• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feature Extraction Approach for Defect lnspection in Eddy Current Pulsed Thermography

    2022-01-08 13:06:38PeiPeiZhuLiBingBaiYuHuaCheng

    Pei-Pei Zhu | Li-Bing Bai| Yu-Hua Cheng

    Abstract—The eddy current pulsed thermography (ECPT) technique is a research focus in the non-destructive testing (NDT) area for defect inspection.Defect feature extraction for defect information analysis in ECPT is limited by image contrast,heat diffusion,background interference,etc.In this paper,a defect feature extraction approach in ECPT has been proposed to improve the quality of defect features,which is based on image partition,local sparse component evaluation,and feature fusion.This method can extract complete defect features by enhancing the defect area and removing background interference,such as noises and heating coil.Two typical steel specimens are utilized to testify the validity of the proposed approach.Compared with other three common feature extraction algorithms in ECPT,the proposed method can reserve more complete defect features and suppress more background interference.

    Index Terms—Eddy current thermography,feature extraction,machine learning,non-destructive testing (NDT).

    1.lntroduction

    The non-destructive testing (NDT) technique is widely used in examining,testing,or evaluating the absence or presence of continuities or discontinuities of materials without influencing usefulness and the service of systems[1],[2].Eddy current pulsed thermography (ECPT) based on electromagnetic induction and infrared thermography,is a research focus in the NDT area and has been widely utilized for defect inspection with high efficiency in metal,carbon fiber material,etc.[3],[4].In ECPT,the eddy current induced by the alternating current is transformed to the Joule heat in the testing material and the infrared camera records its surface temperature distribution[5],[6].The infrared camera records the heating and the cooling phases of the testing material in the form of images.The existence of defects will disturb the eddy current and form a nonuniform temperature distribution in the material.Defect information,which is included in the infrared thermal images,can be extracted by feature extraction methods.

    Many researchers have worked on defect feature extraction in ECPT for defect inspection[7]-[9].As two widely used methods in the transform domain,the Fourier transform (FT)[10]and wavelet analysis[11]have been researched in ECPT for feature extraction.In [12],FT has been used in the improvement of blister detection based on ECPT.The result shows that the phase images from FT can improve the detectability of the blister defect.In [13],the wavelet transform has selected a specific frame to maximize the contrast of thermal variation and defect the pattern from complex structure samples.As statistical methods,the principal component analysis (PCA) and independent component analysis (ICA) are the most widely used approaches in ECPT for defect feature extraction[14],[15].PCA has been utilized to extract the significant defect features[16]and evaluate the defect depth in [17].ICA has been used to construct the automatic defect identification system in [18].Chenget al.[19]have integrated PCA and ICA to identify the impact damage in carbon fiber reinforced plastic samples.Baiet al.[20]have discussed the mathematical and physical meanings of PCA and ICA in ECPT.In the conclusion of [20],the author indicated that ICA can present the abnormal patterns more concentrated than PCA in ECPT image enhancement.However,these feature extraction methods separate the extracted features into different components and require artificial operations for feature selection.These limitations decrease the integrity of defect features and the accuracy of the defect analysis.In [21],the usefulness of sparse decomposition in feature extraction in ECPT has been researched and one unsupervised sparse pattern diagnostic method has been proposed.The proposed method based on the sparse decomposition can extract the defect feature in one image and achieve superior enhancement.However,this method loses so much defect information,which brings a big challenge for the further analysis.In order to improve the accuracy of defect feature extraction,Zhuet al.[22]have proposed a method based on the local sparseness and image fusion to improve the integrity of defect features in the feature image.According to the experimental results,this method still has problems in enhancing defect features,which is not significant in the heating phase.

    In this paper,a novel defect feature extraction approach including image partition,local sparse component evaluation,and image fusion is proposed to improve the integrity of defect features and suppress background interference.In this approach,the recorded images are partitioned into two parts according the end of the heating time.The local sparse component has been evaluated to extract more defect information for further quantitative analysis.Moreover,feature fusion is utilized to integrate extracted the local sparse components to construct one feature image.Compared with ICA,the sparse decomposition algorithm,and the local sparse and low rank decomposition (LSLD) method in [22],the proposed approach can reserve more significant defect features,which is helpful for further processing.

    The rest paper is organized as follows:Section 2 presents details of the developed model.Section 3 introduces the experimental setup and data collection.Section 4 shows the experimental results and discussion.Section 5 concludes the work.

    2.Theory and Method

    2.1.Two Thermal Phases in ECPT

    In the ECPT,eddy currents in the sample are transformed into the Joule heat and the heated sample presents a non-uniform surface temperature distribution if a defect exists.Combined with principles of ECPT,the image sequence recorded by infrared for defect inspection can be separated into two phases:The heating phase and the cooling phase.In the heating phase,the Joule heatQtransferred by the eddy current is proportional to the square of the electric current densityJS.It can be expressed as

    whereσis the electric conductivity andEis the electric field intensity.The electric conductivityσis determined by

    whereσ0is the conductivity at the reference temperatureT0andαis the temperature coefficient of resistivity.In the heating phase,the thermal conduction can be neglected and the surface temperature is determined by the generated resistive heatQ.Therefore,the surface temperature can indicate the feature of defects immediately when the defect influences the distribution of the induced eddy current in the heating phase.The collected images in the heating phase can be used to extract defect information without considering the influence of heat diffusion.

    In the cooling phase,the thermal conduction of a testing sample should take both the heat diffusion and the Joule heating into account.The thermal conduction in the cooling phase can be represented as

    whereT=T(x,y,z,t) is the temperature distribution,λis the thermal conductivity of the material,ρis the density,CPis the specific heat,andq(x,y,z,t) is the heat generation function per unit volume.

    In the cooling phase,the Joule heat transfers from the high-temperature area to the low-temperature region.Some defect areas,which have not been heated and shown no defect feature in the heating phase,can be revealed by the thermal conduction in the cooling phase.However,the heat diffusion,which mainly happens in the cooling phase,will decrease the thermal contrast between the defect and defect-free areas during the thermal conduction.How to avoid this negative influence for the improvement of defect feature extraction is worth of research.In the previous work,feature extraction methods in ECPT,such as PCA,ICA,the Fourier transform,and LSLD,regard the image sequence as integrity.The heat diffusion decreases the image contrast and impedes accurate defect feature extraction.In this paper,the thermal images have been partitioned into two parts for the improvement of defect feature evaluation according to two different thermal phases.

    2.2.lmage Partition and Selection

    As shown in (1) and (3),two different thermal phases record the surface temperature distribution of the inspection.Heat diffusion in the cooling phase decreases the thermal contrast in the image sequence.Therefore,in order to analyze defect data accurately,images in two thermal phases will be processed separately in this paper.Denote one recorded image sequence as y={y1y2},where y1means the heating phase and y2is the cooling phase.Firstly,image entropy difference is separately used to select significant images from two thermal phases.Compute entropy difference between two adjacent images in the same thermal phase

    wherep=1 and 2,means theith image’s image entropy in yp,which is defined as

    wherelis the probability of the current pixel gray value number in all the number of the pixels.In each thermal phase,sort all the entropy gradientsfrom large to small and then take outFimages with theFlargestfor the future analyzing.

    Moreover,initial thermal images in ECPT are polluted by noises.The robust principal components analysis (RPCA) algorithm is utilized to denoise selected images based on the sparsity of the Gaussian noise.The RPCA algorithm can separate one selected imageypinto two components:The low-rank component in thepth thermal phaseLpand the sparse component in thepth thermal phaseSp:

    The Gaussian noise in the thermal image is included in the sparse component.Reserve the low-rank component as the input for future processing.Solving (6) is equivalent to optimize the following convex optimization problem:

    where ∣∣?∣∣?is the nuclear norm,∣∣?∣∣1denotes the sum of the absolute values ofS,andηis a positive parameter.

    2.3.Local Sparse Component Evaluation Based on Partitioned lmage Selection

    Images in the different thermal phases have been partitioned into two parts to be selected and denoised.After the preprocessing procedure,local sparse component decomposition[22]is developed to separate thermal features of defects from the background area under different scales for the selected image.Combined with the previous research result[23],this problem can be denoted as

    wheredenotes the local thermal feature ofLpin theith scale,(?) is a block reshape operator and extracts a block from the image matrix,and r ank(?) denotes the rank of matrix.Specifically,when two scales are used(S=2) and setm1=1 andn1=1,(8) can be rewritten as

    where SVT(·) is the soft-threshold operator[24],WiandViare intermediate variables,andβis the alternating direction method of multipliers (ADMM) parameter which only influences the convergence rate.

    2.4.Local Sparse Components Fusion

    In this procedure,Fimages selected from two thermal phases are processed by the local sparse component evaluation algorithm to evaluate their local sparse components.A new image fusion criterion is defined in this paper to integrate different local sparse components into a complete feature image.Define a thresholdτ.In order to suppress background interference,the pixels of the evaluated local sparse components are processed by the thresholdτas follows:

    where FL is the final feature image of the recorded thermal image sequence.Fig.1shows the whole procedure of the proposed method.

    3.Experimental Dataset

    Fig.2shows the experimental schematic diagram of the ECPT technique in this paper.The experimental setup mainly includes five functional units.The induction heater,which produces a highfrequency alternating current,is utilized for coil excitation.The sample is heated by a rectangular coil applying directional excitation.The infrared camera records the surface heat distribution of the sample.Shown inFig.3,the experimental data of the first steel sample (Sample 1) with a slot defect is recorded in the digital form by the infrared camera(the frame rate is 383 Hz)[20],[24].The second steel sample (Sample 2) includes a hole defect.The infrared camera with the 50-Hz sampling rate records its surface temperature values into the thermal image sequence.For Sample 1,200 thermal images have been collected for defect feature analysis.For Sample 2,305 thermal images have been used to testify the proposed method.Fig.4shows some temperature variation curves of several positions in the samples.

    Fig.1.Proposed algorithm diagram.

    Fig.2.Experimental schematic diagram.

    Fig.3.Experimental samples:(a) Sample 1 and (b) Sample 2.

    Fig.4.Temperature variation curves of several pixels (arrows) in thermal images (vertical dashed in the figure is the end of heating time):(a) thermal image of Sample 1,(b) temperature curve of Sample 1,(c) thermal image of Sample 2,and(d) temperature curve of Sample 2.

    4.Results and Discussion

    In this paper,a defect feature extraction method,which mainly includes partitioned image selection,local sparse component evaluation,and component fusion,has been proposed to improve defect inspection accuracy.Two samples,which represent two typical surface defect types,have been utilized to testify the proposed method.In the first sample,the ends of the slot are heated by the induced eddy current in the heating phase and the sides of the slot show significant thermal contrast in the cooling phase.In the second sample,the partial hole defect presents prominent thermal contrast in the heating phase and other defect areas are enhanced in the cooling phase by the thermal conduction.That is to say,the main defect features are usually highlighted in two different thermal phases.Therefore,according to the end of the heating time,thermal images are divided into two parts to concentrate on different thermal distribution features in different thermal phases.Select a segment of image data from each thermal phase.Image entropy,which can measure the richness of information,is used to selectF(F=4) significant thermal images from the segment of image data in each thermal phase.Fig.5shows the image entropy difference of two samples.Four images with the top 4 largest entropy differences in the heating phase have been selected for the local sparse component evaluation (as shown by the arrows in the figure).In the same way,four images in the cooling phase,whose entropy differences are the top 4 largest,have been selected and extracted their local sparse components.

    Fig.6presents RPCA’s results of some selected images of two samples for denoising before the local sparse component evaluation.It can be seen that the low-rank components reserve the principal information of the images in different thermal phases.Two ends of the slot in Sample 1,which have significant thermal contrast in the heating phase,are reserved in the component.The significant thermal information of two sides of the slot are also reserved in the component in the cooling phase.In the second sample,the thermal features of the hole,which are highlighted in different thermal phases,are separately extracted from images.Then,save the low-rank components and put them into the local sparse component evaluation algorithm.

    Fig.5.Entropy difference of images of two samples:(a) entropy difference of images in the heating (left) and cooling(right) phases for Sample 1,and (b) entropy difference of images in the heating (left) and cooling (right) phases for Sample 2.

    Fig.6.RPCA results of Sample 1 and Sample 2:(a) the low-rank component of one image to Sample 1,left: In the heating phase and right:In the cooling phase and (b) the low-rank component of one image to Sample 2,left:In the heating phase and right:In the cooling phase.

    In order to present the procedure of the whole method,Fig.7shows the procedure of the proposed local sparse component evaluation based on partitioned images of Sample 1.FromFig.7,it can be seen that the defect profile of Sample 1 is highlighted in the fused local sparse component.The background information,including heating coil and the lift-off effect,is restrained in the defect feature component.The ends of the slot defect are extracted from the images in the heating phase and the sides of the slot presented in the cooling phase are enhanced in the fused feature image.

    Compared with other three feature extraction methods in ECPT,the developed method shows better performance in the integrity of the defect feature and background suppression,as shown inFig.8.In ICA,the independent component which the algorithm has enhanced the defect area,cannot extract complete defect information and suppress the background well.Though the sparse decomposition implemented by RPCA can suppress background well,the most defect features are lost and cannot be used to further processing.The LSLD method proposed in [22] does not consider the thermal phases in the local sparse component evaluation and the defect features in the cooling phase had been missed.In the developed method in this paper,image partition in the thermal phase has been added in the local sparse component evaluation and the image fusion criterion has been improved.The experimental results show that the proposed method can extract the most complete defect features and suppress the background well compared with other three methods in ECPT.

    Fig.7.Processing procedure of Sample 1.

    Fig.8.Result comparison of four algorithms.

    In [22],the authors have proposed two indicators to measure the degree of background suppressing(BSD) and defect enhancing degree (DED).BSD is calculated by the entropy of the background area.Less BSD means better background suppressing.DED is equal to the number of pixels,which highlights the defect area.In order to measure the performance of the proposed method,BSD and DED have been calculated for two samples in four algorithms,shown inTable 1.The thresholdτin DED is set as 20 in two samples.Compared with ICA,RPCA,and LSLD,feature images extracted by the proposed method has the smallest BSD value and the largest DED value in two samples.This result indicates that the proposed method in this paper has superior performance in background suppressing and defect enhancing.

    Table 1:BSD and DED of two samples under different algorithms

    5.Conclusions

    In this paper,a feature extraction method based on image partition,local sparse component evaluation,and image fusion has been proposed to enhance defect features and suppress background interference in ECPT.This developed method optimizes the LSLD method in the authors’ previous work in [22].Compared with other three feature extraction algorithms:ICA,RPCA,and LSLD,the proposed method can reserve more defect features and suppress the influence of background interference preferably.

    Future work will focus on developing this proposed method to detect the multi-defects and analyze quantitative defect information.

    Disclosures

    The authors declare no conflicts of interest.

    尾随美女入室| 性色avwww在线观看| 国产精品久久久久久久久免| 国产欧美日韩精品一区二区| 国产精品99久久久久久久久| 免费看a级黄色片| 麻豆国产97在线/欧美| 一本久久精品| 欧美成人午夜免费资源| 伊人久久精品亚洲午夜| av播播在线观看一区| 变态另类丝袜制服| 精品一区二区三区视频在线| 成人一区二区视频在线观看| 欧美精品一区二区大全| 国产av不卡久久| 欧美xxxx黑人xx丫x性爽| 国产视频内射| 中文字幕久久专区| 又爽又黄无遮挡网站| h日本视频在线播放| 精品人妻一区二区三区麻豆| 亚洲国产精品国产精品| 真实男女啪啪啪动态图| 啦啦啦观看免费观看视频高清| 国产精品野战在线观看| 国产午夜精品一二区理论片| 日韩在线高清观看一区二区三区| 久久久久久久久久成人| 国产精品国产高清国产av| 美女脱内裤让男人舔精品视频| 大话2 男鬼变身卡| 亚洲av.av天堂| 嫩草影院入口| 国产亚洲av片在线观看秒播厂 | 久久亚洲国产成人精品v| 久久精品人妻少妇| 偷拍熟女少妇极品色| 少妇人妻精品综合一区二区| 国产午夜精品论理片| 亚洲精品自拍成人| 国产一区二区在线av高清观看| 99在线视频只有这里精品首页| 国产成人a区在线观看| 国产av码专区亚洲av| 久久99热这里只有精品18| 毛片一级片免费看久久久久| 中文字幕人妻熟人妻熟丝袜美| 波野结衣二区三区在线| 最近最新中文字幕免费大全7| 丰满少妇做爰视频| 国产高清三级在线| 成人毛片a级毛片在线播放| 亚洲av福利一区| 成人无遮挡网站| 能在线免费观看的黄片| 免费观看人在逋| 日韩三级伦理在线观看| 波野结衣二区三区在线| 成人毛片60女人毛片免费| 国产av在哪里看| 久久精品国产自在天天线| 亚洲一级一片aⅴ在线观看| 欧美一区二区国产精品久久精品| 国产精品女同一区二区软件| 草草在线视频免费看| 国产精品一及| 亚洲av熟女| 国产麻豆成人av免费视频| 波多野结衣巨乳人妻| 国产三级中文精品| 日韩成人av中文字幕在线观看| 99热全是精品| 国产毛片a区久久久久| 男女下面进入的视频免费午夜| 青青草视频在线视频观看| 啦啦啦啦在线视频资源| 欧美最新免费一区二区三区| 高清av免费在线| 国产真实乱freesex| 亚洲av中文字字幕乱码综合| 大话2 男鬼变身卡| 男女国产视频网站| 久久久久久久国产电影| 欧美日韩一区二区视频在线观看视频在线 | 99热6这里只有精品| 18+在线观看网站| 波多野结衣高清无吗| 久久久精品欧美日韩精品| 成年免费大片在线观看| 国产成人freesex在线| 少妇被粗大猛烈的视频| 毛片女人毛片| 91精品一卡2卡3卡4卡| 日韩av不卡免费在线播放| 欧美性猛交黑人性爽| 久久久久性生活片| 高清视频免费观看一区二区 | 免费观看人在逋| 如何舔出高潮| 亚洲欧美精品自产自拍| 久久久精品欧美日韩精品| 免费看日本二区| 亚洲国产精品合色在线| 亚洲精品乱久久久久久| 一级黄片播放器| 国产午夜精品论理片| av国产免费在线观看| 日韩av在线大香蕉| 老师上课跳d突然被开到最大视频| 亚洲第一区二区三区不卡| 国产一区二区在线av高清观看| 中文字幕精品亚洲无线码一区| 日韩成人伦理影院| 精品一区二区免费观看| 水蜜桃什么品种好| 人妻制服诱惑在线中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 国产片特级美女逼逼视频| 亚洲av中文字字幕乱码综合| 久久久久精品久久久久真实原创| 国产亚洲av嫩草精品影院| 欧美97在线视频| 亚洲精品自拍成人| 一区二区三区免费毛片| 一级爰片在线观看| av播播在线观看一区| 91久久精品国产一区二区成人| 老女人水多毛片| 国产免费一级a男人的天堂| a级毛片免费高清观看在线播放| 韩国av在线不卡| 国内精品一区二区在线观看| 丰满人妻一区二区三区视频av| 在线免费十八禁| 午夜免费男女啪啪视频观看| 久久99热这里只有精品18| 日韩亚洲欧美综合| 欧美高清成人免费视频www| 亚洲自拍偷在线| 男女视频在线观看网站免费| 99热这里只有是精品50| 日本免费一区二区三区高清不卡| 成人午夜高清在线视频| 日韩欧美国产在线观看| 亚洲精品乱码久久久久久按摩| 观看美女的网站| 色尼玛亚洲综合影院| 国产精品一区二区性色av| 亚洲精品国产成人久久av| 亚洲精品456在线播放app| 网址你懂的国产日韩在线| 亚洲av免费在线观看| 国产成人aa在线观看| 日韩国内少妇激情av| 久久精品国产自在天天线| 亚洲欧美清纯卡通| 欧美人与善性xxx| 国产伦精品一区二区三区视频9| 国产亚洲精品久久久com| 精品久久久久久久人妻蜜臀av| 亚洲欧美日韩无卡精品| videossex国产| 国产精品野战在线观看| 国产 一区精品| 亚洲va在线va天堂va国产| 成人一区二区视频在线观看| 3wmmmm亚洲av在线观看| 免费观看的影片在线观看| 国产又色又爽无遮挡免| 精品久久久久久久久亚洲| 久久国内精品自在自线图片| 国产免费男女视频| 高清av免费在线| 国产一级毛片在线| 美女脱内裤让男人舔精品视频| 色综合站精品国产| 欧美成人免费av一区二区三区| 99视频精品全部免费 在线| 精品久久国产蜜桃| 99久国产av精品| av.在线天堂| 舔av片在线| 国产乱人偷精品视频| 久久热精品热| 日日干狠狠操夜夜爽| 最近最新中文字幕大全电影3| 亚洲av日韩在线播放| 久久婷婷人人爽人人干人人爱| 亚洲国产精品专区欧美| 国产欧美另类精品又又久久亚洲欧美| 视频中文字幕在线观看| 亚洲成人久久爱视频| 麻豆成人av视频| 婷婷色麻豆天堂久久 | 国产一区有黄有色的免费视频 | av专区在线播放| 国产一级毛片七仙女欲春2| 久久国产乱子免费精品| 亚洲最大成人av| 国产69精品久久久久777片| 九草在线视频观看| 午夜a级毛片| videossex国产| 久久久久久久亚洲中文字幕| 国产精品一区二区性色av| 久久久久久国产a免费观看| 热99re8久久精品国产| 亚洲,欧美,日韩| 男人舔女人下体高潮全视频| 午夜老司机福利剧场| 亚洲在线自拍视频| 国产精品一区二区性色av| 国产精品日韩av在线免费观看| 少妇熟女欧美另类| 国产在线男女| av在线蜜桃| 国产国拍精品亚洲av在线观看| 美女cb高潮喷水在线观看| 高清在线视频一区二区三区 | 热99在线观看视频| 亚洲欧美日韩卡通动漫| 色视频www国产| 国产伦精品一区二区三区四那| 边亲边吃奶的免费视频| 亚洲精品色激情综合| 男人和女人高潮做爰伦理| 日本一本二区三区精品| 寂寞人妻少妇视频99o| 亚洲av一区综合| 国产免费又黄又爽又色| 九九久久精品国产亚洲av麻豆| 在线免费观看不下载黄p国产| 波野结衣二区三区在线| 国产高清有码在线观看视频| 国产精品人妻久久久久久| 国产成人免费观看mmmm| 久久久久久久国产电影| 日韩av在线免费看完整版不卡| 精品久久久久久久末码| 黄色配什么色好看| 成人漫画全彩无遮挡| 亚洲人成网站高清观看| 久久婷婷人人爽人人干人人爱| 三级国产精品片| 亚洲中文字幕日韩| 91在线精品国自产拍蜜月| 啦啦啦韩国在线观看视频| 男人舔女人下体高潮全视频| 久久精品国产99精品国产亚洲性色| 国产免费一级a男人的天堂| 91精品伊人久久大香线蕉| 小蜜桃在线观看免费完整版高清| 亚洲一级一片aⅴ在线观看| 亚洲精品456在线播放app| 男的添女的下面高潮视频| 18禁在线无遮挡免费观看视频| 亚洲成av人片在线播放无| 97超视频在线观看视频| 精品人妻一区二区三区麻豆| 亚洲av成人精品一二三区| 99热这里只有是精品在线观看| 免费观看在线日韩| av卡一久久| 国产成人一区二区在线| 99在线人妻在线中文字幕| 久久精品国产鲁丝片午夜精品| 亚洲成人精品中文字幕电影| 久久精品国产亚洲网站| 亚洲激情五月婷婷啪啪| 亚洲欧美清纯卡通| 亚洲色图av天堂| 一级二级三级毛片免费看| 国产成人精品一,二区| 最新中文字幕久久久久| 韩国av在线不卡| av在线蜜桃| 欧美xxxx黑人xx丫x性爽| 搞女人的毛片| 深爱激情五月婷婷| 国产成人午夜福利电影在线观看| 亚洲内射少妇av| 国产乱人偷精品视频| 日本色播在线视频| 欧美xxxx性猛交bbbb| 久久精品91蜜桃| 亚洲av熟女| 91精品一卡2卡3卡4卡| 高清av免费在线| 老师上课跳d突然被开到最大视频| 精品久久久久久久久亚洲| 国产精品国产三级国产专区5o | 干丝袜人妻中文字幕| 欧美一区二区精品小视频在线| 插阴视频在线观看视频| 99久久九九国产精品国产免费| 18禁在线播放成人免费| 日韩成人伦理影院| 亚洲欧洲日产国产| 久久这里有精品视频免费| 亚洲自偷自拍三级| 级片在线观看| 国产私拍福利视频在线观看| 乱码一卡2卡4卡精品| 久久久久精品久久久久真实原创| 欧美极品一区二区三区四区| 91aial.com中文字幕在线观看| 少妇人妻精品综合一区二区| 亚洲精品亚洲一区二区| 水蜜桃什么品种好| 国产女主播在线喷水免费视频网站 | 男人和女人高潮做爰伦理| 成人亚洲欧美一区二区av| 丝袜美腿在线中文| 久久精品国产亚洲av涩爱| 青春草亚洲视频在线观看| 成人一区二区视频在线观看| 精品久久久久久久久av| 成人一区二区视频在线观看| 麻豆国产97在线/欧美| 国产日韩欧美在线精品| 黑人高潮一二区| 又爽又黄a免费视频| 国产不卡一卡二| 亚洲精品456在线播放app| 久久99精品国语久久久| 在线免费观看不下载黄p国产| 纵有疾风起免费观看全集完整版 | 99热6这里只有精品| 成人毛片a级毛片在线播放| 一本一本综合久久| 永久免费av网站大全| 毛片女人毛片| av在线蜜桃| 大香蕉97超碰在线| 老司机影院毛片| 国产免费视频播放在线视频 | 男女下面进入的视频免费午夜| 一级av片app| 欧美日本亚洲视频在线播放| 美女高潮的动态| 国产三级中文精品| 国产麻豆成人av免费视频| 欧美三级亚洲精品| 99九九线精品视频在线观看视频| 亚洲不卡免费看| 国内精品一区二区在线观看| 国产成人a∨麻豆精品| 又爽又黄无遮挡网站| 一区二区三区乱码不卡18| 日韩国内少妇激情av| 免费大片18禁| 日本熟妇午夜| 丝袜美腿在线中文| 黄色日韩在线| 97热精品久久久久久| 久久久久久久久久久免费av| 欧美成人a在线观看| 岛国毛片在线播放| 国产成人a∨麻豆精品| 伦理电影大哥的女人| 丝袜美腿在线中文| 波野结衣二区三区在线| 午夜免费激情av| 插逼视频在线观看| 男插女下体视频免费在线播放| 一级黄色大片毛片| 国产精品久久久久久av不卡| av天堂中文字幕网| 午夜免费激情av| 在线天堂最新版资源| 午夜免费激情av| 夜夜看夜夜爽夜夜摸| 国产在视频线精品| 国产一级毛片七仙女欲春2| 午夜精品在线福利| 精品一区二区三区人妻视频| 亚洲国产精品成人久久小说| 天天躁夜夜躁狠狠久久av| 乱系列少妇在线播放| 久久久久久九九精品二区国产| 人妻少妇偷人精品九色| 亚洲激情五月婷婷啪啪| 啦啦啦啦在线视频资源| 国产 一区精品| 国产精品蜜桃在线观看| 婷婷色综合大香蕉| 国产精品永久免费网站| 国产精品,欧美在线| 中文在线观看免费www的网站| 丰满人妻一区二区三区视频av| av在线老鸭窝| av又黄又爽大尺度在线免费看 | 26uuu在线亚洲综合色| 女的被弄到高潮叫床怎么办| 久久亚洲精品不卡| 亚洲国产精品国产精品| 丰满人妻一区二区三区视频av| 亚洲av成人精品一区久久| av又黄又爽大尺度在线免费看 | 国产私拍福利视频在线观看| 成人综合一区亚洲| a级毛片免费高清观看在线播放| 日韩欧美在线乱码| 中国国产av一级| 亚洲在久久综合| 亚洲欧美日韩卡通动漫| 人体艺术视频欧美日本| 在现免费观看毛片| 两个人的视频大全免费| 一级黄片播放器| 亚洲欧美精品专区久久| 免费黄网站久久成人精品| 99久久精品热视频| 国产一区有黄有色的免费视频 | 亚洲av一区综合| 看免费成人av毛片| 欧美xxxx黑人xx丫x性爽| 欧美三级亚洲精品| 成人性生交大片免费视频hd| 亚洲精品,欧美精品| 男人狂女人下面高潮的视频| 成人国产麻豆网| 日韩欧美国产在线观看| 有码 亚洲区| 在线播放无遮挡| 午夜亚洲福利在线播放| 在线观看66精品国产| 大香蕉97超碰在线| 波多野结衣高清无吗| 成人二区视频| 亚洲综合色惰| 中文字幕久久专区| 国产精品爽爽va在线观看网站| 麻豆成人av视频| 91久久精品国产一区二区成人| 一级黄色大片毛片| 亚洲欧美日韩高清专用| 日日啪夜夜撸| 老司机福利观看| 国产精品av视频在线免费观看| 亚洲精品乱码久久久v下载方式| 热99在线观看视频| 日韩视频在线欧美| 国产精品精品国产色婷婷| 免费看光身美女| 午夜福利在线观看吧| 国产免费福利视频在线观看| 麻豆乱淫一区二区| 黄片wwwwww| 国产亚洲av片在线观看秒播厂 | 最近中文字幕高清免费大全6| 欧美激情久久久久久爽电影| 最近手机中文字幕大全| 国产三级中文精品| 一卡2卡三卡四卡精品乱码亚洲| 精品一区二区免费观看| 啦啦啦韩国在线观看视频| 国产精品精品国产色婷婷| 国产精品国产高清国产av| 亚洲精品国产av成人精品| 91久久精品电影网| 国产69精品久久久久777片| 搡女人真爽免费视频火全软件| 丝袜喷水一区| 91久久精品国产一区二区三区| 亚洲国产精品久久男人天堂| 亚洲av成人精品一二三区| 国产日韩欧美在线精品| 18禁在线播放成人免费| av福利片在线观看| 人妻少妇偷人精品九色| 亚洲精品成人久久久久久| 乱码一卡2卡4卡精品| 国产一区二区亚洲精品在线观看| 欧美人与善性xxx| 一区二区三区免费毛片| 日本免费一区二区三区高清不卡| 成人二区视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本欧美国产在线视频| 久久99精品国语久久久| 99久久人妻综合| 99在线人妻在线中文字幕| 高清视频免费观看一区二区 | 国产大屁股一区二区在线视频| 中文精品一卡2卡3卡4更新| 久久久久免费精品人妻一区二区| 国产精品久久久久久av不卡| 亚洲中文字幕日韩| 国产精华一区二区三区| 91狼人影院| 高清午夜精品一区二区三区| 搡老妇女老女人老熟妇| 在线播放无遮挡| 免费看a级黄色片| 我要搜黄色片| 国产精品人妻久久久久久| 久久人人爽人人爽人人片va| 在线播放国产精品三级| 黄片无遮挡物在线观看| 51国产日韩欧美| 纵有疾风起免费观看全集完整版 | 亚洲国产精品专区欧美| 久久精品国产99精品国产亚洲性色| 天天躁夜夜躁狠狠久久av| 午夜爱爱视频在线播放| 国产成人精品久久久久久| 18禁裸乳无遮挡免费网站照片| 少妇高潮的动态图| 日日摸夜夜添夜夜爱| 看免费成人av毛片| 欧美色视频一区免费| 久久国产乱子免费精品| 夜夜爽夜夜爽视频| 少妇裸体淫交视频免费看高清| 九九在线视频观看精品| 秋霞在线观看毛片| 国产精品久久久久久精品电影| 赤兔流量卡办理| 男女视频在线观看网站免费| 日韩人妻高清精品专区| 久久久久久久国产电影| 亚洲国产欧美人成| 一个人看的www免费观看视频| 熟女人妻精品中文字幕| 亚洲欧美成人综合另类久久久 | 最近中文字幕高清免费大全6| 天堂中文最新版在线下载 | 色吧在线观看| 午夜久久久久精精品| 国产成人午夜福利电影在线观看| 2021天堂中文幕一二区在线观| 国产美女午夜福利| 国产精品一区二区性色av| 久久久色成人| 午夜福利在线观看吧| 国语自产精品视频在线第100页| 91在线精品国自产拍蜜月| 精品酒店卫生间| 一区二区三区免费毛片| 熟女电影av网| 久久久久网色| 在线观看av片永久免费下载| 免费在线观看成人毛片| 亚洲国产精品sss在线观看| 国产精品蜜桃在线观看| 国产伦精品一区二区三区视频9| 国产在视频线在精品| 黑人高潮一二区| 亚洲丝袜综合中文字幕| 国产精品三级大全| 国产又色又爽无遮挡免| 亚洲av一区综合| 插逼视频在线观看| 一级av片app| 久久精品影院6| 国产精品国产高清国产av| 乱系列少妇在线播放| 久久99热这里只有精品18| 国产精品不卡视频一区二区| 午夜老司机福利剧场| 国产午夜精品久久久久久一区二区三区| 老师上课跳d突然被开到最大视频| 国产精品女同一区二区软件| 日本黄大片高清| 午夜精品国产一区二区电影 | 亚洲经典国产精华液单| 午夜激情欧美在线| 免费电影在线观看免费观看| 内射极品少妇av片p| 99在线视频只有这里精品首页| 久久精品久久久久久噜噜老黄 | 亚洲av熟女| 国产乱人视频| 亚洲精品一区蜜桃| 久久综合国产亚洲精品| 国产女主播在线喷水免费视频网站 | 中文字幕亚洲精品专区| 国国产精品蜜臀av免费| 久久久久国产网址| 亚洲高清免费不卡视频| 可以在线观看毛片的网站| 1000部很黄的大片| 岛国在线免费视频观看| 国产成人精品一,二区| 免费电影在线观看免费观看| 又黄又爽又刺激的免费视频.| 99在线人妻在线中文字幕| 亚洲国产日韩欧美精品在线观看| 一区二区三区四区激情视频| 免费av不卡在线播放| 国内精品宾馆在线| 久久久午夜欧美精品| 亚洲人成网站在线播| 在线免费观看的www视频| 国产激情偷乱视频一区二区| 观看美女的网站| 小说图片视频综合网站| 久久久色成人| 亚洲精品,欧美精品| 国产久久久一区二区三区| 爱豆传媒免费全集在线观看| 18+在线观看网站| 日日摸夜夜添夜夜爱| 免费观看在线日韩| 久久精品国产亚洲网站| 久久精品夜夜夜夜夜久久蜜豆| 午夜精品一区二区三区免费看| 亚洲最大成人av| 小说图片视频综合网站| 免费看日本二区| a级毛片免费高清观看在线播放| 日本黄色视频三级网站网址| 亚洲av电影不卡..在线观看|