• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Online prediction of EEG based on KRLST algorithm①

    2022-01-09 02:08:10LianZhaoyang連召洋DuanLijuanChenJunchengQiaoYuanhuaMiaoJun
    High Technology Letters 2021年4期

    Lian Zhaoyang(連召洋),Duan Lijuan②,Chen Juncheng,Qiao Yuanhua,Miao Jun

    (*Faculty of Information Technology,Beijing University of Technology,Beijing 100124,P.R.China)

    (**Beijing Key Laboratory of Trusted Computing,Beijing 100124,P.R.China)

    (***National Engineering Laboratory for Key Technologies of Information Security Level Protection,Beijing 100124,P.R.China)

    (****Faculty of Sciences,Beijing University of Technology,Beijing 100124,P.R.China)

    (*****Beijing Key Laboratory of Internet Culture and Digital Dissemination Research,School of Computer Science,Beijing Information Science and Technology University,Beijing 100101,P.R.China)

    Abstract

    Key words:brain computer interface(BCI),kernel adaptive algorithm,online prediction of electroencephalograph(EEG)

    0 Introduction

    Time series online prediction is widely used in a variety of fields,such as stock trend prediction[1],real-time traffic flow prediction[2],and online monitoring of medical devices[3]and so on.A lot of articles have been published on common datasets, such as Lorenz[4],chaotic time-series prediction[5],respiratory motion[6]and traffic flow prediction[7].However the distribution of the signals on those datasets seems relatively regular and simple in time series.

    The electroencephalograph(EEG) signals are randomness and non-stationarity[8],which can better test the robustness and applicability of the kernel adaptive algorithms on processing time-varying signals and non-stationarity signals.In addition,the purpose of modeling and analyzing the time series of EEG signals[9]is to discover and extract valuable information contained in the data,and to reveal the internal relations of EEG signals.The time series prediction of EEG plays an important role in EEG time series analysis.

    In Ref.[10],the bag-of-wave features were used to learn EEG synchronization patterns for seizure prediction.In Ref.[11],the machine learning approaches were used for seizure prediction from EEG signals.In Ref.[12],the classical deep learning methods such as convolutional neural network(CNN)were used for seizure prediction from EEG signals.In Ref.[13],the DenseNet was used for epileptic seizure prediction from EEG signals.In Ref.[14],a novel method was proposed for seizure prediction from EEG signals by common spatial pattern(CSP)and CNN.Seizure prediction of EEG signals can predict the impending epileptic seizures according to the scalp EEG signals,so as to improve the quality of life.But the EEG prediction in these articles is based on classification of inter-ictal and pre-ictal state,which is the prediction of disease rather than online prediction of EEG signal itself.Online prediction of EEG signal itself in time series can reconstruct the missing signal,make the signal smoother and eliminate the abnormal points of the EEG signal.

    The basic idea of the online prediction in time series is to use the current and historical sequence for mathematical modeling to find the dynamic dependency relation contained in the time series[15].In the practical prediction application,most time series are nonlinear.

    On the one hand,the kernel adaptive algorithm[16]inherits the advantages of the adaptive algorithm,which can automatically adjust the parameters of the digital filter according to the input signal[17].On the other hand,it also extends the ability of the adaptive algorithm to solve the nonlinear and non-stationarity signals.

    In this paper,the kernel RLS tracker(KRLST)adaptive algorithm is presented to online predict the EEG signal,and compared with the other 13 kernel adaptive algorithms on the brain computer interface(BCI)dataset about motor imagery.It is found that the KRLST algorithm has the best online prediction performance on BCI dataset,that is,the root mean square error(RMSE)of the KRLST algorithm on the all 6 electrodes is the minimum.

    1 Online prediction of EEG based on kernel adaptive algorithm

    The EEG online prediction in this paper is based on EEG signals at old time points to online predict EEG signals at new time points by using kernel adaptive algorithm.The framework of the algorithm is shown in Fig.1.According to the different ways of minimizing objective function,kernel adaptive algorithms can be roughly divided into two categories,i.e.the improved least mean squares(LMS)and recursive least squares(RLS)algorithms.

    Fig.1 The framework of online prediction of EEG

    Naive online regularized risk minimization algorithm(NORMA)is a version of kernel-based LMSalgorithm which includes regularization[18].Leaky kernel affine projection algorithm(LKAPA)adds expansion coefficient in each iteration to avoid cost function posed in the conventional empirical risk minimization(ERM)[19].As the KAPA-3 has a scaling factor,the far past data is scaled down exponentially.

    Kernel affine projection(KAP)algorithm proposes a new model simplification standard,which introduces the coherence criterion into sparse dictionary[20].Kernel-based normalized LMS algorithm(KNLMS)uses a new reduction criterion to replace the sparse process[20].The increase of the variables is controlled by several parameters,which is a basic quantitative standard of the dictionary in sparse approximation problem.In the time series prediction problem,KNLMSintroduces correlation criterion to a new kernel reflection projection algorithm.Kernel affine projection sub-gradient method(KAPSM)generalizes the kernelbased normalized LMSalgorithm(KNLMS)and affine projection(AP)algorithm[21].It has strong convergence under mild conditions.Quantized kernel least mean square(QKLMS)uses quantization instead of sparse method to curb the radial growth of adaptive filtering[22].The input space is quantized and compressed by updating the nearest center coefficient and using redundant data.Random Fourier feature kernel LMS(RFF-KLMS)uses inner products in finite dimensions to approximate the kernel function[23].It solves the problem that the computation complexity increases linearly with time.The computational complexity is reduced while maintaining performance.

    Multi-kernel normalized LMS algorithm with coherence sparsification(MKNLMS-CS)is an effective adaptive algorithm for nonlinear systems with multi-kernel[24].It adopts adaptive proximal forward-backward splitting method and introduces the L1 form penalty item.Thus the sparsity of the block adaptive algorithm is improved and effective for non-stationary data.Fixed budget quantized KLMS(QKLMS-FB)is a fixed memory budget QKLMS algorithm and uses significance measure to prune[25].The least significant center in the dictionary which is the least influence on the whole system is discarded.Probabilistic LMS(PROBLMS)introduces a probability method to improve LMS algorithm which provides a adaptable step-size LMS algorithm based on the different estimation values[26].In addition,the algorithm also maintains the complexity of standard LMSapproximately.

    Sliding window kernel RLS(SWKRLS)only selectsMsamples to model and keeps the latestMsamples at each iteration[27].Extended kernel RLS(E-KRLS)only needs to do inner product operation for input vectors for reproducing kernel Hilbert spaces(RKHS)[28].The method is effective in nonlinear observation and state models.Fixed budget KRLS(FB-KRLS)is fixed memory budget KRLS algorithm[29].The algorithm uses a combination strategy that supports merging and pruning,which can learn nonlinear mapping recursively.Compared with sliding windows,the algorithm is not pruning the oldest data points,but pruning the most unimportance data points.It also add the label,with time tracking ability.

    2 Online prediction of EEG based on KRLST algorithm

    Specific process of EEG online prediction based on KRLST is as follows.

    (1)Set the initial parameters of the model,such asμ1,Σ1,Q1,M,λ,and so on.

    (2)Choose the back to the prior(B2P)forgetting and the B2P forgetting is as follows.

    (3)Input signal sequence and output signal.Generating input sequence at timetbased on the input EEG signalxt.

    (4)Online prediction.According to the input signalxtat timet,the input signal is mapped to the feature space by kernel function,and the prediction value is calculated through the kernel adaptive algorithm model.

    (5)Update prediction model.Ift

    is online prediction EEG signal estimated by KRLST.Thet+τ+1inparenthesesistheindexofisthevalueofQatiterationt.Subscript means at iterationt.

    The KRLST algorithm update process is shown in Algorithm 1.

    Algorithm 1 The KRLST algorithm update process Input:The EEG signals xt;(Output:The online prediction signals EEG 1.Initializeμ1,Σ1,Q1 as Eq.(1)2.Add x1 as Eq.(2)to dictionary Ddict 3.For each t∈[2,3,…]Do 4. Choose B2P as Eq.(2);5. Input sequence xt as Eq.(3)at time t;6. Update qt and uncertaintyγ2t as Eq.(5);7. Update^σ2 ft,^yt,^σ2 yt a(s Eq.(6)and EEG as Eq.(4);

    8. Updateμt,Σt as Eq.(7);9. Ifγ2 t<εThen 10. Remove basis t from ut,Σt;11. Else 12. Update Qt as Eq.(7);13. Add basis xt to dictionary Ddict 14. If Number of dictionary>M Then 15. Remove basis i fromμt,Σt,Qt;16. Remove basis xt from dictionary Ddict;17. End if 18. End if 19.End for Return EEG(

    3 Experimental verification

    3.1 Evaluation criterion

    The RMSE between the predicted signal and the real signal can reflect the deviation degree of the predicted signal and the real signal relatively effectively.It is an important method to evaluate the online prediction performance,and also the comprehensive embodiment of stability and tracking sensitivity.If the algorithm pursues tracking sensitivity unilaterally,the algorithm is easy to over fit,and its stability and generalization performance will be slightly poor.RMSE may be higher before and lower after,and the overall RMSE is slightly higher.If the algorithm pursues stability unilaterally,the tracking sensitivity may be lost and it will take a long time to reach a smaller RMSE value.Although the RMSE value will not vibrate obviously,the overall deviation between the predicted value and the actual signal will be slightly larger,and the overall RMSE is also slightly higher.Only when the stability of the algorithm is relatively good and the tracking sensitivity is fast,the overall RMSE will be relatively low.The RMSE is defined as

    3.2 Dataset description

    Adopting the second session of the BCI competition II Ia data set[31],and the subjects of the dataset are healthy.The data is collected in the cerebral cortex of the subjects.The task of motor imagery is to control the motion of the computer screen cursor up and down and record the potential value of the corresponding electrode in the cerebral cortex.The duration of each sample is 6 s.In these 6 s,the first 1 s time is rest,the 1.5 s time in the middle is a reminder of the motor imagery,and the post 3.5 s time is the information feedback.Among them,the post 3.5 s is recorded by 256 Hz with 6 electrodes as samples.There are 561 samples,and each sample contains 6 electrode sample segments and 896 sample points per segment.

    Fig.2 contains 4 visual sub figures of each electrode which is randomly extracted in 561 samples.The subtitle is composed of electrode number and sample number.Fig.3 is the visualization of some common online prediction datasets,such as Lorenz attractor,Mackey-Glass chaotic time series,respiratory motion and Santa Fe laser time series.It can be seen from the figure that the distribution of 4 commonly used datasets contains some regularity and seems relatively simple on the time series.But the randomness of the data distribution is strong in the time series between inside the single electrode of single sample and the different electrodes of different samples in BCI dataset.It can better test the ability of the kernel adaptive algorithm on processing time varying signals and unstable signals.

    Because of the difference of brain function,gray matter,white matter and neurotransmitter,the EEG signals at different electrodes will be significantly different,so the prediction results of EEG signals at different electrodes are compared respectively.The competition dataset used in this paper provides a total of six electrode signals,the results of six electrodes are compared.In order to eliminate the influence of individual differences on the results of the algorithm,the RMSE of all 561 samples is chosen in the dataset to do the average again.

    3.3 Contrast experiment

    In this paper,561 samples are randomly disordered to generate dimensions data,and then 14 kernel adaptive algorithms are applied to online predict the EEG signals.The parameters of different algorithms are not exactly the same,but the variation ranges of some key parameters with similar function are set as consistent as possible,such asM,λ,andηin Table 1.Selecting the optimal key parameters of each algorithm in the reference range is similar to the parameter optimization.Other secondary parameters refer to the default optimized parameters in their citations,which is similar to the transfer learning module that directly introduces optimized models and parameters from other fields in deep learning.The key parameters of each algorithm in this paper have been given in Table 1,and have been adjusted adaptively within the range of parameters according to their algorithms.The settings of other secondary parameters can be found in the citations,so as to facilitate other researchers to follow-up experimental reproduction and algorithm improvement.The average RMSE value of 561 samples of each electrode is calculated,and the predictive performance of the adaptive algorithm on each electrode is obtained.

    Fig.2 The visualization of different electrodes on BCI dataset

    Fig.3 The visualization of some common online prediction datasets

    Fig.4 is the line diagram of mean RMSE values by different kernel adaptive algorithms on EEG online prediction of each electrode.Fig.5 is histogram of mean RMSE values by different kernel adaptive algorithms on EEG online prediction of all electrodes.The vertical coordinate in Fig.4 and Fig.5 is voltage value.In Table 2,the horizontal direction represents different kernel adaptive algorithms,and the vertical direction represents different electrodes in the motor imagery dataset.The value of Table 2 is the corresponding average RMSE value.As shown in Table 2,compared with the other 13 algorithms,the KRLST algorithm has the lowest average RMSE value of all the samples on the 6 electrodes of the motor imagery dataset.So the estimated value of KRLST is the closest to the real EEG signal,and its performance is best.

    Table 1 The parameters setting of different algorithms

    Fig.4 Line diagram of mean RMSE values by different kernel adaptive algorithms on EEG online prediction of each electrode

    Fig.5 Histogram of mean RMSE values by different kernel adaptive algorithms on EEG online prediction of all electrodes

    Table 2 Comparison of mean RMSE values of different kernel adaptive algorithms on EEG online prediction(unit:μV)

    4 Conclusion

    The data distribution in some common online prediction datasets,such as Lorenz,Chaotic time-series,Respiratory motion,and so on,seems relatively regular and simpler.However,the data distribution of EEG is more random,which can better test the ability to process time-varying signals and unstable signals of the kernel adaptive algorithm.What’s more,the time series prediction of EEG is necessary and important to discover and extract valuable information,and to reveal the internal relations of EEG signals.KRLST algorithm is presented to online predict the EEG,and compared with the other 13 kinds of kernel adaptive algorithms.The experimental results show that KRLST algorithm has the best effect of online prediction on the BCI dataset,and its average RMSE value is the smallest.

    成人欧美大片| 人妻丰满熟妇av一区二区三区| 亚洲精品影视一区二区三区av| 精品人妻偷拍中文字幕| 国产白丝娇喘喷水9色精品| 淫妇啪啪啪对白视频| 久久草成人影院| 久久久国产成人免费| 女生性感内裤真人,穿戴方法视频| 久久国产乱子免费精品| 我的老师免费观看完整版| 一个人看的www免费观看视频| 在线国产一区二区在线| 在线国产一区二区在线| 亚洲在线观看片| 成人亚洲精品av一区二区| 可以在线观看的亚洲视频| 卡戴珊不雅视频在线播放| 久久精品久久久久久噜噜老黄 | 最近视频中文字幕2019在线8| 亚洲一级一片aⅴ在线观看| 国产成人91sexporn| 国产免费一级a男人的天堂| 91狼人影院| 青春草视频在线免费观看| 免费黄网站久久成人精品| 午夜福利视频1000在线观看| 日韩,欧美,国产一区二区三区 | 久久久成人免费电影| 无遮挡黄片免费观看| 久久欧美精品欧美久久欧美| 国产成人精品久久久久久| 看黄色毛片网站| 人妻丰满熟妇av一区二区三区| 久久精品国产亚洲av天美| 中文字幕精品亚洲无线码一区| 禁无遮挡网站| 亚洲av免费高清在线观看| 高清毛片免费观看视频网站| 在线观看午夜福利视频| 九九热线精品视视频播放| 99在线人妻在线中文字幕| 热99在线观看视频| 国产精品无大码| 久久欧美精品欧美久久欧美| 男女啪啪激烈高潮av片| 波多野结衣高清无吗| 亚洲在线自拍视频| 99视频精品全部免费 在线| 少妇的逼好多水| 秋霞在线观看毛片| eeuss影院久久| 少妇人妻一区二区三区视频| 12—13女人毛片做爰片一| 精品一区二区三区人妻视频| 国产一级毛片七仙女欲春2| 12—13女人毛片做爰片一| 亚洲国产精品国产精品| 色视频www国产| 欧美丝袜亚洲另类| 麻豆av噜噜一区二区三区| 99热6这里只有精品| 午夜爱爱视频在线播放| 亚洲av免费高清在线观看| 亚洲欧美清纯卡通| 亚洲精品国产av成人精品 | 午夜视频国产福利| 大又大粗又爽又黄少妇毛片口| 亚洲三级黄色毛片| 日韩一区二区视频免费看| 国产伦在线观看视频一区| 成人美女网站在线观看视频| 国产综合懂色| 真实男女啪啪啪动态图| 尤物成人国产欧美一区二区三区| 天堂影院成人在线观看| 久久久精品大字幕| 国产成人a区在线观看| 国产成人a区在线观看| 国产伦精品一区二区三区四那| 中文字幕av在线有码专区| 不卡视频在线观看欧美| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲无线观看免费| 国产伦在线观看视频一区| 久久久久免费精品人妻一区二区| 日韩成人伦理影院| 国产精品亚洲美女久久久| 青春草视频在线免费观看| 欧美xxxx性猛交bbbb| 久久九九热精品免费| 中国国产av一级| 我要搜黄色片| videossex国产| 久久久久九九精品影院| 免费在线观看成人毛片| 高清毛片免费看| 久久久精品大字幕| 尾随美女入室| 久久久久国产精品人妻aⅴ院| 网址你懂的国产日韩在线| 在线观看免费视频日本深夜| 插逼视频在线观看| 天天躁夜夜躁狠狠久久av| 久久久成人免费电影| 国产精品国产三级国产av玫瑰| 97在线视频观看| 99九九线精品视频在线观看视频| 禁无遮挡网站| av卡一久久| 久久韩国三级中文字幕| 最后的刺客免费高清国语| 国产美女午夜福利| 美女高潮的动态| 精品99又大又爽又粗少妇毛片| 亚洲国产精品久久男人天堂| 乱码一卡2卡4卡精品| 淫妇啪啪啪对白视频| 尾随美女入室| 国产高清不卡午夜福利| 亚洲中文字幕一区二区三区有码在线看| 身体一侧抽搐| av在线观看视频网站免费| 91av网一区二区| 在线观看一区二区三区| www.色视频.com| 亚洲精品国产成人久久av| 岛国在线免费视频观看| 性插视频无遮挡在线免费观看| 亚洲欧美日韩高清专用| 性欧美人与动物交配| 美女高潮的动态| 欧美高清性xxxxhd video| 淫妇啪啪啪对白视频| 久久亚洲国产成人精品v| 国产精品久久久久久久电影| 91午夜精品亚洲一区二区三区| 国产精品av视频在线免费观看| 97超视频在线观看视频| 国产精品日韩av在线免费观看| 色哟哟·www| 听说在线观看完整版免费高清| 日韩av在线大香蕉| 欧美色视频一区免费| 一级黄片播放器| 99久久成人亚洲精品观看| 美女 人体艺术 gogo| 久久人人爽人人片av| 老司机午夜福利在线观看视频| 免费观看的影片在线观看| 一进一出抽搐动态| 国模一区二区三区四区视频| 亚洲精品国产av成人精品 | 麻豆久久精品国产亚洲av| 精品人妻偷拍中文字幕| 一区福利在线观看| 国产一区亚洲一区在线观看| 91久久精品国产一区二区三区| 91在线精品国自产拍蜜月| 日韩亚洲欧美综合| aaaaa片日本免费| 尤物成人国产欧美一区二区三区| 欧美日本视频| 网址你懂的国产日韩在线| 亚洲国产高清在线一区二区三| ponron亚洲| 精品乱码久久久久久99久播| 我要搜黄色片| 亚洲最大成人手机在线| 晚上一个人看的免费电影| 免费观看精品视频网站| 国产探花极品一区二区| 国产精品不卡视频一区二区| 国产精品一区二区三区四区免费观看 | 午夜精品国产一区二区电影 | 18+在线观看网站| 国产成人freesex在线 | 国产亚洲精品久久久com| 久久精品国产亚洲网站| 国产乱人偷精品视频| a级一级毛片免费在线观看| 国产精品一区二区三区四区免费观看 | 18禁黄网站禁片免费观看直播| 国产精品一区二区三区四区久久| 欧美一区二区国产精品久久精品| 久久久久国内视频| 麻豆乱淫一区二区| 观看免费一级毛片| 国产精品乱码一区二三区的特点| 国产爱豆传媒在线观看| 一区福利在线观看| 久久久精品欧美日韩精品| 高清毛片免费观看视频网站| 日本黄色片子视频| 十八禁国产超污无遮挡网站| 国产成人一区二区在线| 精品一区二区三区人妻视频| 国产精品av视频在线免费观看| 狂野欧美激情性xxxx在线观看| 免费观看的影片在线观看| 亚洲人成网站在线播| av专区在线播放| 黄色日韩在线| 午夜福利18| 久久久久久久久久黄片| 欧美zozozo另类| 久久精品夜色国产| 丝袜喷水一区| 成人高潮视频无遮挡免费网站| 嫩草影视91久久| 国产成人91sexporn| 一区二区三区四区激情视频 | 国产成人a∨麻豆精品| 亚洲精品久久国产高清桃花| aaaaa片日本免费| 亚洲不卡免费看| 国产午夜精品论理片| 12—13女人毛片做爰片一| 国产成人91sexporn| 成年女人永久免费观看视频| 天天躁日日操中文字幕| 97超级碰碰碰精品色视频在线观看| 国产精品电影一区二区三区| 三级经典国产精品| 深夜a级毛片| 听说在线观看完整版免费高清| 最近在线观看免费完整版| 国产久久久一区二区三区| 伦精品一区二区三区| 亚洲精品日韩在线中文字幕 | 免费av毛片视频| 岛国在线免费视频观看| 麻豆乱淫一区二区| 亚洲中文日韩欧美视频| 亚洲中文字幕一区二区三区有码在线看| 久久精品夜夜夜夜夜久久蜜豆| 九九热线精品视视频播放| 日韩欧美精品免费久久| 六月丁香七月| 一卡2卡三卡四卡精品乱码亚洲| 欧美+日韩+精品| 亚洲美女黄片视频| 日韩强制内射视频| 国内精品宾馆在线| 老师上课跳d突然被开到最大视频| 欧美不卡视频在线免费观看| 国产精品久久久久久亚洲av鲁大| 日韩三级伦理在线观看| 插阴视频在线观看视频| 高清毛片免费看| 久久久久国产网址| 精华霜和精华液先用哪个| 日韩强制内射视频| 三级毛片av免费| 国产欧美日韩精品一区二区| 国产免费一级a男人的天堂| 麻豆国产97在线/欧美| 1024手机看黄色片| 联通29元200g的流量卡| 亚洲成人久久性| 99热只有精品国产| 99久久无色码亚洲精品果冻| 国产精品久久久久久久久免| 午夜免费男女啪啪视频观看 | 日韩欧美精品免费久久| 别揉我奶头 嗯啊视频| 婷婷精品国产亚洲av| 精品国产三级普通话版| 久久韩国三级中文字幕| 亚洲国产精品久久男人天堂| 黄色日韩在线| 亚洲美女视频黄频| 免费搜索国产男女视频| 人妻久久中文字幕网| 国产黄片美女视频| 国产不卡一卡二| 一个人免费在线观看电影| 亚洲成a人片在线一区二区| 少妇的逼水好多| 日本免费一区二区三区高清不卡| 丰满乱子伦码专区| 热99re8久久精品国产| 中文字幕av在线有码专区| ponron亚洲| 色综合站精品国产| 国产精品嫩草影院av在线观看| 久久精品国产亚洲av天美| 亚洲经典国产精华液单| 最新中文字幕久久久久| 六月丁香七月| 日本一本二区三区精品| 国产精品一区二区性色av| 亚洲内射少妇av| 亚洲人与动物交配视频| 99久久精品一区二区三区| 午夜福利高清视频| 丰满乱子伦码专区| 久久久色成人| 美女被艹到高潮喷水动态| 日韩精品青青久久久久久| a级毛片免费高清观看在线播放| 国产精品嫩草影院av在线观看| 青春草视频在线免费观看| 悠悠久久av| 国产一区二区亚洲精品在线观看| 亚洲欧美中文字幕日韩二区| 久久久欧美国产精品| 欧美+亚洲+日韩+国产| 九色成人免费人妻av| 午夜激情福利司机影院| 少妇的逼水好多| 国产真实伦视频高清在线观看| 亚洲婷婷狠狠爱综合网| 国产在视频线在精品| 亚洲第一区二区三区不卡| 久久人人爽人人爽人人片va| 精品一区二区三区视频在线| 国内精品久久久久精免费| 午夜福利在线观看免费完整高清在 | 国产探花在线观看一区二区| 国内少妇人妻偷人精品xxx网站| or卡值多少钱| 亚洲精品456在线播放app| 国产伦在线观看视频一区| 婷婷色综合大香蕉| 亚洲高清免费不卡视频| 日韩大尺度精品在线看网址| 国产亚洲精品久久久久久毛片| 久久中文看片网| 午夜精品在线福利| 可以在线观看毛片的网站| 国产男靠女视频免费网站| 亚洲av第一区精品v没综合| 国产乱人偷精品视频| 久久精品91蜜桃| 国产精品一区二区三区四区久久| 亚洲人与动物交配视频| 欧美人与善性xxx| 婷婷精品国产亚洲av在线| 最近视频中文字幕2019在线8| 国产美女午夜福利| 日韩成人伦理影院| www日本黄色视频网| 亚洲aⅴ乱码一区二区在线播放| 又爽又黄a免费视频| 精品一区二区三区视频在线观看免费| 久久久久久九九精品二区国产| 国产一区二区在线av高清观看| 99在线视频只有这里精品首页| 在线国产一区二区在线| 国产一区二区三区av在线 | 亚洲aⅴ乱码一区二区在线播放| av黄色大香蕉| 成人毛片a级毛片在线播放| 久久久久久久午夜电影| 最新在线观看一区二区三区| 国内精品一区二区在线观看| 久久99热这里只有精品18| 男人和女人高潮做爰伦理| 国产精品不卡视频一区二区| 黄片wwwwww| 好男人在线观看高清免费视频| 亚洲无线观看免费| 欧美bdsm另类| 99riav亚洲国产免费| 国产色爽女视频免费观看| 欧美一区二区精品小视频在线| 偷拍熟女少妇极品色| 国产乱人偷精品视频| av在线蜜桃| 亚洲精品国产成人久久av| 内地一区二区视频在线| 悠悠久久av| 狠狠狠狠99中文字幕| 人妻丰满熟妇av一区二区三区| 少妇人妻一区二区三区视频| 在线观看午夜福利视频| 青春草视频在线免费观看| 少妇人妻一区二区三区视频| 日韩欧美精品免费久久| 天堂av国产一区二区熟女人妻| 亚洲成人精品中文字幕电影| 午夜老司机福利剧场| 日韩大尺度精品在线看网址| 91av网一区二区| 久久午夜亚洲精品久久| 搡老熟女国产l中国老女人| 国产精品久久久久久精品电影| 精品欧美国产一区二区三| 亚洲性久久影院| 久久精品国产清高在天天线| 人妻少妇偷人精品九色| 国产精品99久久久久久久久| 无遮挡黄片免费观看| 性色avwww在线观看| 免费人成在线观看视频色| 欧美bdsm另类| 国产片特级美女逼逼视频| 欧美激情国产日韩精品一区| 男女做爰动态图高潮gif福利片| 春色校园在线视频观看| 日韩成人伦理影院| 久久久久久伊人网av| 免费在线观看成人毛片| 国产白丝娇喘喷水9色精品| 久久人人爽人人爽人人片va| 精品午夜福利视频在线观看一区| 亚洲欧美精品自产自拍| 我要搜黄色片| 亚洲欧美日韩高清在线视频| 亚洲成人中文字幕在线播放| 午夜福利视频1000在线观看| 国产伦在线观看视频一区| 香蕉av资源在线| 啦啦啦啦在线视频资源| 国产熟女欧美一区二区| 中国国产av一级| 99热这里只有精品一区| 日本黄色视频三级网站网址| 久久久久久大精品| 久久精品国产鲁丝片午夜精品| 人人妻,人人澡人人爽秒播| 久久久久国内视频| av在线亚洲专区| 十八禁网站免费在线| 一卡2卡三卡四卡精品乱码亚洲| 12—13女人毛片做爰片一| 久久精品夜色国产| 午夜免费激情av| 国产伦一二天堂av在线观看| 高清日韩中文字幕在线| 97超级碰碰碰精品色视频在线观看| 99视频精品全部免费 在线| 乱人视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 此物有八面人人有两片| 国产高清有码在线观看视频| 国产探花在线观看一区二区| 日本 av在线| 最近2019中文字幕mv第一页| 精品福利观看| 最近视频中文字幕2019在线8| 亚洲天堂国产精品一区在线| 亚洲美女黄片视频| 亚洲av免费高清在线观看| 日本熟妇午夜| 色吧在线观看| 国内精品宾馆在线| 少妇熟女aⅴ在线视频| 亚洲国产欧美人成| 男女那种视频在线观看| 日本色播在线视频| 麻豆国产av国片精品| 网址你懂的国产日韩在线| 久久久精品94久久精品| 亚洲图色成人| 亚洲国产精品sss在线观看| 国产亚洲精品久久久com| 亚洲欧美日韩东京热| 哪里可以看免费的av片| 人妻久久中文字幕网| 国内少妇人妻偷人精品xxx网站| 丝袜美腿在线中文| 看黄色毛片网站| 日韩欧美三级三区| 欧美成人精品欧美一级黄| 22中文网久久字幕| 别揉我奶头~嗯~啊~动态视频| 看免费成人av毛片| 女同久久另类99精品国产91| 免费大片18禁| 久久久a久久爽久久v久久| 少妇人妻一区二区三区视频| 午夜老司机福利剧场| 伦理电影大哥的女人| 黄色视频,在线免费观看| 男女那种视频在线观看| 欧美一级a爱片免费观看看| 少妇丰满av| 乱系列少妇在线播放| 欧美日韩综合久久久久久| 中国国产av一级| 日韩大尺度精品在线看网址| 国产高清激情床上av| 男人和女人高潮做爰伦理| 久久久久久久久久成人| 久久婷婷人人爽人人干人人爱| 俄罗斯特黄特色一大片| 国产麻豆成人av免费视频| 午夜免费男女啪啪视频观看 | 一进一出抽搐gif免费好疼| 亚洲精品一区av在线观看| 国产精品无大码| 亚洲精品影视一区二区三区av| 熟妇人妻久久中文字幕3abv| 亚洲自偷自拍三级| 亚洲精品乱码久久久v下载方式| 免费看a级黄色片| 国产精品一区www在线观看| 国产精品久久久久久久电影| 日日摸夜夜添夜夜爱| 国产成人一区二区在线| 有码 亚洲区| 99精品在免费线老司机午夜| 久久中文看片网| 国内久久婷婷六月综合欲色啪| 黄片wwwwww| 晚上一个人看的免费电影| 美女免费视频网站| 一级黄片播放器| 天天躁夜夜躁狠狠久久av| 久久久久九九精品影院| 亚洲经典国产精华液单| 日本免费a在线| 久久久久免费精品人妻一区二区| 色哟哟·www| 99精品在免费线老司机午夜| 波多野结衣高清作品| 精品久久久久久久久久免费视频| 亚洲成人中文字幕在线播放| 亚洲欧美清纯卡通| 日本熟妇午夜| av在线天堂中文字幕| 精品久久久噜噜| 精品乱码久久久久久99久播| 亚洲成a人片在线一区二区| 网址你懂的国产日韩在线| 69av精品久久久久久| 欧美最黄视频在线播放免费| 18禁黄网站禁片免费观看直播| 韩国av在线不卡| 久久久午夜欧美精品| 国产美女午夜福利| 两个人的视频大全免费| 成人av在线播放网站| 精品熟女少妇av免费看| 最近手机中文字幕大全| 夜夜看夜夜爽夜夜摸| 亚洲va在线va天堂va国产| 亚洲经典国产精华液单| 国产精品久久久久久av不卡| 成年版毛片免费区| 69av精品久久久久久| 久久久久国产精品人妻aⅴ院| 偷拍熟女少妇极品色| 国产伦在线观看视频一区| 国产精品女同一区二区软件| 色5月婷婷丁香| 观看美女的网站| 亚洲丝袜综合中文字幕| 亚洲无线在线观看| 欧美高清成人免费视频www| 露出奶头的视频| 免费av观看视频| 舔av片在线| 欧美绝顶高潮抽搐喷水| 久久综合国产亚洲精品| 内射极品少妇av片p| 69人妻影院| 国产精品一区二区三区四区免费观看 | 欧美日韩乱码在线| 国产伦一二天堂av在线观看| 少妇裸体淫交视频免费看高清| 少妇熟女aⅴ在线视频| 女人十人毛片免费观看3o分钟| 99久久九九国产精品国产免费| 毛片一级片免费看久久久久| 国产高清不卡午夜福利| 欧美成人一区二区免费高清观看| 国产熟女欧美一区二区| 给我免费播放毛片高清在线观看| 精品熟女少妇av免费看| 国产欧美日韩一区二区精品| 22中文网久久字幕| 日韩 亚洲 欧美在线| 蜜臀久久99精品久久宅男| 国产视频内射| 精华霜和精华液先用哪个| 亚洲久久久久久中文字幕| 一区福利在线观看| 天堂影院成人在线观看| 五月玫瑰六月丁香| 亚洲av中文字字幕乱码综合| 久久久精品欧美日韩精品| 亚洲,欧美,日韩| 男女视频在线观看网站免费| av天堂中文字幕网| 99久久精品国产国产毛片| 欧美一区二区精品小视频在线| 午夜激情欧美在线| 97碰自拍视频| 又爽又黄无遮挡网站| 色噜噜av男人的天堂激情| 乱码一卡2卡4卡精品| 国产欧美日韩精品亚洲av| 真人做人爱边吃奶动态| 淫秽高清视频在线观看| 亚洲在线自拍视频| 国产三级在线视频| 特大巨黑吊av在线直播| 黄片wwwwww| 中文字幕人妻熟人妻熟丝袜美| 十八禁网站免费在线| 午夜免费男女啪啪视频观看 | 在线播放无遮挡| 精品免费久久久久久久清纯| 国语自产精品视频在线第100页| 午夜福利视频1000在线观看| 中文字幕av成人在线电影| 成人鲁丝片一二三区免费| 成人国产麻豆网| 老女人水多毛片| 97在线视频观看| 亚洲,欧美,日韩| 精品久久久久久久末码|