• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the performance of full-duplex non-orthonogal multiple access with energy harvesting over Nakagami-m fading channels①

    2022-01-09 02:08:02GuoWeidong郭衛(wèi)棟ZhengDong
    High Technology Letters 2021年4期

    Guo Weidong(郭衛(wèi)棟),Zheng Dong

    (*School of Information Science and Engineering,Shandong University,Qingdao 266237,P.R.China)

    (**School of Cyber Science and Engineering,Qufu Normal University,Qufu 273165,P.R.China)

    Abstract

    Key words:non-orthogonal multiple access(NOMA),full-duplex(FD),energy harvesting(EH),Markov chain

    0 Introduction

    As one of the promising key techniques of the fifth generation(5G) wireless networks,non-orthogonal multiple access(NOMA)has been applied in various areas[1-2].NOMA utilizes the power domain to achieve multiple-access strategies,which is unlike the conventional orthogonal multiple access(OMA)structures.Since the NOMA technique exploits the new dimension of the power domain,it has the potential to be integrated with existing MA paradigms.On the other hand,the technique of cooperative transmission can form a virtual multiple-input multiple-output(MIMO)scheme to process data cooperatively,which can enhance the communication reliability for the users who are in poor channel conditions.It is reasonable to integrate NOMA into relaying networks.Ref.[3]proposed a new cooperative NOMA scheme and analyzed the outage probability and diversity gain of the system.In Ref.[4],it is revealed that cooperative NOMA achieves the same diversity order and the superior coding gain compared to cooperative OMA.

    To avoid additional bandwidth cost for cooperative NOMA system,full-duplex(FD)has attracted considerable attention,because transmission and reception are performed simultaneously on the same carrier frequency in FD operation[5].Two main types of FD relay techniques,namely FD amplify-and-forward(AF)relaying and FD decode-and-forward(DF)relaying,had been discussed in Refs[6-8].The outage probability of FD-AF relaying with a non-negligible direct link was analyzed in Ref.[6],which considers the processing delay of relaying in practical scenarios.Ref.[7]analyzed the outage probability of a basic three-node FDAF relaying system.Ref.[8]characterized the outage performance of FD-DF relaying and demonstrated that it is possible to determine which duplex mode is superior under the target outage probability.

    Another goal of 5G networks is to maximize the energy efficiency.Therefore,energy harvesting(EH),a technique to harvest energy from radio frequency signals,has received considerable attention as a solution to overcome the bottleneck of energy constrained system[9].Recently,relays with EH capabilities have attracted lots of research interests,where the relay can use the energy harvested from the other nodes to perform the data forwarding[10].This can solve the problem of the energy supply of relays and expand the application of EH-based wireless communications.Ref.[11]investigated a dual-hop cooperative communication system,where source node communicates with destination node through direct and EH relaying paths.Ref.[12]addressed energy efficiency-spectrum efficiency trade-off in an EH cooperative cognitive radio network operated in a frame structure comprising of spectrum sensing and cooperation-transmission mode.Nevertheless,the amount of energy harvested from RF radiation is often restricted and it is desirable for relays to accumulate the harvested energy in the energy storage such as super-capacitors or rechargeable batteries[13].In Ref.[14],different from the conventional battery-free EH relaying strategy,harvested energy is prioritized to power information relaying while the remainder is accumulated and stored for future usage with the help of a battery in the proposed strategy,which supports an efficient utilization of harvested energy.

    In order to improve the spectral efficiency and energy efficiency,the FD-NOMA relaying for the downlink transmission over Nakagami-mfading channels is considered and a comprehensive performance analysis is provided.The analysis of this paper provides more general results,as the Nakagami-mfading can incorporate the most commonly used Rayleigh fading and Rice fading as special cases,which can be obtained by adjusting the fading parameter.The main contributions of this paper are summarized as follows.

    (1)This paper studies a NOMA-based downlink FD-AF relaying network over Nakagami-mfading channels.The relays have no other energy supplies,but they are equipped with chargeable battery and can harvest and store the wireless energy broadcasted by the source.Based on this structure,a new relay selection scheme is proposed considering both the channel state information(CSI)and the battery statuses of relays.

    (2)This model combines NOMA,cooperative communication,FD and EH together reasonably and can improve spectral efficiency and energy efficiency simultaneously.

    (3)The amount of energy stored in the battery of each relay is modeled as finite states and a finite Markov chain is used to model the variation of energy at each relay.Both the transition probability and the steady-state probability are derived for the next performance analysis.

    (4)The asymptotic expressions of outage probability and the ergodic sum-rate for both near and far users are derived.Finally,simulation results are presented to validate the theoretical analysis and verify the superiority of FD-NOMA relaying over the traditional HD-NOMA relaying and OMA relaying.

    This paper is different from the recent work[15].The main differences between them are summarized as follows.

    (1)The models of two papers are quite different.In Ref.[15],the model is very simple.The source has no direct link with users.The channels are assumed to follow Rayleigh fading and relays operate in half-duplex mode.In this paper,the source has direct link with users and the channels are assumed to follow Nakagami-mfading which is more accorded with actual communication scenarios.In addition,relays in this paper operate in full-duplex mode which improves the spectral efficiency.

    (2)In Ref.[15],the source transmits information to all users simultaneously using NOMA scheme.While in this paper,2-user NOMA is used.In general,2-user NOMA is a typical scenario,where two of all users are selected to perform NOMA.The decoding complexity and delay at the receivers are lower and shorter compared with all-user NOMA.

    (3)In Ref.[15],only outage probability is analyzed,while in this paper,both outage probability and ergodic sum-rate are analyzed.

    The rest of this paper is organized as follows.System model is introduced in Section 1.The relay selection scheme is illustrated in Section 2.The closed-form expressions of outage probability and ergodic sum-rate are derived in Section 3.Numerical and simulations results are presented in Section 4 and conclusions are drawn in Section 5.

    1 System model

    Fig.1 A reference model for multi-relay cooperative FD-NOMA network

    AF-NOMA protocol is used for downlink transmission and a normalized unit block time(i.e.,T=1)is considered.Before the transmission,each relay judges if it has enough energy to forward the information.If the relay does not have enough energy,it performs EH in this time block and stores the harvested energy into its battery.The amount of energy harvested from the source can be expressed as

    where,PSis the source power,ηis the energy harvesting efficiency at each relay.

    For those relays with sufficient energy,they report their CSI toSfor the relay selection decision.Lettingωidenote the amount of energy in the battery of relayRi,relays with enough energy are defined as the eligible set

    where,Cis the energy harvesting threshold to activate the EH circuit,Vis a positive integer.If the selected relay for forwarding data is assumed to have the same transmitting power asS,Vmust satisfy

    Among this set of relays,Rˉmis selected,which can be expressed as

    Using selection combining(SC),the instantaneous SINR ofDpcan be obtained as

    As forDq,the successive interference cancellation(SIC)is applied to decode information ofDp.Particularly,Dqfirst decodes the message ofDp,then subtracts this component from the received signal to detect its own information.Therefore,the received SINRs atDqfor the decoding of the information ofDpare given by

    After SIC operation,the instantaneous SINRs atDqfor the decoding of its own information are expressed by

    Similar to Eq.(11),according to the SC,the instantaneous SINR ofDqcan be expressed as

    2 Relay selection rule

    This assumption is closer to the practical scenario,and the evolution of the battery status of each relay can be modeled as a finite-state Markov chain.Using the transition probability matrix of this chain,the steady state probability vector which can be used for analyzing the performance can be got.

    The above analysis is computationally intense whenMis large.To facilitate the computation,an approximated approach based on two simplified assumptions is proposed.Firstly,the relay energy amount at the selection epoch is denoted as a random variableZ.To ease the computation,Zis approximated as a uniform random variable over[0,BC].This approximation is inspired by considering the amount of harvested energy in a transmission block follows the geometric distribution with parameter 1/2[18].The effectiveness of the assumption will be discussed in the simulation part.Secondly,it is easy to find that each relay may be either short of enough energy to participate in relay selection or otherwise,so the evolution of relay energy amount is captured by using two states,either active or inactive.With this two-state Markov chain,a relay is ins0if the relay lacks sufficient energy to transmit,or ins1when the relay has enough energy for transmission.Next,how to obtain the transition probability matrix of this two-state Markov chain will be discussed.

    The transition froms0tos0happens when a relay has no enough energy to transmit(i.e.,Z

    whereΓ(·)is Gamma function[19].The corresponding cumulative distribution function(CDF) is expressed by

    Ifm1takes positive integer value,then with the help of Ref.[19],Eq.(18)can be solved as

    The transition froms0tos1happens when the relay enters the EH mode in the current bock and the accumulated energy exceedsVC.Hence,

    Similar to the derivation of Eq.(22),Eq.(25)can be obtained.

    The transition froms1tos0happens when the relay with enough energy is selected as the best relay for transmitting and its remaining energy is not enough for another transmitting.Hence,the transition probability is given by

    Using this PDF,the first term in the right of Eq.(26)can be obtained as

    As to the second term,it is noted that the i.i.d.fading assumption implies each relay inξhas an equal chance to be selected as the best relay.To simplify the analysis,the cardinality ofξis approximated by its mean such that

    The transition probability froms1tos1can be solved in the similar manner as the previous case,so the derivation is omitted.

    When the two-state Markov chain is formulated,the steady-state probability vector can be easily obtained as

    It should be noted that bothv0andv1involveP1,0,which is a function ofv1.By substitutingP0,1andP1,0into Eq.(31),v1can be solved explicitly.Taking the condition 2VC

    Withv1at hand,Pr(|ξ|=Ω)(Ω=1,2,3,…)can be got which follows the binomial distribution with the probability mass function given as

    3 Performance analysis

    3.1 Outage behavior

    According to the total probability law,the outage probability ofDporDqcan be written as

    The scheme would be in outage if the SINR falls below the pre-set threshold,so the outage probability of terminalDpis given by

    whereτ=γthp/γ(ap-aqγthp).It is noteworthy that Eq.(38)exists if and only ifγthp

    Next,the analysis of an outage event atDqis presented.Owing to the mechanism of SIC,the outage probability ofDqis given in the following.

    whereγthqis the threshold ofDq.J3can be expanded as

    Next,according to Eqs(13)and(15),J4can be written as

    The derivation of the integral in Eq.(43)is the same as Eq.(39),so it is omitted here.So far,the outage probability ofDqhas been derived by substituting Eqs(33),(42)and(43)into Eq.(34).

    3.2 Ergodic sum-rate

    In this section,the ergodic sum-rate for a pair of users is analysed which is given by

    The rate ofDpcan be calculated in the following,where approximation is attained under the condition ofγ→∞.

    All probabilities in the Eq.(46)can be got according to the above analysis.OnlyJ5,J6andJ7need to be derived in the following.Firstly,J5can be written as

    Using Eq.(37),Eq.(3.351.2)of Ref.[19]and Eq.(3.353.5)in Ref.[19],the close form ofJ5can be got as

    Now denoting the random variable:

    Thus an upper bound ofJ6is rewritten as

    Thirdly,J7can be rewritten as

    As the derivation process of Eq.(49),denoting the random variable

    Then,Eq.(53)can be written as

    4 Results and discussion

    In this section,Monto-Carlo simulations are performed to validate the theoretical analysis.In all simulations,the energy conversion efficiencyη=0.5,the fixed transmission rate of the source is 1 bit per channel use(bpcu).Cis set as the multiple of the source transmission energy,i.e.,C=δPT,whereδ>0 is the scaling factor.To facilitate the analysis,the following sets of parameters are used:N=3,σ2=1,m0=m1=m2=2,ΦSD=ΦSR=ΦRD=1,ap=8/9,aq=1/9,γthp=1 dB,γthq=2 dB,p=1,q=3.

    Fig.2 shows the performance of the proposed scheme and existing schemes versus the transmitting SNR of source.One relay is sleceted randomly from the eligible relay set when the FD-NOMA(random)scheme is used.It can be seen that the approximate analysis of finite Markov chain is accurate in the whole SNRs.Compared with the HD-NOMA,FD-NOMA(random)and conventional OMA relaying scheme,the outage behavior of each terminal in the FD-NOMA relaying system is better,even in the existence of SI at the relay.It can also be found that the diversity order for each user in the proposed shceme is equal to that in the HD cooperative NOMA system.Since the theoretical analyses agree well with the simulations,only analytical results will be plotted in the remaining outage probability figures.

    Fig.2 Outage probability with different user and scheme

    In Fig.3,the impacts of SI on the outage probability are investigated.It can be seen that the outage performance of the FD relaying(only take one user,e.g.,Dp,and vice versa)system will become worse than that in the HD relaying network for high-SNR values when SI is extremely severe.But both two schemes can have better outage performance than the conventional OMA scheme and spectral efficiency can be improved in the FD-NOMA system.

    Fig.3 Outage probability with different SI

    In Fig.4,the impacts ofδon the performance of the proposed scheme with different SI in medium SNR conditions(P/σ2=20 dB)are illustrated.For all the curves,the trends are the same for all schemes,namely,the probability first decreases then increases asδvaries from 0 to 1.This means that,when the other parameters are determined,there must be an optimal value ofδ.However,the values of the inflection points are not always the same for different users and SI.It can be seen that for the user with better channel condition(Dq),the optimal value is smaller than user with worse channel condition(Dp).This is becauseDphas the worse direct link,so it needs more power to enhance the relay link.It can also be seen that for the FD cooperative NOMA system,the optimal value shifts to the left with the increase in the level of SI and whenδis too big,the outage behavior is nearly the same under different values of SI.Compared to the HD cooperative NOMA system,the outage behavior ofDpis getting inferior when the value of SI is large andδis small.Finally,the optimal value ofδcan easily be obtained by a one-dimensional exhaustive search.With this optimal value ofδ,the system can resist fading more effectively.high-SNR regions,we will only plot the analytical results in the remaining rate figures.Secondly,the results clearly show that the FD-NOMA system can achieve a larger sum-rate compared with the HD relaying system,FD-NOMA(random)and conventional OMA system,but twice as much as HD-NOMA cannot be achieved owing to the effect of SI.More importantly,with the increase of system SNR,the rate ofDpapproaches a certain value,whereas theDqcan obtain improved performance.Both the two conclusions are consistent with the derivations in Eq.(45)and Eq.(46).

    Fig.4 Outage probability againstδ(M=6,B=10)

    Fig.5 Rate with different user and different scheme

    In Fig.6,the impact of battery size on the proposed finite battery scheme is investigated by varying the relay number and SI.It can be observed that the performance increases asBor relay number increase.However,the gain provided by a larger battery size does not increase whenBexceeds a certain value and this value is approximate to 6.From this figure,it can also be seen that the battery can not offer enough energy for forwarding the data whenB=1,so the performances are the same for all curves and the performance gap for different SI increases as the number of relay increases.

    Fig.6 Sum-rate against B(δ=0.5)

    5 Conclusions

    A relay selection scheme for the FD-NOMA networks with EH over Nakagami-mfading channels has been proposed.The amount of harvested energy at each relay is modeled as a finite Markov chain and then the approximate closed-form expression of the outage probability and ergodic sum-rate are derived.Simulations are carried out to verify the effectiveness of the theoretical analysis.It is concluded that through carefully choosing the system parameters of the network,(e.g.,EH threshold),FD-NOMA performs much better than the HD-NOMA or the conventional OMA.

    精品国产三级普通话版| 国产亚洲91精品色在线| 日本av手机在线免费观看| 国产淫片久久久久久久久| 中文字幕制服av| 人人妻人人看人人澡| 夜夜爽夜夜爽视频| 亚洲av男天堂| 欧美日韩在线观看h| 久久久久国产网址| 久久久久久久久中文| 尤物成人国产欧美一区二区三区| 婷婷色av中文字幕| 亚洲欧美精品综合久久99| 国产老妇伦熟女老妇高清| 三级毛片av免费| 干丝袜人妻中文字幕| 免费看日本二区| 晚上一个人看的免费电影| 啦啦啦啦在线视频资源| 一级av片app| 亚洲欧美精品综合久久99| 在线播放国产精品三级| 99热这里只有是精品50| 午夜免费男女啪啪视频观看| 波野结衣二区三区在线| 九九久久精品国产亚洲av麻豆| 最近视频中文字幕2019在线8| 欧美成人a在线观看| 一夜夜www| 国产亚洲精品av在线| 久久久久久久国产电影| 99在线视频只有这里精品首页| 视频中文字幕在线观看| 国产高清国产精品国产三级 | 一级毛片aaaaaa免费看小| 欧美成人午夜免费资源| 亚洲国产成人一精品久久久| 成人亚洲精品av一区二区| 久久久久久久久久久丰满| 久久人妻av系列| 男女那种视频在线观看| 看黄色毛片网站| 免费av不卡在线播放| 亚洲激情五月婷婷啪啪| 少妇裸体淫交视频免费看高清| 国内精品宾馆在线| 欧美色视频一区免费| 久久欧美精品欧美久久欧美| 伦精品一区二区三区| 日韩,欧美,国产一区二区三区 | 国产av不卡久久| 国产成年人精品一区二区| 麻豆国产97在线/欧美| 乱人视频在线观看| 欧美zozozo另类| 亚洲最大成人手机在线| 欧美丝袜亚洲另类| 欧美丝袜亚洲另类| 久久久久久伊人网av| 国产不卡一卡二| 国产欧美另类精品又又久久亚洲欧美| 国产精品爽爽va在线观看网站| 一边摸一边抽搐一进一小说| 人妻系列 视频| 九九爱精品视频在线观看| 国产亚洲5aaaaa淫片| 中国美白少妇内射xxxbb| 久久久久久久亚洲中文字幕| 精品久久久噜噜| 久久久久久久久中文| 99久久九九国产精品国产免费| 午夜福利在线观看免费完整高清在| 男女啪啪激烈高潮av片| 免费观看a级毛片全部| 日韩大片免费观看网站 | 日韩亚洲欧美综合| 欧美丝袜亚洲另类| 乱码一卡2卡4卡精品| 免费观看精品视频网站| 国产精品1区2区在线观看.| 2022亚洲国产成人精品| 黑人高潮一二区| 天天躁日日操中文字幕| 99热这里只有是精品在线观看| 一级黄片播放器| 久久久久精品久久久久真实原创| 国产高清视频在线观看网站| 亚洲国产欧洲综合997久久,| 国产免费视频播放在线视频 | 最近手机中文字幕大全| 男插女下体视频免费在线播放| 3wmmmm亚洲av在线观看| 国产一区二区在线观看日韩| 黑人高潮一二区| 国产精品一及| 婷婷六月久久综合丁香| 精品久久久久久久久av| 日日摸夜夜添夜夜爱| 日本一二三区视频观看| 亚洲欧美一区二区三区国产| 国产精品伦人一区二区| 国产一区有黄有色的免费视频 | 免费观看的影片在线观看| 国产综合懂色| 日韩精品青青久久久久久| 97在线视频观看| 国产精品一二三区在线看| 色5月婷婷丁香| 久久国产乱子免费精品| 国产在视频线精品| 小蜜桃在线观看免费完整版高清| 婷婷色综合大香蕉| 亚洲高清免费不卡视频| 大又大粗又爽又黄少妇毛片口| 边亲边吃奶的免费视频| 激情 狠狠 欧美| 女人被狂操c到高潮| 久久鲁丝午夜福利片| 热99在线观看视频| 国产成人aa在线观看| 国产午夜精品论理片| 哪个播放器可以免费观看大片| 91精品伊人久久大香线蕉| 又爽又黄a免费视频| 网址你懂的国产日韩在线| 在线观看av片永久免费下载| 搡女人真爽免费视频火全软件| 狠狠狠狠99中文字幕| 日本三级黄在线观看| 高清午夜精品一区二区三区| 舔av片在线| 久久草成人影院| 白带黄色成豆腐渣| 国产国拍精品亚洲av在线观看| 午夜福利视频1000在线观看| 你懂的网址亚洲精品在线观看 | 日本黄色片子视频| 波多野结衣巨乳人妻| 亚洲乱码一区二区免费版| 久久99热这里只频精品6学生 | 亚洲乱码一区二区免费版| 国产黄色视频一区二区在线观看 | 亚洲婷婷狠狠爱综合网| 午夜福利成人在线免费观看| 中文天堂在线官网| 免费搜索国产男女视频| 国产成人a区在线观看| 久久热精品热| 日本爱情动作片www.在线观看| 亚洲精品一区蜜桃| 男人舔奶头视频| 成人午夜高清在线视频| 秋霞伦理黄片| 最新中文字幕久久久久| av女优亚洲男人天堂| 18+在线观看网站| 在线观看一区二区三区| 国产人妻一区二区三区在| 国产伦在线观看视频一区| 亚洲精品自拍成人| 床上黄色一级片| 偷拍熟女少妇极品色| 国产午夜福利久久久久久| 一级黄色大片毛片| 自拍偷自拍亚洲精品老妇| 免费电影在线观看免费观看| or卡值多少钱| 大香蕉97超碰在线| 欧美另类亚洲清纯唯美| 久久亚洲国产成人精品v| 午夜福利在线观看免费完整高清在| 26uuu在线亚洲综合色| 国产精品爽爽va在线观看网站| 精品欧美国产一区二区三| 直男gayav资源| 岛国毛片在线播放| 国产精品国产三级专区第一集| a级毛片免费高清观看在线播放| 国产精品美女特级片免费视频播放器| 国产 一区 欧美 日韩| 国产高清国产精品国产三级 | 国产精品三级大全| 超碰av人人做人人爽久久| 能在线免费观看的黄片| 国产成人精品一,二区| 精品国产一区二区三区久久久樱花 | 精品少妇黑人巨大在线播放 | 99久久精品一区二区三区| 亚洲欧美日韩无卡精品| 国产淫片久久久久久久久| 亚洲在久久综合| av免费在线看不卡| 三级毛片av免费| 一个人看的www免费观看视频| 亚洲熟妇中文字幕五十中出| av线在线观看网站| 国产午夜精品久久久久久一区二区三区| 成人漫画全彩无遮挡| 69av精品久久久久久| 村上凉子中文字幕在线| 亚洲精品色激情综合| av国产久精品久网站免费入址| 亚洲天堂国产精品一区在线| 三级男女做爰猛烈吃奶摸视频| 永久网站在线| 久久精品国产自在天天线| 色综合站精品国产| 国产亚洲av嫩草精品影院| 在线播放国产精品三级| 成年版毛片免费区| 日韩精品有码人妻一区| 国产免费视频播放在线视频 | 午夜激情欧美在线| 熟女电影av网| 一级毛片久久久久久久久女| 秋霞伦理黄片| 久久久成人免费电影| 能在线免费观看的黄片| 国产精品久久久久久久电影| 日日摸夜夜添夜夜爱| av专区在线播放| 最新中文字幕久久久久| 啦啦啦啦在线视频资源| 国内少妇人妻偷人精品xxx网站| 亚洲欧美日韩卡通动漫| 中国美白少妇内射xxxbb| 国产精品,欧美在线| 国产视频内射| 在线观看av片永久免费下载| 禁无遮挡网站| .国产精品久久| 嫩草影院精品99| 久久久a久久爽久久v久久| 国产精品福利在线免费观看| 久久久国产成人免费| 国产精品一区二区三区四区免费观看| 一级毛片电影观看 | 亚洲乱码一区二区免费版| 亚洲四区av| 亚洲国产精品合色在线| 亚洲国产欧美人成| 国产乱人偷精品视频| 午夜福利在线在线| 午夜爱爱视频在线播放| 亚洲欧美精品自产自拍| 午夜福利在线观看吧| 国产成人午夜福利电影在线观看| 一边亲一边摸免费视频| 亚洲人成网站高清观看| www.色视频.com| a级毛色黄片| 天堂中文最新版在线下载 | 亚洲av成人精品一二三区| 热99re8久久精品国产| 亚洲成人av在线免费| 免费观看人在逋| 国产精品电影一区二区三区| 精品午夜福利在线看| 亚洲久久久久久中文字幕| 蜜臀久久99精品久久宅男| 久久久久九九精品影院| 国内精品一区二区在线观看| 一级毛片久久久久久久久女| 欧美日本视频| 欧美一区二区国产精品久久精品| 精品国内亚洲2022精品成人| 99久久精品热视频| 亚洲一区高清亚洲精品| 午夜日本视频在线| 男人和女人高潮做爰伦理| 少妇高潮的动态图| 两个人视频免费观看高清| 久久久久久久久中文| 黑人高潮一二区| 高清毛片免费看| 丰满人妻一区二区三区视频av| 久久草成人影院| 又粗又爽又猛毛片免费看| 日韩欧美精品免费久久| 夫妻性生交免费视频一级片| 免费搜索国产男女视频| 伦精品一区二区三区| 国产精品日韩av在线免费观看| 亚洲精品456在线播放app| 亚洲av成人精品一区久久| 日韩亚洲欧美综合| 最近最新中文字幕大全电影3| 国产一级毛片七仙女欲春2| 亚洲国产欧美人成| 最近的中文字幕免费完整| 亚洲无线观看免费| 五月伊人婷婷丁香| 一个人观看的视频www高清免费观看| 国产又黄又爽又无遮挡在线| 国产免费一级a男人的天堂| 欧美xxxx黑人xx丫x性爽| 久久久久久久久久成人| 免费看美女性在线毛片视频| 国产成人a区在线观看| 亚洲av成人精品一二三区| 国产一级毛片在线| 国产三级中文精品| 日日摸夜夜添夜夜爱| 国产视频内射| 国产精品美女特级片免费视频播放器| 一个人看视频在线观看www免费| 神马国产精品三级电影在线观看| 国产高清国产精品国产三级 | 国产淫片久久久久久久久| 国产激情偷乱视频一区二区| 亚洲精品亚洲一区二区| 嫩草影院入口| 一个人看的www免费观看视频| 一个人免费在线观看电影| 午夜视频国产福利| 久久久久久久午夜电影| 国产色婷婷99| 精品午夜福利在线看| 又爽又黄a免费视频| 最新中文字幕久久久久| 亚洲久久久久久中文字幕| 欧美日韩精品成人综合77777| 韩国高清视频一区二区三区| 中文天堂在线官网| 最近视频中文字幕2019在线8| 深夜a级毛片| 久久精品久久精品一区二区三区| 久久久国产成人精品二区| 亚洲在久久综合| 99热网站在线观看| 欧美激情在线99| 天堂影院成人在线观看| 人妻夜夜爽99麻豆av| 成人漫画全彩无遮挡| 高清毛片免费看| 国产爱豆传媒在线观看| av视频在线观看入口| 免费观看精品视频网站| 长腿黑丝高跟| 国产欧美日韩精品一区二区| 国产精品日韩av在线免费观看| 联通29元200g的流量卡| 国产一区二区亚洲精品在线观看| 日韩一区二区视频免费看| 国产精品一区二区三区四区久久| 免费观看精品视频网站| 国产精品日韩av在线免费观看| 免费人成在线观看视频色| 黑人高潮一二区| 十八禁国产超污无遮挡网站| 爱豆传媒免费全集在线观看| 欧美一级a爱片免费观看看| 我的女老师完整版在线观看| 观看免费一级毛片| 中文精品一卡2卡3卡4更新| 一级爰片在线观看| 一边亲一边摸免费视频| a级一级毛片免费在线观看| 五月玫瑰六月丁香| 日韩一区二区视频免费看| 国产成人福利小说| 欧美高清成人免费视频www| 中文精品一卡2卡3卡4更新| 国产免费又黄又爽又色| 国产精品日韩av在线免费观看| 日韩一区二区视频免费看| 有码 亚洲区| 免费一级毛片在线播放高清视频| 一级毛片电影观看 | 村上凉子中文字幕在线| 晚上一个人看的免费电影| 亚洲精品成人久久久久久| 成人二区视频| 看非洲黑人一级黄片| 啦啦啦啦在线视频资源| 3wmmmm亚洲av在线观看| 直男gayav资源| 国产成人91sexporn| 精品人妻一区二区三区麻豆| 亚洲18禁久久av| 国产一区有黄有色的免费视频 | 我要搜黄色片| 国产精品国产高清国产av| 亚洲国产精品成人综合色| 看十八女毛片水多多多| 一本久久精品| 永久免费av网站大全| 国产精品一区www在线观看| 日韩欧美 国产精品| 久久久久网色| 久久久午夜欧美精品| 久久人人爽人人片av| 2021天堂中文幕一二区在线观| 免费看av在线观看网站| 少妇被粗大猛烈的视频| 天堂影院成人在线观看| 高清av免费在线| 国产精品电影一区二区三区| 嫩草影院精品99| 国产伦一二天堂av在线观看| 少妇猛男粗大的猛烈进出视频 | 伊人久久精品亚洲午夜| 久久韩国三级中文字幕| 熟女电影av网| 国产人妻一区二区三区在| 亚洲精品亚洲一区二区| 国产精品伦人一区二区| 九九久久精品国产亚洲av麻豆| 国产在视频线在精品| 亚洲精品色激情综合| 国产精品电影一区二区三区| 99九九线精品视频在线观看视频| 亚洲最大成人中文| 日韩欧美精品免费久久| 永久免费av网站大全| 最近的中文字幕免费完整| av在线观看视频网站免费| 久久草成人影院| 久久亚洲精品不卡| 亚洲在线观看片| 中文精品一卡2卡3卡4更新| 99久久精品一区二区三区| 舔av片在线| 亚洲最大成人中文| 一区二区三区乱码不卡18| 精品一区二区三区人妻视频| 韩国av在线不卡| 国产 一区精品| 99热这里只有精品一区| 在线免费观看的www视频| 欧美97在线视频| 色综合站精品国产| 国产成人freesex在线| 免费搜索国产男女视频| 一级黄色大片毛片| 卡戴珊不雅视频在线播放| 老女人水多毛片| 最近最新中文字幕大全电影3| 欧美日本亚洲视频在线播放| 一本久久精品| 特级一级黄色大片| 国产精品三级大全| 国产在线一区二区三区精 | 日本与韩国留学比较| 春色校园在线视频观看| 少妇高潮的动态图| 99国产精品一区二区蜜桃av| 国产精品国产三级专区第一集| 麻豆av噜噜一区二区三区| 国产午夜精品一二区理论片| 成人国产麻豆网| 三级国产精品片| 国产精品综合久久久久久久免费| 插阴视频在线观看视频| 国产精品.久久久| 精品免费久久久久久久清纯| 亚洲欧美成人精品一区二区| 麻豆国产97在线/欧美| 亚洲av电影不卡..在线观看| 国产伦精品一区二区三区四那| 国产精品99久久久久久久久| 色哟哟·www| 人人妻人人看人人澡| 国产精品爽爽va在线观看网站| 99久久精品一区二区三区| 国产一区二区在线av高清观看| 啦啦啦观看免费观看视频高清| 天堂√8在线中文| 国产免费又黄又爽又色| 国产高清视频在线观看网站| 久久久久久久亚洲中文字幕| 亚洲国产欧洲综合997久久,| 久久精品熟女亚洲av麻豆精品 | 亚洲激情五月婷婷啪啪| 亚洲欧美一区二区三区国产| 久久久久久九九精品二区国产| 欧美色视频一区免费| 国产精品综合久久久久久久免费| 在现免费观看毛片| 精品熟女少妇av免费看| 亚洲欧美清纯卡通| 在线观看66精品国产| 深爱激情五月婷婷| 欧美+日韩+精品| 听说在线观看完整版免费高清| 国产午夜精品论理片| 欧美性猛交╳xxx乱大交人| 成人午夜精彩视频在线观看| 又粗又硬又长又爽又黄的视频| 国产免费又黄又爽又色| 国产男人的电影天堂91| 国产日韩欧美在线精品| 亚洲国产欧美在线一区| 男女那种视频在线观看| 日韩大片免费观看网站 | 国产精品一区二区性色av| 一本一本综合久久| 亚洲第一区二区三区不卡| 禁无遮挡网站| 国产av码专区亚洲av| 美女黄网站色视频| 99久久无色码亚洲精品果冻| 国产亚洲精品av在线| 床上黄色一级片| 久久人妻av系列| 国产精品无大码| 免费在线观看成人毛片| 亚洲精品亚洲一区二区| 人妻系列 视频| 美女大奶头视频| 三级国产精品片| 亚洲欧美精品专区久久| a级毛色黄片| 中文欧美无线码| 欧美成人免费av一区二区三区| 男女下面进入的视频免费午夜| 午夜精品国产一区二区电影 | 熟女电影av网| 美女xxoo啪啪120秒动态图| 成人综合一区亚洲| 精品久久久久久电影网 | 人体艺术视频欧美日本| 国产黄片视频在线免费观看| 欧美高清成人免费视频www| 成年女人永久免费观看视频| 啦啦啦观看免费观看视频高清| 国产欧美另类精品又又久久亚洲欧美| 老师上课跳d突然被开到最大视频| 国产精品av视频在线免费观看| 欧美成人精品欧美一级黄| 亚洲真实伦在线观看| 晚上一个人看的免费电影| 亚洲国产欧美在线一区| 国产精品乱码一区二三区的特点| 男人和女人高潮做爰伦理| 美女大奶头视频| 国产免费又黄又爽又色| 两个人视频免费观看高清| 午夜福利网站1000一区二区三区| 中文字幕亚洲精品专区| 色哟哟·www| 网址你懂的国产日韩在线| 狂野欧美白嫩少妇大欣赏| 亚洲美女视频黄频| 国产在线男女| 日本爱情动作片www.在线观看| 欧美激情久久久久久爽电影| 一二三四中文在线观看免费高清| 亚洲在久久综合| 一夜夜www| 久久久久国产网址| 搡老妇女老女人老熟妇| 欧美日韩国产亚洲二区| 国产一区二区亚洲精品在线观看| 中文字幕久久专区| 亚洲av免费在线观看| 日韩欧美国产在线观看| 午夜福利在线在线| 国产美女午夜福利| 精品人妻偷拍中文字幕| 狂野欧美白嫩少妇大欣赏| 精品一区二区免费观看| 亚洲欧美成人精品一区二区| 春色校园在线视频观看| 免费观看a级毛片全部| 免费人成在线观看视频色| 91精品伊人久久大香线蕉| 亚洲av中文av极速乱| 99久久成人亚洲精品观看| 欧美性感艳星| av在线蜜桃| 亚洲精品乱码久久久v下载方式| 狂野欧美激情性xxxx在线观看| 国产熟女欧美一区二区| 蜜桃亚洲精品一区二区三区| 亚洲内射少妇av| 免费av不卡在线播放| 日本黄色片子视频| АⅤ资源中文在线天堂| 看十八女毛片水多多多| 国产精品国产三级国产专区5o | 国产成人午夜福利电影在线观看| 久久久久九九精品影院| 精华霜和精华液先用哪个| 天堂av国产一区二区熟女人妻| 99国产精品一区二区蜜桃av| 亚洲国产高清在线一区二区三| 久久久久九九精品影院| 色网站视频免费| 亚洲va在线va天堂va国产| av.在线天堂| 国产精品熟女久久久久浪| 国产爱豆传媒在线观看| 日本黄色片子视频| 亚洲成人中文字幕在线播放| 啦啦啦啦在线视频资源| 少妇丰满av| 最近最新中文字幕大全电影3| 国产一区二区在线av高清观看| 亚洲,欧美,日韩| 18禁在线无遮挡免费观看视频| 国产成人精品久久久久久| 99热全是精品| 国内揄拍国产精品人妻在线| av黄色大香蕉| 一级毛片电影观看 | 最近手机中文字幕大全| 免费观看在线日韩| 国产精品熟女久久久久浪| ponron亚洲| 欧美丝袜亚洲另类| 97人妻精品一区二区三区麻豆| 久久草成人影院| 免费电影在线观看免费观看|