is used to send data from the local registers(R3,R4,R5 and R6)directly to the execution units of the neighboring PE as the source operations.Mode 2 can transfer data from local PE to adjacent registers through shared register,and the data can be operated in the subsequent processing.One of the data interaction method is using the adjacency interconnection structure.Another is the distributed shared storage structure under unified addressing mode,it can also be realized through the high-speed switching unit.

    Fig.6 Hardware architecture for proposed algorithm

    3.2 Parallel design scheme

    The function allocation of the proposed algorithm on DPR-CODEC is shown in Fig.7.The depth map is loaded into DIM in advance.PE00 is used for depth PU loaded and transmitted to other PEs.PE01 is for edge block checking.PE03 is for SAD comparison and output the results.PE10 to PE33 are assigned to perform Step 3 to Step 6 in parallel mode,detailed in the algorithm designed in sub section 2.3.

    In DPR-CODEC,the dynamically programmable and reconfigurable mechanism can issue different instructions and data to each PE through globe controller and H-tree network.The adjacent interconnection and data sharing storage make data access among PEs within one hop but cascade,which makes different data loading to each PE faster and much easier.Although filling modes of each template is different,it can be operated by different PE at the same time.Because the template for every PU size is same in the proposed algorithm,the PU size can be changed randomly from4×4,8×8,16×16,to32×32,which is more in line with the needs of the HEVC standard.The specific is introduced by taking a 8×8 PU as an example.

    Fig.7 Mapping flow chart of proposed algorithm

    Step 1 Data loading.PE00 accesses the DIM through the adjacent interconnect mode in register R10,reads the corresponding pixels of current PU.

    Step 2 Data distribution.PE01,PE10,PE20 and PE30 read original pixels from PE00 via shared registers at the same time,controlled by handshakes.As soon as they receive the data,each PE forwards the data to the appropriate PE in the same way.The order of data spreading is from PE10 to PE11,and PE12,from PE20 to PE21,and PE22,from PE30 to PE31,PE32 and PE33.PE01 does edge detection instead of spreading.If edge detection result is flat then trigger intra-prediction handshake,or else wedge matching.

    Step 3 Parallel template expansion.If it is needed,PE 10 to PE 33 start the template expansion after getting the pixels data,according to the data loading condition.The block size had been judged out while loading.Ten templates had been loaded to each PE while arraying initial configuration,which benefits from fixed template.

    Step 4 CPV sencoding and SAD solving.PE10 to PE33 perform Step 3 to Step 6 in parallel mode,detailed in the algorithm designed in Section 2.3,obtaining their correspondingA residual,SAD,andCPVs.

    Step 5 The best prediction result obtaining and output.The predicted results calculated by each PE are sequentially sent to PE03.PE03 obtains the optimal template through comparing each SAD,reads its corresponding identifier,Aresidual,SAD,andCPVsvia shared registers,and outputs them.

    These are achievable by the dynamically reconfigurable mechanism.DPR-CODEC is a dynamic reconfigurable array processor,it can change instructions at runtime.The instructions in PEs are issued and stored while initial configuration.The global controller decides the operating modes,and distributes different call instructions for the PE or PEs.

    4 Experiment results and discussion

    This section presents the results for the proposed wedge segmentation DMM scheme.To evaluate the feasibility of the proposed algorithm,software simulation results present the coding quality and time consumer.Several sequences recommended by the JCT-3V group are encoded,including Kendo,Newspaper1,and Balloons with resolution of 1024×768,as well as Undo_Dancer,Poznan _Hall2,and Poznan_Street(1920×1088),which are tested under the common test conditions(CTC)specified in Ref.[14].In order to verify the performance of the parallel scheme,verification method is used as follows.Firstly,modify the configuration file of the test model HTM16.1,obtain test data and block partition information,and store it in the offchip memory.And then,use QuestaSim to map the reconfigurable scheme to the dynamic reconfigurable array.The instructions of the parallel program are initialized to instruction memory.The structure of the reconfigurable array is verified by QuestaSim-64 10.1.d.After functional simulation,the design is synthesized through the Xilinx virtex-6 FPGA with BEE4 XC6VLX365T-1FF1156 with speed grade-1.

    4.1 Effect of improved algorithm

    Since the proposed techniques focus on wedge segmentation in depth intra coding,all test sequences are encoded using the intra-only structure.The objective evaluation of availability is calculated by the peak signal-to-noise ratio(PSNR)loss,and depth coding time savingΔT.ΔTrepresents depth coding time change compared with the benchmarking algorithms,which is defined as

    where,Thtm.originalis the intra-only depth coding time in HTM16.1 software,Tproposedis the depth coding time of the proposed DMM-1 algorithm.Positive and negative values denote increments and decrements,respectively.The simulations are conducted on a 64 bits MS Windows 10 OSrunning on an Intel(R)Core(TM)i7-8565U CPU of 1.80 GHz and 8.0 GB RAM.

    To reveal the quality of the proposed algorithm,7 groups of video sequences with different moving intensity and resolution are evaluated.The simulations are carried on Matlab with 50 frames for each kind of video,and the results are shown in Fig.8.It is possible to note that the PSNR loss is 7.31 dB in average,that is slightly higher.Because the planner is applied only for flat block after corner detection to shield the interference of intra-prediction parts,which is much lower on whole intra-prediction of depth map.But that is not the focus of this paper.So,PSNR loss is up to 10.55 dB for Poznan_Hall2 with more flat blocks.However,the PSNR loss is down to 3.78 dB for GT_fly which has fewer flat blocks.These results are expressive for the coding quality of proposed algorithm,which is acceptable.

    Fig.8 PSNR of proposed algorithm for CTC evaluation compared with DMM-1 benchmarking

    From Table 3,it is obvious to note that the improvement achieves a depth coding time saving of 63.94 % in average. Compared with Ref.[4] and Ref.[5],the optimization effect is more significant,whether it is 1024×768 or 1920×1088 resolution.The improvement measures in Ref.[4]are mainly concentrated on simplifying the rate distortion cost(RDcost)computational complexity of intra-mode selection for flat.That is why it is more effective for gentle sequence,such as Kendo and Poznan _Hall2,compared with violent changes form,like Balloons and Poznan_Street.In Ref.[5],it only skipped DMM-1 process for flat block,number of mode selection and calculation method are not involved.Its time saving effect is less obvious.This paper focuses on flat and edge block at the same time.The corner detection is used to judge the type of block,and directly apply the planar pattern for flat one based on the texture characteristic of depth map.In addition,there are only 10 wedge templates for the edge block,the template selection process is greatly simplified.That is why the time saving is stable around 64%whether it is edge or not.

    Table 3___Depth coding time comparison un___________der_CTC

    4.2 Performance of parallelization

    Based on BEE Cube’s BEE4 hardware experimental platform,the team paralleled the improved DMM-1 based on DPR-CODECarray processor,synthesized with Xilinx ISE14.7.In order to improve the efficiency of DMM-1,the H-tree network and adjacency interconnection structure are fully utilized in data loading.It makes video data loading parallelized and save the data loaded time.As shown in Table 4,it saves about 50% time on data loading.The parallel data loading speed-up ratio reaches 2.169 compared with sequential manner.

    Table 4 Sequential/parallel data load time comparison____________(unit:__________________________________clock_cycle)

    The complexity of each wedge-shaped templates is different,time consumption is also different.Table 5 accesses the coding time for 8 different templates.The parallel coding time elapsed from the beginning of parallel computing to the time when the last processor produces output results.The serial encoding time is collected from serial algorithm performed on a single PE.The speed-up ratiosp(n)is used to evaluate the degree of improvement in running time caused by the parallelism of the algorithm,which is defined as

    where,ts(n)is the running time of the fastest serial algorithm,tp(n)is the running time of parallel solving the same problem.As shown in Table 5,the speed-up ratio of paralleled implementation of wedge segmentation proposed in this paper is 1.84 in average.

    Letpdenote the number of processors.Whensp(n)=p,it is called linear acceleration.Take 16×16 as an example.In the experiment,sp(n)=2.103,p=12,sp(n)≤pis caused by the difficulty of decomposing a computing problem into some parallel subproblems,or by the fact that too much communication is involved in the computation of various sub-problems.In terms of the number of processors,costc(n)is the total number of execution steps when solving a problem,which is the product of run timet(n)and number of processorsp(n),which is defined as

    EfficiencyEp(n)reflects the utilization of processors in parallel systems,which is defined as

    wherep(n)denotes the function of the processor with respect to the problem sizen.Ep(n)=0.159 in the experiment accords with the theoretical value of 0

    In Table 6,the comparison of the synthesizing results with Ref.[10],Ref.[11]and Ref.[12]is given.For this work,it only spends 210K equivalent gates.The hardware resource cut down is apparent.That benefits from number of wedgelets reducing.Moreover,it only performs 23 cycles for 4×4 PU,because no template extension operation is involved.But thedisadvantageof executiontimeexistsin16×16 PU,especially in 32×32,for template extension operation.This is to offset the cost of storage space.There only needs 160 bits to all wedgelets, saving reaches 99.2%.Although Ref.[10]retrenched some wedgelets by skipped refinement stage and resulted in a lower gate count,it still requires a dedicated memory of 217 632 bits to store coarse templates.Ref.[11]paralleled DMM-1 by 5 levels pipeline architecture,decreasing the PU handle time at the costs of 4895 gates.And it only treats PU,unable to cope with flexible PU size.Ref.[12]treated 32×32 PU at only 119 cycles through storing all wedge templates form lookup table.So,it requires a dedicated memory of 1 947 360 bits,and its hardware resource consumption is 2.54 times of the method proposed in this paper.

    Table 5 Parallel template performance assessment(unit:clock cycle)

    Table 6 Comparison of the synthesizing results with related work

    5 Conclusion

    Aiming at the huge data processing problem in the process of 3D-video coding,a simple wedge segmentation prediction method is proposed,considering the realizability and cost.The main contribution of the solution is three aspects.Utilizing the analysis and statistics to the wedge search template used in depth map prediction of 3D-HEVC,10 kinds of 4×4 wedge templates are screened out with larger prediction probability.Furthermore,a method is proposed to extend the 4×4 wedge template to anyN×NPU,which makes the total number of templates reduced from 3765 to 10.The storage cost and search time are reduced.Based on the computing pattern of the array processor(DPRCODEC)developed by project team,an efficient paralleling scheme is also detailed.The proposed simplified search template and parallel DMM-1 scheme are verified with HTM16.1 under CTC.The experiment results show that,the proposed methods save 99.2%of the storage space and 63.94%of the encoding time,the data loading time saves about 50%,and serial/parallel acceleration ratio of each template is 1.84 in average.It not only guarantees the coding quality,but also solves the complexity in the encoding process and improves the operation efficiency.In the future,the coding quality enhancing by optimizing intra process of flat block will be considered.

    纵有疾风起免费观看全集完整版| 免费看十八禁软件| 成人亚洲精品一区在线观看| 亚洲av电影在线进入| 久久中文字幕一级| 日韩 欧美 亚洲 中文字幕| 亚洲精品在线美女| 久久久精品区二区三区| 999久久久精品免费观看国产| 热re99久久精品国产66热6| 天堂俺去俺来也www色官网| 亚洲精品第二区| 少妇 在线观看| 亚洲精品中文字幕在线视频| 伊人久久大香线蕉亚洲五| 久久久国产欧美日韩av| 免费少妇av软件| 1024香蕉在线观看| 国产三级黄色录像| 色94色欧美一区二区| 日本av免费视频播放| 国产激情久久老熟女| 国产亚洲精品一区二区www | 黄色毛片三级朝国网站| 超碰97精品在线观看| 91麻豆精品激情在线观看国产 | 丝袜在线中文字幕| 国产av一区二区精品久久| 亚洲av日韩在线播放| 国产麻豆69| 啦啦啦中文免费视频观看日本| 激情视频va一区二区三区| 国产在线观看jvid| 狠狠婷婷综合久久久久久88av| 亚洲国产av新网站| 黄色怎么调成土黄色| 国产精品国产三级国产专区5o| 欧美黑人精品巨大| 国产免费福利视频在线观看| 亚洲伊人久久精品综合| 精品国产乱子伦一区二区三区 | 欧美成狂野欧美在线观看| 欧美国产精品一级二级三级| 亚洲va日本ⅴa欧美va伊人久久 | 欧美日韩成人在线一区二区| 国产男人的电影天堂91| 亚洲中文日韩欧美视频| 热re99久久精品国产66热6| 人人妻人人爽人人添夜夜欢视频| 久久99一区二区三区| av又黄又爽大尺度在线免费看| 欧美日韩国产mv在线观看视频| 三上悠亚av全集在线观看| www.999成人在线观看| 大香蕉久久成人网| 国产高清videossex| 一二三四在线观看免费中文在| 成年动漫av网址| 天天操日日干夜夜撸| 中文精品一卡2卡3卡4更新| 欧美人与性动交α欧美软件| 无遮挡黄片免费观看| 国产av精品麻豆| 日韩制服骚丝袜av| 热re99久久国产66热| 好男人电影高清在线观看| 国产在线免费精品| 午夜老司机福利片| 国产免费一区二区三区四区乱码| 嫩草影视91久久| 午夜福利在线免费观看网站| 少妇人妻久久综合中文| 精品少妇内射三级| 欧美+亚洲+日韩+国产| 国产三级黄色录像| 国产极品粉嫩免费观看在线| 亚洲 欧美一区二区三区| 动漫黄色视频在线观看| 午夜福利,免费看| 亚洲色图 男人天堂 中文字幕| 国产成人av激情在线播放| 精品国产超薄肉色丝袜足j| 午夜福利,免费看| tocl精华| 啦啦啦中文免费视频观看日本| 纯流量卡能插随身wifi吗| 日韩,欧美,国产一区二区三区| 久9热在线精品视频| 国产av国产精品国产| 午夜视频精品福利| www.av在线官网国产| 99香蕉大伊视频| 中文字幕av电影在线播放| 亚洲国产欧美日韩在线播放| 日韩三级视频一区二区三区| 人人妻人人澡人人看| 午夜福利视频精品| 在线观看人妻少妇| 黄频高清免费视频| 亚洲国产欧美在线一区| 老司机影院成人| 久久狼人影院| av超薄肉色丝袜交足视频| 国产片内射在线| 777久久人妻少妇嫩草av网站| 一区二区日韩欧美中文字幕| 国产精品久久久久久人妻精品电影 | 久久久久视频综合| 在线十欧美十亚洲十日本专区| 欧美97在线视频| 国产成人精品无人区| 欧美少妇被猛烈插入视频| 国产亚洲av高清不卡| 精品乱码久久久久久99久播| 波多野结衣一区麻豆| 午夜福利视频精品| 久久久国产欧美日韩av| 国产成人精品无人区| 伦理电影免费视频| 亚洲精品国产区一区二| 美女高潮到喷水免费观看| 99久久国产精品久久久| 国产在视频线精品| 精品视频人人做人人爽| 久久久久国内视频| 黑人欧美特级aaaaaa片| 少妇粗大呻吟视频| 国产av精品麻豆| 2018国产大陆天天弄谢| av免费在线观看网站| 国产精品二区激情视频| 国产极品粉嫩免费观看在线| 亚洲专区字幕在线| 午夜福利乱码中文字幕| 桃红色精品国产亚洲av| 日日夜夜操网爽| 国产亚洲精品第一综合不卡| 交换朋友夫妻互换小说| 国产精品一区二区在线不卡| 在线亚洲精品国产二区图片欧美| 人人妻人人澡人人爽人人夜夜| 精品久久蜜臀av无| 亚洲精品成人av观看孕妇| 1024香蕉在线观看| 亚洲人成电影免费在线| 一区二区三区乱码不卡18| 亚洲国产看品久久| 黄片大片在线免费观看| 免费一级毛片在线播放高清视频 | 俄罗斯特黄特色一大片| 中文精品一卡2卡3卡4更新| 亚洲欧美激情在线| 啦啦啦 在线观看视频| 亚洲av男天堂| 曰老女人黄片| 精品人妻熟女毛片av久久网站| 亚洲伊人久久精品综合| 丝袜脚勾引网站| 久久中文看片网| 18禁黄网站禁片午夜丰满| 夜夜骑夜夜射夜夜干| 美女中出高潮动态图| 久久精品人人爽人人爽视色| 91老司机精品| 中文字幕最新亚洲高清| 老熟妇乱子伦视频在线观看 | 亚洲国产日韩一区二区| 桃红色精品国产亚洲av| 亚洲精品国产一区二区精华液| 久热爱精品视频在线9| 巨乳人妻的诱惑在线观看| 亚洲第一青青草原| 日本a在线网址| 国产精品亚洲av一区麻豆| 亚洲 欧美一区二区三区| 高清欧美精品videossex| 亚洲精品在线美女| 国产又爽黄色视频| 国产免费现黄频在线看| 青草久久国产| 国产成人啪精品午夜网站| 精品久久久精品久久久| 丝袜在线中文字幕| 久热这里只有精品99| 国产精品一区二区在线观看99| 成人手机av| 国产一区二区 视频在线| 亚洲va日本ⅴa欧美va伊人久久 | 精品免费久久久久久久清纯 | 久久av网站| 欧美精品一区二区免费开放| 9191精品国产免费久久| 另类亚洲欧美激情| 热99re8久久精品国产| a 毛片基地| av有码第一页| 亚洲第一欧美日韩一区二区三区 | 97在线人人人人妻| 国产黄色免费在线视频| 丝袜美足系列| 两个人免费观看高清视频| 亚洲五月婷婷丁香| 国产在视频线精品| 美女高潮喷水抽搐中文字幕| 性少妇av在线| 日韩一区二区三区影片| 美女脱内裤让男人舔精品视频| 多毛熟女@视频| 欧美 日韩 精品 国产| 精品国产一区二区三区久久久樱花| 夫妻午夜视频| 亚洲国产成人一精品久久久| 狠狠狠狠99中文字幕| 久久久久久久久免费视频了| 国产亚洲精品第一综合不卡| 久久性视频一级片| 日韩免费高清中文字幕av| 欧美老熟妇乱子伦牲交| 日本wwww免费看| 黄色视频在线播放观看不卡| 亚洲中文av在线| 国产精品 欧美亚洲| 成人av一区二区三区在线看 | 国产一级毛片在线| 满18在线观看网站| 中文字幕av电影在线播放| 少妇精品久久久久久久| 欧美xxⅹ黑人| 成年女人毛片免费观看观看9 | 精品少妇一区二区三区视频日本电影| 波多野结衣av一区二区av| 91av网站免费观看| 精品熟女少妇八av免费久了| 9色porny在线观看| 丰满饥渴人妻一区二区三| 欧美黑人欧美精品刺激| 亚洲av国产av综合av卡| 午夜久久久在线观看| 国产在视频线精品| 新久久久久国产一级毛片| 老司机影院毛片| 操出白浆在线播放| 亚洲成人手机| 人人妻,人人澡人人爽秒播| 久久人妻福利社区极品人妻图片| 国产极品粉嫩免费观看在线| 人妻人人澡人人爽人人| 午夜福利,免费看| 精品欧美一区二区三区在线| 天堂俺去俺来也www色官网| 国产伦人伦偷精品视频| 亚洲欧美日韩高清在线视频 | 国产福利在线免费观看视频| 丁香六月欧美| 两个人免费观看高清视频| 两人在一起打扑克的视频| 日韩中文字幕欧美一区二区| 精品免费久久久久久久清纯 | 国产一区二区 视频在线| 搡老岳熟女国产| 久久香蕉激情| 久热爱精品视频在线9| 日韩欧美免费精品| 啦啦啦中文免费视频观看日本| 久久精品国产亚洲av香蕉五月 | 久9热在线精品视频| 欧美日韩av久久| 一个人免费在线观看的高清视频 | 成年动漫av网址| 日韩一卡2卡3卡4卡2021年| 日韩一区二区三区影片| 亚洲国产精品一区二区三区在线| 中文字幕高清在线视频| 亚洲第一青青草原| 大片电影免费在线观看免费| www.自偷自拍.com| 日本av免费视频播放| 日韩 亚洲 欧美在线| 欧美激情高清一区二区三区| 日日夜夜操网爽| 国产91精品成人一区二区三区 | 在线 av 中文字幕| 久久久国产精品麻豆| 两个人看的免费小视频| 精品一区二区三卡| 色婷婷av一区二区三区视频| 老司机靠b影院| 婷婷丁香在线五月| www日本在线高清视频| 欧美日本中文国产一区发布| 男女高潮啪啪啪动态图| 欧美精品高潮呻吟av久久| bbb黄色大片| 动漫黄色视频在线观看| 亚洲精华国产精华精| 欧美乱码精品一区二区三区| 大香蕉久久网| 黄色a级毛片大全视频| 久久久精品免费免费高清| 爱豆传媒免费全集在线观看| 婷婷成人精品国产| 丝袜人妻中文字幕| 精品福利观看| 狠狠婷婷综合久久久久久88av| 国产免费视频播放在线视频| 黄片小视频在线播放| 高清av免费在线| 新久久久久国产一级毛片| 国产欧美日韩综合在线一区二区| 亚洲精品在线美女| 又大又爽又粗| 欧美日韩精品网址| 狠狠婷婷综合久久久久久88av| 国产成人精品久久二区二区免费| 成年人免费黄色播放视频| 国产人伦9x9x在线观看| 午夜免费观看性视频| 大码成人一级视频| 在线观看人妻少妇| 亚洲伊人久久精品综合| 自线自在国产av| tocl精华| 建设人人有责人人尽责人人享有的| 久久久久久久久久久久大奶| 亚洲一区中文字幕在线| 欧美xxⅹ黑人| 日韩免费高清中文字幕av| 午夜福利在线免费观看网站| 久久国产亚洲av麻豆专区| 一二三四社区在线视频社区8| 国产高清videossex| 精品一品国产午夜福利视频| 成年女人毛片免费观看观看9 | 人妻人人澡人人爽人人| 国产成人精品在线电影| 在线观看免费高清a一片| 欧美日本中文国产一区发布| 国产成人av激情在线播放| a级片在线免费高清观看视频| 亚洲精品国产一区二区精华液| 搡老岳熟女国产| 首页视频小说图片口味搜索| 97在线人人人人妻| 日韩一卡2卡3卡4卡2021年| 伊人久久大香线蕉亚洲五| 精品熟女少妇八av免费久了| 欧美 日韩 精品 国产| 后天国语完整版免费观看| 亚洲三区欧美一区| 老鸭窝网址在线观看| 亚洲国产精品成人久久小说| 成年美女黄网站色视频大全免费| 人妻人人澡人人爽人人| 99国产综合亚洲精品| 久久国产亚洲av麻豆专区| 黄色视频不卡| 亚洲 欧美一区二区三区| 精品人妻熟女毛片av久久网站| 久久久久久久久免费视频了| 午夜福利,免费看| 丰满迷人的少妇在线观看| 国产91精品成人一区二区三区 | 丰满饥渴人妻一区二区三| 十八禁人妻一区二区| 国产精品99久久99久久久不卡| 久久精品国产亚洲av高清一级| 99国产精品一区二区三区| 天堂中文最新版在线下载| 一本久久精品| 免费观看av网站的网址| 两性午夜刺激爽爽歪歪视频在线观看 | 男女国产视频网站| 80岁老熟妇乱子伦牲交| 正在播放国产对白刺激| 18禁国产床啪视频网站| 中文字幕最新亚洲高清| 在线免费观看的www视频| 午夜久久久久精精品| 少妇被粗大的猛进出69影院| 色尼玛亚洲综合影院| 国产免费av片在线观看野外av| 国产成人啪精品午夜网站| 久久精品aⅴ一区二区三区四区| www.精华液| 久久亚洲精品不卡| 欧美中文综合在线视频| 婷婷六月久久综合丁香| 国产片内射在线| 国产精品,欧美在线| 日本一本二区三区精品| 国产成年人精品一区二区| 亚洲在线自拍视频| 免费高清视频大片| 看片在线看免费视频| 90打野战视频偷拍视频| 午夜日韩欧美国产| 听说在线观看完整版免费高清| 99久久99久久久精品蜜桃| 国产精品av久久久久免费| 亚洲自偷自拍图片 自拍| 最近最新中文字幕大全免费视频| 777久久人妻少妇嫩草av网站| 欧美成人一区二区免费高清观看 | 亚洲激情在线av| 中文在线观看免费www的网站 | 香蕉久久夜色| 日日干狠狠操夜夜爽| 手机成人av网站| 麻豆av在线久日| 成人特级黄色片久久久久久久| 国产精华一区二区三区| 色哟哟哟哟哟哟| 日本一区二区免费在线视频| 女人高潮潮喷娇喘18禁视频| 欧美一级毛片孕妇| 男女下面进入的视频免费午夜| 亚洲第一电影网av| 国产成年人精品一区二区| 免费在线观看日本一区| 亚洲无线在线观看| 国产伦一二天堂av在线观看| 欧美在线一区亚洲| 亚洲熟女毛片儿| 真人一进一出gif抽搐免费| 国产精品综合久久久久久久免费| 国内精品久久久久久久电影| 亚洲国产精品999在线| 精品久久久久久成人av| 欧美午夜高清在线| 精品国产乱子伦一区二区三区| 久久精品综合一区二区三区| 91在线观看av| 国产高清有码在线观看视频 | 免费观看人在逋| 激情在线观看视频在线高清| a在线观看视频网站| 动漫黄色视频在线观看| 一进一出抽搐动态| 在线视频色国产色| svipshipincom国产片| 国产私拍福利视频在线观看| 成人一区二区视频在线观看| or卡值多少钱| 久久久久国产精品人妻aⅴ院| 亚洲精华国产精华精| 在线观看www视频免费| 午夜免费观看网址| 色尼玛亚洲综合影院| 免费在线观看完整版高清| 可以在线观看毛片的网站| 天天添夜夜摸| 欧美激情久久久久久爽电影| 99riav亚洲国产免费| 12—13女人毛片做爰片一| 老司机午夜十八禁免费视频| 国产真人三级小视频在线观看| 国产人伦9x9x在线观看| 国产一区二区在线av高清观看| 久久精品国产综合久久久| 成人午夜高清在线视频| 777久久人妻少妇嫩草av网站| 日本一二三区视频观看| 此物有八面人人有两片| 欧美一级毛片孕妇| 亚洲,欧美精品.| 成人精品一区二区免费| 亚洲一码二码三码区别大吗| 欧美三级亚洲精品| 久久久久性生活片| 国产精品av视频在线免费观看| 精品一区二区三区av网在线观看| 嫩草影院精品99| 亚洲最大成人中文| 久久九九热精品免费| 波多野结衣高清无吗| 特大巨黑吊av在线直播| 国产私拍福利视频在线观看| 亚洲中文日韩欧美视频| 亚洲国产精品成人综合色| 精品一区二区三区视频在线观看免费| 午夜激情福利司机影院| 美女午夜性视频免费| 亚洲天堂国产精品一区在线| 国产一区二区激情短视频| 亚洲自偷自拍图片 自拍| 久久久久国内视频| 男人舔奶头视频| 国产v大片淫在线免费观看| 国产精品免费一区二区三区在线| 一级毛片高清免费大全| 欧美在线一区亚洲| 每晚都被弄得嗷嗷叫到高潮| 久久草成人影院| 91麻豆精品激情在线观看国产| 50天的宝宝边吃奶边哭怎么回事| 天堂动漫精品| 亚洲欧美日韩高清在线视频| 色综合亚洲欧美另类图片| 精品日产1卡2卡| 亚洲国产精品sss在线观看| 一级作爱视频免费观看| 老司机靠b影院| 久9热在线精品视频| 一边摸一边做爽爽视频免费| 国产精品 国内视频| 亚洲色图av天堂| 亚洲国产欧美一区二区综合| 国产乱人伦免费视频| av超薄肉色丝袜交足视频| 国产精品1区2区在线观看.| 99久久无色码亚洲精品果冻| 亚洲色图av天堂| 久久久久国内视频| 精品国产亚洲在线| 精品欧美国产一区二区三| 两个人的视频大全免费| 亚洲人成电影免费在线| 亚洲成人免费电影在线观看| 国产不卡一卡二| 一个人免费在线观看的高清视频| 国产成+人综合+亚洲专区| 亚洲av电影不卡..在线观看| 高潮久久久久久久久久久不卡| 国产精品永久免费网站| 国产探花在线观看一区二区| 亚洲成人精品中文字幕电影| 真人一进一出gif抽搐免费| 小说图片视频综合网站| 亚洲七黄色美女视频| 亚洲最大成人中文| 久久中文字幕一级| 一本大道久久a久久精品| 天天添夜夜摸| 免费在线观看日本一区| 美女午夜性视频免费| 国产麻豆成人av免费视频| 亚洲av五月六月丁香网| 久久精品国产亚洲av高清一级| 国产成+人综合+亚洲专区| 男插女下体视频免费在线播放| 日韩国内少妇激情av| 亚洲狠狠婷婷综合久久图片| 成人国产综合亚洲| 亚洲精品中文字幕一二三四区| 国产伦在线观看视频一区| 久久久国产精品麻豆| 久久精品国产综合久久久| 免费看美女性在线毛片视频| 岛国在线观看网站| 久久天躁狠狠躁夜夜2o2o| 久热爱精品视频在线9| 亚洲精品久久国产高清桃花| 久久这里只有精品19| 日韩免费av在线播放| 久99久视频精品免费| 波多野结衣高清无吗| 日本撒尿小便嘘嘘汇集6| 久久国产乱子伦精品免费另类| 成人国语在线视频| 国产一区在线观看成人免费| 婷婷丁香在线五月| 国产精品av视频在线免费观看| 亚洲天堂国产精品一区在线| 宅男免费午夜| 一级毛片女人18水好多| av有码第一页| 在线观看舔阴道视频| 少妇裸体淫交视频免费看高清 | 成人三级做爰电影| av国产免费在线观看| 色av中文字幕| 婷婷六月久久综合丁香| 中文字幕最新亚洲高清| 宅男免费午夜| 成人一区二区视频在线观看| 在线永久观看黄色视频| 国内久久婷婷六月综合欲色啪| 黄色女人牲交| 亚洲天堂国产精品一区在线| 天堂动漫精品| 亚洲精品av麻豆狂野| 久久久久久大精品| 亚洲国产日韩欧美精品在线观看 | 在线视频色国产色| 啦啦啦韩国在线观看视频| 亚洲国产欧美一区二区综合| 日韩精品青青久久久久久| 久久午夜综合久久蜜桃| 少妇裸体淫交视频免费看高清 | 99riav亚洲国产免费| 欧美日本亚洲视频在线播放| 99热这里只有是精品50| 18禁美女被吸乳视频| 国产高清视频在线播放一区| 亚洲国产中文字幕在线视频| a级毛片a级免费在线| 久久香蕉精品热| 国产单亲对白刺激| 99在线人妻在线中文字幕| 久热爱精品视频在线9| 首页视频小说图片口味搜索| 亚洲熟妇中文字幕五十中出| 亚洲一区中文字幕在线| 国产麻豆成人av免费视频| 国产精品,欧美在线| 熟妇人妻久久中文字幕3abv| 久久久国产成人免费| 国产精品av视频在线免费观看| 欧美日韩国产亚洲二区| 母亲3免费完整高清在线观看| 国产精品98久久久久久宅男小说| 国产精品久久久久久精品电影| 日韩高清综合在线| 亚洲成人免费电影在线观看| 国产欧美日韩一区二区精品|