• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feature Extraction Approach for Defect lnspection in Eddy Current Pulsed Thermography

    2022-01-08 13:06:38PeiPeiZhuLiBingBaiYuHuaCheng

    Pei-Pei Zhu | Li-Bing Bai| Yu-Hua Cheng

    Abstract—The eddy current pulsed thermography (ECPT) technique is a research focus in the non-destructive testing (NDT) area for defect inspection.Defect feature extraction for defect information analysis in ECPT is limited by image contrast,heat diffusion,background interference,etc.In this paper,a defect feature extraction approach in ECPT has been proposed to improve the quality of defect features,which is based on image partition,local sparse component evaluation,and feature fusion.This method can extract complete defect features by enhancing the defect area and removing background interference,such as noises and heating coil.Two typical steel specimens are utilized to testify the validity of the proposed approach.Compared with other three common feature extraction algorithms in ECPT,the proposed method can reserve more complete defect features and suppress more background interference.

    Index Terms—Eddy current thermography,feature extraction,machine learning,non-destructive testing (NDT).

    1.lntroduction

    The non-destructive testing (NDT) technique is widely used in examining,testing,or evaluating the absence or presence of continuities or discontinuities of materials without influencing usefulness and the service of systems[1],[2].Eddy current pulsed thermography (ECPT) based on electromagnetic induction and infrared thermography,is a research focus in the NDT area and has been widely utilized for defect inspection with high efficiency in metal,carbon fiber material,etc.[3],[4].In ECPT,the eddy current induced by the alternating current is transformed to the Joule heat in the testing material and the infrared camera records its surface temperature distribution[5],[6].The infrared camera records the heating and the cooling phases of the testing material in the form of images.The existence of defects will disturb the eddy current and form a nonuniform temperature distribution in the material.Defect information,which is included in the infrared thermal images,can be extracted by feature extraction methods.

    Many researchers have worked on defect feature extraction in ECPT for defect inspection[7]-[9].As two widely used methods in the transform domain,the Fourier transform (FT)[10]and wavelet analysis[11]have been researched in ECPT for feature extraction.In [12],FT has been used in the improvement of blister detection based on ECPT.The result shows that the phase images from FT can improve the detectability of the blister defect.In [13],the wavelet transform has selected a specific frame to maximize the contrast of thermal variation and defect the pattern from complex structure samples.As statistical methods,the principal component analysis (PCA) and independent component analysis (ICA) are the most widely used approaches in ECPT for defect feature extraction[14],[15].PCA has been utilized to extract the significant defect features[16]and evaluate the defect depth in [17].ICA has been used to construct the automatic defect identification system in [18].Chenget al.[19]have integrated PCA and ICA to identify the impact damage in carbon fiber reinforced plastic samples.Baiet al.[20]have discussed the mathematical and physical meanings of PCA and ICA in ECPT.In the conclusion of [20],the author indicated that ICA can present the abnormal patterns more concentrated than PCA in ECPT image enhancement.However,these feature extraction methods separate the extracted features into different components and require artificial operations for feature selection.These limitations decrease the integrity of defect features and the accuracy of the defect analysis.In [21],the usefulness of sparse decomposition in feature extraction in ECPT has been researched and one unsupervised sparse pattern diagnostic method has been proposed.The proposed method based on the sparse decomposition can extract the defect feature in one image and achieve superior enhancement.However,this method loses so much defect information,which brings a big challenge for the further analysis.In order to improve the accuracy of defect feature extraction,Zhuet al.[22]have proposed a method based on the local sparseness and image fusion to improve the integrity of defect features in the feature image.According to the experimental results,this method still has problems in enhancing defect features,which is not significant in the heating phase.

    In this paper,a novel defect feature extraction approach including image partition,local sparse component evaluation,and image fusion is proposed to improve the integrity of defect features and suppress background interference.In this approach,the recorded images are partitioned into two parts according the end of the heating time.The local sparse component has been evaluated to extract more defect information for further quantitative analysis.Moreover,feature fusion is utilized to integrate extracted the local sparse components to construct one feature image.Compared with ICA,the sparse decomposition algorithm,and the local sparse and low rank decomposition (LSLD) method in [22],the proposed approach can reserve more significant defect features,which is helpful for further processing.

    The rest paper is organized as follows:Section 2 presents details of the developed model.Section 3 introduces the experimental setup and data collection.Section 4 shows the experimental results and discussion.Section 5 concludes the work.

    2.Theory and Method

    2.1.Two Thermal Phases in ECPT

    In the ECPT,eddy currents in the sample are transformed into the Joule heat and the heated sample presents a non-uniform surface temperature distribution if a defect exists.Combined with principles of ECPT,the image sequence recorded by infrared for defect inspection can be separated into two phases:The heating phase and the cooling phase.In the heating phase,the Joule heatQtransferred by the eddy current is proportional to the square of the electric current densityJS.It can be expressed as

    whereσis the electric conductivity andEis the electric field intensity.The electric conductivityσis determined by

    whereσ0is the conductivity at the reference temperatureT0andαis the temperature coefficient of resistivity.In the heating phase,the thermal conduction can be neglected and the surface temperature is determined by the generated resistive heatQ.Therefore,the surface temperature can indicate the feature of defects immediately when the defect influences the distribution of the induced eddy current in the heating phase.The collected images in the heating phase can be used to extract defect information without considering the influence of heat diffusion.

    In the cooling phase,the thermal conduction of a testing sample should take both the heat diffusion and the Joule heating into account.The thermal conduction in the cooling phase can be represented as

    whereT=T(x,y,z,t) is the temperature distribution,λis the thermal conductivity of the material,ρis the density,CPis the specific heat,andq(x,y,z,t) is the heat generation function per unit volume.

    In the cooling phase,the Joule heat transfers from the high-temperature area to the low-temperature region.Some defect areas,which have not been heated and shown no defect feature in the heating phase,can be revealed by the thermal conduction in the cooling phase.However,the heat diffusion,which mainly happens in the cooling phase,will decrease the thermal contrast between the defect and defect-free areas during the thermal conduction.How to avoid this negative influence for the improvement of defect feature extraction is worth of research.In the previous work,feature extraction methods in ECPT,such as PCA,ICA,the Fourier transform,and LSLD,regard the image sequence as integrity.The heat diffusion decreases the image contrast and impedes accurate defect feature extraction.In this paper,the thermal images have been partitioned into two parts for the improvement of defect feature evaluation according to two different thermal phases.

    2.2.lmage Partition and Selection

    As shown in (1) and (3),two different thermal phases record the surface temperature distribution of the inspection.Heat diffusion in the cooling phase decreases the thermal contrast in the image sequence.Therefore,in order to analyze defect data accurately,images in two thermal phases will be processed separately in this paper.Denote one recorded image sequence as y={y1y2},where y1means the heating phase and y2is the cooling phase.Firstly,image entropy difference is separately used to select significant images from two thermal phases.Compute entropy difference between two adjacent images in the same thermal phase

    wherep=1 and 2,means theith image’s image entropy in yp,which is defined as

    wherelis the probability of the current pixel gray value number in all the number of the pixels.In each thermal phase,sort all the entropy gradientsfrom large to small and then take outFimages with theFlargestfor the future analyzing.

    Moreover,initial thermal images in ECPT are polluted by noises.The robust principal components analysis (RPCA) algorithm is utilized to denoise selected images based on the sparsity of the Gaussian noise.The RPCA algorithm can separate one selected imageypinto two components:The low-rank component in thepth thermal phaseLpand the sparse component in thepth thermal phaseSp:

    The Gaussian noise in the thermal image is included in the sparse component.Reserve the low-rank component as the input for future processing.Solving (6) is equivalent to optimize the following convex optimization problem:

    where ∣∣?∣∣?is the nuclear norm,∣∣?∣∣1denotes the sum of the absolute values ofS,andηis a positive parameter.

    2.3.Local Sparse Component Evaluation Based on Partitioned lmage Selection

    Images in the different thermal phases have been partitioned into two parts to be selected and denoised.After the preprocessing procedure,local sparse component decomposition[22]is developed to separate thermal features of defects from the background area under different scales for the selected image.Combined with the previous research result[23],this problem can be denoted as

    wheredenotes the local thermal feature ofLpin theith scale,(?) is a block reshape operator and extracts a block from the image matrix,and r ank(?) denotes the rank of matrix.Specifically,when two scales are used(S=2) and setm1=1 andn1=1,(8) can be rewritten as

    where SVT(·) is the soft-threshold operator[24],WiandViare intermediate variables,andβis the alternating direction method of multipliers (ADMM) parameter which only influences the convergence rate.

    2.4.Local Sparse Components Fusion

    In this procedure,Fimages selected from two thermal phases are processed by the local sparse component evaluation algorithm to evaluate their local sparse components.A new image fusion criterion is defined in this paper to integrate different local sparse components into a complete feature image.Define a thresholdτ.In order to suppress background interference,the pixels of the evaluated local sparse components are processed by the thresholdτas follows:

    where FL is the final feature image of the recorded thermal image sequence.Fig.1shows the whole procedure of the proposed method.

    3.Experimental Dataset

    Fig.2shows the experimental schematic diagram of the ECPT technique in this paper.The experimental setup mainly includes five functional units.The induction heater,which produces a highfrequency alternating current,is utilized for coil excitation.The sample is heated by a rectangular coil applying directional excitation.The infrared camera records the surface heat distribution of the sample.Shown inFig.3,the experimental data of the first steel sample (Sample 1) with a slot defect is recorded in the digital form by the infrared camera(the frame rate is 383 Hz)[20],[24].The second steel sample (Sample 2) includes a hole defect.The infrared camera with the 50-Hz sampling rate records its surface temperature values into the thermal image sequence.For Sample 1,200 thermal images have been collected for defect feature analysis.For Sample 2,305 thermal images have been used to testify the proposed method.Fig.4shows some temperature variation curves of several positions in the samples.

    Fig.1.Proposed algorithm diagram.

    Fig.2.Experimental schematic diagram.

    Fig.3.Experimental samples:(a) Sample 1 and (b) Sample 2.

    Fig.4.Temperature variation curves of several pixels (arrows) in thermal images (vertical dashed in the figure is the end of heating time):(a) thermal image of Sample 1,(b) temperature curve of Sample 1,(c) thermal image of Sample 2,and(d) temperature curve of Sample 2.

    4.Results and Discussion

    In this paper,a defect feature extraction method,which mainly includes partitioned image selection,local sparse component evaluation,and component fusion,has been proposed to improve defect inspection accuracy.Two samples,which represent two typical surface defect types,have been utilized to testify the proposed method.In the first sample,the ends of the slot are heated by the induced eddy current in the heating phase and the sides of the slot show significant thermal contrast in the cooling phase.In the second sample,the partial hole defect presents prominent thermal contrast in the heating phase and other defect areas are enhanced in the cooling phase by the thermal conduction.That is to say,the main defect features are usually highlighted in two different thermal phases.Therefore,according to the end of the heating time,thermal images are divided into two parts to concentrate on different thermal distribution features in different thermal phases.Select a segment of image data from each thermal phase.Image entropy,which can measure the richness of information,is used to selectF(F=4) significant thermal images from the segment of image data in each thermal phase.Fig.5shows the image entropy difference of two samples.Four images with the top 4 largest entropy differences in the heating phase have been selected for the local sparse component evaluation (as shown by the arrows in the figure).In the same way,four images in the cooling phase,whose entropy differences are the top 4 largest,have been selected and extracted their local sparse components.

    Fig.6presents RPCA’s results of some selected images of two samples for denoising before the local sparse component evaluation.It can be seen that the low-rank components reserve the principal information of the images in different thermal phases.Two ends of the slot in Sample 1,which have significant thermal contrast in the heating phase,are reserved in the component.The significant thermal information of two sides of the slot are also reserved in the component in the cooling phase.In the second sample,the thermal features of the hole,which are highlighted in different thermal phases,are separately extracted from images.Then,save the low-rank components and put them into the local sparse component evaluation algorithm.

    Fig.5.Entropy difference of images of two samples:(a) entropy difference of images in the heating (left) and cooling(right) phases for Sample 1,and (b) entropy difference of images in the heating (left) and cooling (right) phases for Sample 2.

    Fig.6.RPCA results of Sample 1 and Sample 2:(a) the low-rank component of one image to Sample 1,left: In the heating phase and right:In the cooling phase and (b) the low-rank component of one image to Sample 2,left:In the heating phase and right:In the cooling phase.

    In order to present the procedure of the whole method,Fig.7shows the procedure of the proposed local sparse component evaluation based on partitioned images of Sample 1.FromFig.7,it can be seen that the defect profile of Sample 1 is highlighted in the fused local sparse component.The background information,including heating coil and the lift-off effect,is restrained in the defect feature component.The ends of the slot defect are extracted from the images in the heating phase and the sides of the slot presented in the cooling phase are enhanced in the fused feature image.

    Compared with other three feature extraction methods in ECPT,the developed method shows better performance in the integrity of the defect feature and background suppression,as shown inFig.8.In ICA,the independent component which the algorithm has enhanced the defect area,cannot extract complete defect information and suppress the background well.Though the sparse decomposition implemented by RPCA can suppress background well,the most defect features are lost and cannot be used to further processing.The LSLD method proposed in [22] does not consider the thermal phases in the local sparse component evaluation and the defect features in the cooling phase had been missed.In the developed method in this paper,image partition in the thermal phase has been added in the local sparse component evaluation and the image fusion criterion has been improved.The experimental results show that the proposed method can extract the most complete defect features and suppress the background well compared with other three methods in ECPT.

    Fig.7.Processing procedure of Sample 1.

    Fig.8.Result comparison of four algorithms.

    In [22],the authors have proposed two indicators to measure the degree of background suppressing(BSD) and defect enhancing degree (DED).BSD is calculated by the entropy of the background area.Less BSD means better background suppressing.DED is equal to the number of pixels,which highlights the defect area.In order to measure the performance of the proposed method,BSD and DED have been calculated for two samples in four algorithms,shown inTable 1.The thresholdτin DED is set as 20 in two samples.Compared with ICA,RPCA,and LSLD,feature images extracted by the proposed method has the smallest BSD value and the largest DED value in two samples.This result indicates that the proposed method in this paper has superior performance in background suppressing and defect enhancing.

    Table 1:BSD and DED of two samples under different algorithms

    5.Conclusions

    In this paper,a feature extraction method based on image partition,local sparse component evaluation,and image fusion has been proposed to enhance defect features and suppress background interference in ECPT.This developed method optimizes the LSLD method in the authors’ previous work in [22].Compared with other three feature extraction algorithms:ICA,RPCA,and LSLD,the proposed method can reserve more defect features and suppress the influence of background interference preferably.

    Future work will focus on developing this proposed method to detect the multi-defects and analyze quantitative defect information.

    Disclosures

    The authors declare no conflicts of interest.

    午夜精品一区二区三区免费看| 国产视频内射| 超碰av人人做人人爽久久| 乱人视频在线观看| 少妇的逼好多水| 丰满人妻一区二区三区视频av| 久久久久久久久大av| 久久精品国产自在天天线| 中文字幕av成人在线电影| 国产精品一及| 嫩草影院入口| 中出人妻视频一区二区| 不卡视频在线观看欧美| 91av网一区二区| 欧美性感艳星| 嘟嘟电影网在线观看| 日日摸夜夜添夜夜添av毛片| 最好的美女福利视频网| 亚洲av第一区精品v没综合| 一级黄片播放器| 99精品在免费线老司机午夜| 日本黄大片高清| 国产精品免费一区二区三区在线| 精品欧美国产一区二区三| 高清在线视频一区二区三区 | 男女那种视频在线观看| 日本-黄色视频高清免费观看| 免费av毛片视频| 久久韩国三级中文字幕| 直男gayav资源| 看十八女毛片水多多多| 美女国产视频在线观看| 日韩亚洲欧美综合| 日韩视频在线欧美| 悠悠久久av| 热99在线观看视频| 禁无遮挡网站| 一本久久中文字幕| 男插女下体视频免费在线播放| 国产精品久久久久久久电影| 国语自产精品视频在线第100页| 变态另类成人亚洲欧美熟女| av福利片在线观看| 国产免费一级a男人的天堂| 22中文网久久字幕| 欧美+亚洲+日韩+国产| 你懂的网址亚洲精品在线观看 | 久久久久国产网址| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲在久久综合| 又爽又黄a免费视频| 精品久久久久久久久久免费视频| 噜噜噜噜噜久久久久久91| 国产成人精品婷婷| 91久久精品国产一区二区三区| 3wmmmm亚洲av在线观看| 久久国产乱子免费精品| av.在线天堂| 亚洲欧美精品专区久久| 国产免费男女视频| 午夜福利在线观看免费完整高清在 | 日本三级黄在线观看| 色5月婷婷丁香| 亚洲欧美精品专区久久| 久久午夜福利片| 99久久成人亚洲精品观看| 夫妻性生交免费视频一级片| 高清日韩中文字幕在线| 可以在线观看的亚洲视频| 免费一级毛片在线播放高清视频| 只有这里有精品99| 亚洲欧美日韩卡通动漫| 真实男女啪啪啪动态图| 午夜福利高清视频| 亚洲av一区综合| 国产精品久久久久久久久免| 小说图片视频综合网站| 精品午夜福利在线看| 1024手机看黄色片| 亚洲无线观看免费| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲国产精品成人久久小说 | 青青草视频在线视频观看| 麻豆av噜噜一区二区三区| 欧美日本视频| 18禁黄网站禁片免费观看直播| 69av精品久久久久久| 内地一区二区视频在线| 成年女人看的毛片在线观看| 色哟哟·www| 非洲黑人性xxxx精品又粗又长| 看黄色毛片网站| 午夜福利在线在线| 免费搜索国产男女视频| 精品久久久久久久久久免费视频| 99国产极品粉嫩在线观看| 一级毛片久久久久久久久女| 亚洲国产精品久久男人天堂| 人体艺术视频欧美日本| 久久久久久伊人网av| 男人和女人高潮做爰伦理| 啦啦啦韩国在线观看视频| 久久热精品热| 日日干狠狠操夜夜爽| 亚洲美女搞黄在线观看| 成人毛片a级毛片在线播放| 国产一区二区亚洲精品在线观看| 美女 人体艺术 gogo| 91精品一卡2卡3卡4卡| 久久99精品国语久久久| 免费人成视频x8x8入口观看| 中文字幕人妻熟人妻熟丝袜美| 国产成人精品久久久久久| 国产一区二区激情短视频| 麻豆国产av国片精品| 少妇的逼水好多| 亚洲乱码一区二区免费版| 日本爱情动作片www.在线观看| 99热这里只有精品一区| 成人毛片a级毛片在线播放| 乱人视频在线观看| 国产亚洲av片在线观看秒播厂 | 大又大粗又爽又黄少妇毛片口| 日本免费一区二区三区高清不卡| 69人妻影院| 久久精品国产鲁丝片午夜精品| 久久精品91蜜桃| 欧美精品国产亚洲| 欧美亚洲日本最大视频资源| 中文字幕人妻丝袜制服| 美女xxoo啪啪120秒动态图| 香蕉精品网在线| 老司机影院毛片| 日日撸夜夜添| 日韩一区二区三区影片| 免费av不卡在线播放| 国产一区亚洲一区在线观看| 韩国高清视频一区二区三区| 全区人妻精品视频| 欧美日韩视频高清一区二区三区二| 狠狠精品人妻久久久久久综合| 色网站视频免费| 亚洲综合色网址| 51国产日韩欧美| 久久精品国产亚洲av涩爱| 亚洲国产精品专区欧美| 亚洲五月色婷婷综合| 十八禁网站网址无遮挡| 一级片'在线观看视频| 亚洲五月色婷婷综合| 人妻制服诱惑在线中文字幕| 久久久久视频综合| 999精品在线视频| 成人亚洲欧美一区二区av| 免费久久久久久久精品成人欧美视频 | 插阴视频在线观看视频| a级片在线免费高清观看视频| 99热国产这里只有精品6| 日本欧美国产在线视频| 十八禁网站网址无遮挡| 免费久久久久久久精品成人欧美视频 | 久久亚洲国产成人精品v| 国产精品.久久久| 国产免费一级a男人的天堂| 中文字幕人妻丝袜制服| 在线观看免费日韩欧美大片 | av在线老鸭窝| 欧美激情 高清一区二区三区| 看十八女毛片水多多多| 汤姆久久久久久久影院中文字幕| 国产精品秋霞免费鲁丝片| 久久综合国产亚洲精品| 嫩草影院入口| 亚洲图色成人| 久久毛片免费看一区二区三区| 看十八女毛片水多多多| 亚洲欧洲国产日韩| 免费av中文字幕在线| 久久99精品国语久久久| 亚洲综合色惰| 精品卡一卡二卡四卡免费| 乱人伦中国视频| 高清午夜精品一区二区三区| 女人精品久久久久毛片| 夜夜骑夜夜射夜夜干| 久久久a久久爽久久v久久| 国产av精品麻豆| 尾随美女入室| 22中文网久久字幕| 国产男女内射视频| 亚洲五月色婷婷综合| 久久国产精品男人的天堂亚洲 | 国产午夜精品一二区理论片| 国产熟女欧美一区二区| 国产精品秋霞免费鲁丝片| 久久韩国三级中文字幕| 久久久久久久国产电影| 不卡视频在线观看欧美| 熟女电影av网| 国产一区二区三区av在线| 久久久久久伊人网av| 校园人妻丝袜中文字幕| 国产亚洲精品久久久com| 精品人妻一区二区三区麻豆| 亚洲国产日韩一区二区| 成人手机av| 中文字幕av电影在线播放| 大又大粗又爽又黄少妇毛片口| av免费观看日本| 免费日韩欧美在线观看| 国产高清不卡午夜福利| 久久久久久久精品精品| 国产午夜精品一二区理论片| 免费不卡的大黄色大毛片视频在线观看| 国产精品一二三区在线看| 99视频精品全部免费 在线| 伦理电影免费视频| 国产色婷婷99| 少妇人妻 视频| 亚洲欧美日韩另类电影网站| 天堂中文最新版在线下载| 天堂8中文在线网| 日本欧美视频一区| 精品一区二区免费观看| 国产一级毛片在线| 婷婷色麻豆天堂久久| 能在线免费看毛片的网站| 日日摸夜夜添夜夜添av毛片| 男女边吃奶边做爰视频| 国产日韩欧美在线精品| 美女国产视频在线观看| 久久久久久久国产电影| 婷婷色麻豆天堂久久| 国产在视频线精品| 久久精品人人爽人人爽视色| 久久99热这里只频精品6学生| 美女中出高潮动态图| 国产欧美日韩综合在线一区二区| 性色av一级| 久久99一区二区三区| 高清不卡的av网站| av视频免费观看在线观看| 国产伦精品一区二区三区视频9| 麻豆乱淫一区二区| 欧美精品一区二区大全| 婷婷色综合www| 国产成人freesex在线| 有码 亚洲区| 亚洲国产精品国产精品| 日韩精品有码人妻一区| 国产一级毛片在线| 大香蕉久久成人网| 狂野欧美白嫩少妇大欣赏| 国产av精品麻豆| xxxhd国产人妻xxx| 国产毛片在线视频| 日韩强制内射视频| 精品一品国产午夜福利视频| 日韩中文字幕视频在线看片| 亚洲少妇的诱惑av| 亚洲国产av影院在线观看| 三级国产精品片| 国产免费福利视频在线观看| 国语对白做爰xxxⅹ性视频网站| 久久精品国产亚洲av涩爱| 一级a做视频免费观看| 久久精品国产鲁丝片午夜精品| 成人手机av| 国产 精品1| 插逼视频在线观看| 亚洲成人手机| 国产白丝娇喘喷水9色精品| 日韩中文字幕视频在线看片| 免费黄色在线免费观看| 飞空精品影院首页| 亚洲精品一区蜜桃| 观看美女的网站| 亚洲美女搞黄在线观看| 男女啪啪激烈高潮av片| 卡戴珊不雅视频在线播放| 久久精品国产鲁丝片午夜精品| 我的老师免费观看完整版| 欧美国产精品一级二级三级| 国产欧美日韩一区二区三区在线 | 国产精品一区二区在线不卡| 建设人人有责人人尽责人人享有的| 亚洲成人av在线免费| 亚洲欧洲精品一区二区精品久久久 | 国产成人aa在线观看| 久久久久久人妻| 99精国产麻豆久久婷婷| 国产国拍精品亚洲av在线观看| 成年人午夜在线观看视频| 国产色婷婷99| 伦理电影大哥的女人| 欧美精品一区二区免费开放| 高清毛片免费看| 人妻制服诱惑在线中文字幕| 精品久久久久久电影网| 午夜福利影视在线免费观看| 在线观看免费视频网站a站| 99国产综合亚洲精品| 2018国产大陆天天弄谢| 久久久久国产精品人妻一区二区| 高清视频免费观看一区二区| 我的老师免费观看完整版| 亚洲av福利一区| 夜夜骑夜夜射夜夜干| 秋霞伦理黄片| 久久精品国产自在天天线| 免费观看的影片在线观看| 青春草视频在线免费观看| 2022亚洲国产成人精品| 久久ye,这里只有精品| 超碰97精品在线观看| 免费av不卡在线播放| 国产成人91sexporn| a 毛片基地| 亚洲丝袜综合中文字幕| 婷婷色麻豆天堂久久| 18禁在线播放成人免费| 国产精品99久久99久久久不卡 | 亚洲色图 男人天堂 中文字幕 | 91国产中文字幕| 在线观看免费高清a一片| 亚洲丝袜综合中文字幕| 国产成人91sexporn| 99热全是精品| 欧美日本中文国产一区发布| 亚洲精品乱码久久久久久按摩| av卡一久久| 中文字幕人妻熟人妻熟丝袜美| 99视频精品全部免费 在线| 夫妻午夜视频| 飞空精品影院首页| 美女脱内裤让男人舔精品视频| 国产精品免费大片| 中文字幕亚洲精品专区| 国产精品.久久久| 我的女老师完整版在线观看| 美女国产高潮福利片在线看| 成年女人在线观看亚洲视频| 成人黄色视频免费在线看| 简卡轻食公司| 夜夜看夜夜爽夜夜摸| 91精品国产国语对白视频| 亚洲国产精品999| 国产欧美另类精品又又久久亚洲欧美| 欧美成人午夜免费资源| 91午夜精品亚洲一区二区三区| 一二三四中文在线观看免费高清| 国产高清三级在线| 国产精品一国产av| 久久午夜福利片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 午夜老司机福利剧场| 99久久精品一区二区三区| 一区二区三区精品91| videossex国产| tube8黄色片| 天天躁夜夜躁狠狠久久av| 成人18禁高潮啪啪吃奶动态图 | 欧美最新免费一区二区三区| 九色成人免费人妻av| 自线自在国产av| 欧美亚洲 丝袜 人妻 在线| 一本一本综合久久| 亚洲无线观看免费| 中文欧美无线码| 久久精品久久精品一区二区三区| 久久精品国产鲁丝片午夜精品| 永久免费av网站大全| 久久午夜福利片| 国产伦理片在线播放av一区| 97超视频在线观看视频| 麻豆乱淫一区二区| 成人毛片60女人毛片免费| av卡一久久| 高清视频免费观看一区二区| 亚洲av福利一区| 晚上一个人看的免费电影| 欧美最新免费一区二区三区| 9色porny在线观看| 久久国产精品男人的天堂亚洲 | 久久国产精品大桥未久av| 十分钟在线观看高清视频www| 99久久综合免费| 久久精品熟女亚洲av麻豆精品| 满18在线观看网站| 亚洲色图综合在线观看| 日本91视频免费播放| 日本-黄色视频高清免费观看| 一区二区三区四区激情视频| av视频免费观看在线观看| 欧美亚洲 丝袜 人妻 在线| 99久国产av精品国产电影| 黄色一级大片看看| 激情五月婷婷亚洲| 久久国产精品男人的天堂亚洲 | 97超视频在线观看视频| 欧美 日韩 精品 国产| 国产精品 国内视频| 中文字幕av电影在线播放| 18+在线观看网站| 日韩大片免费观看网站| 晚上一个人看的免费电影| 日本黄大片高清| 国产成人av激情在线播放 | 免费高清在线观看视频在线观看| 国产亚洲一区二区精品| 少妇丰满av| 国产精品久久久久久久久免| 日本vs欧美在线观看视频| 亚洲国产毛片av蜜桃av| 亚洲综合色网址| 欧美变态另类bdsm刘玥| xxxhd国产人妻xxx| 久久久久久久久久人人人人人人| 久久国内精品自在自线图片| 男女免费视频国产| 亚洲五月色婷婷综合| 亚洲美女黄色视频免费看| 99热这里只有是精品在线观看| 成人黄色视频免费在线看| 蜜桃久久精品国产亚洲av| 女人精品久久久久毛片| 午夜免费观看性视频| 青春草亚洲视频在线观看| 麻豆成人av视频| 黄色毛片三级朝国网站| av有码第一页| 大香蕉97超碰在线| 久久久午夜欧美精品| 成人二区视频| 久久久久久伊人网av| 精品一区二区三卡| 制服人妻中文乱码| 看免费成人av毛片| 99九九在线精品视频| 国产高清不卡午夜福利| 丝袜脚勾引网站| 日韩av在线免费看完整版不卡| 热re99久久精品国产66热6| 欧美bdsm另类| 亚洲av成人精品一区久久| 免费av中文字幕在线| 久久久久久久久久成人| 亚洲婷婷狠狠爱综合网| 高清午夜精品一区二区三区| 欧美xxxx性猛交bbbb| 如日韩欧美国产精品一区二区三区 | av国产精品久久久久影院| 成人午夜精彩视频在线观看| 视频中文字幕在线观看| 国产高清不卡午夜福利| 人妻少妇偷人精品九色| 成人黄色视频免费在线看| 国产在线一区二区三区精| 亚洲av福利一区| 在线播放无遮挡| 国产成人免费无遮挡视频| 国产av精品麻豆| 久久久久精品性色| 亚洲熟女精品中文字幕| 特大巨黑吊av在线直播| www.色视频.com| 成年女人在线观看亚洲视频| 国产精品女同一区二区软件| 高清视频免费观看一区二区| 卡戴珊不雅视频在线播放| 日本-黄色视频高清免费观看| 免费黄色在线免费观看| 又大又黄又爽视频免费| 国产免费又黄又爽又色| av天堂久久9| 日韩熟女老妇一区二区性免费视频| 国产精品久久久久成人av| 视频在线观看一区二区三区| 成人二区视频| 18禁裸乳无遮挡动漫免费视频| 天天影视国产精品| 人人澡人人妻人| 色网站视频免费| 欧美精品亚洲一区二区| 五月伊人婷婷丁香| 国产成人精品一,二区| 中文字幕最新亚洲高清| 久久女婷五月综合色啪小说| 水蜜桃什么品种好| 精品国产乱码久久久久久小说| 亚洲欧美色中文字幕在线| 久久久久人妻精品一区果冻| 人人妻人人澡人人爽人人夜夜| 亚洲精品日本国产第一区| 久久99蜜桃精品久久| 99热这里只有精品一区| 一边亲一边摸免费视频| 人妻制服诱惑在线中文字幕| 五月天丁香电影| 欧美日韩在线观看h| 蜜桃久久精品国产亚洲av| 大片电影免费在线观看免费| 欧美人与善性xxx| 日韩免费高清中文字幕av| 国产黄色免费在线视频| 国产深夜福利视频在线观看| 国国产精品蜜臀av免费| 精品少妇黑人巨大在线播放| av国产久精品久网站免费入址| 夫妻性生交免费视频一级片| 97精品久久久久久久久久精品| 国产极品粉嫩免费观看在线 | 亚洲av.av天堂| 免费看不卡的av| 精品卡一卡二卡四卡免费| a级毛片在线看网站| 精品99又大又爽又粗少妇毛片| 日韩大片免费观看网站| 纯流量卡能插随身wifi吗| 国产精品人妻久久久影院| 亚洲性久久影院| 国产在视频线精品| 中文欧美无线码| 少妇精品久久久久久久| 人人妻人人添人人爽欧美一区卜| 久久国产精品大桥未久av| 久久久久国产精品人妻一区二区| 国产精品秋霞免费鲁丝片| 成人午夜精彩视频在线观看| 大片免费播放器 马上看| 久久99一区二区三区| 国产精品久久久久久久久免| 午夜激情久久久久久久| 国产在线视频一区二区| 美女国产高潮福利片在线看| 少妇丰满av| 久热这里只有精品99| 免费观看无遮挡的男女| 伊人亚洲综合成人网| 内地一区二区视频在线| 精品一区在线观看国产| 老司机影院毛片| 少妇熟女欧美另类| 十分钟在线观看高清视频www| 尾随美女入室| 大香蕉97超碰在线| 欧美人与性动交α欧美精品济南到 | 成人国产麻豆网| av视频免费观看在线观看| 精品卡一卡二卡四卡免费| 亚洲精品久久久久久婷婷小说| 日日啪夜夜爽| 久久人人爽av亚洲精品天堂| 欧美日韩一区二区视频在线观看视频在线| 另类精品久久| 久久人人爽人人爽人人片va| 久久鲁丝午夜福利片| 五月天丁香电影| 国产欧美日韩综合在线一区二区| 午夜视频国产福利| 精品久久久精品久久久| 日本av免费视频播放| 亚洲国产毛片av蜜桃av| 久久97久久精品| 久久免费观看电影| 中文字幕人妻熟人妻熟丝袜美| av免费在线看不卡| 不卡视频在线观看欧美| 黄色视频在线播放观看不卡| www.色视频.com| 麻豆成人av视频| 久久久久网色| 国产精品秋霞免费鲁丝片| kizo精华| 91久久精品国产一区二区成人| 日韩av在线免费看完整版不卡| 国产日韩欧美亚洲二区| 成人影院久久| 黑丝袜美女国产一区| a级毛色黄片| 亚洲国产欧美在线一区| 国产白丝娇喘喷水9色精品| 韩国av在线不卡| 国产一区亚洲一区在线观看| 少妇高潮的动态图| av女优亚洲男人天堂| 国产伦精品一区二区三区视频9| 日韩成人伦理影院| 热99国产精品久久久久久7| 国产欧美日韩综合在线一区二区| 国产又色又爽无遮挡免| 欧美 亚洲 国产 日韩一| 免费观看a级毛片全部| 久久久精品免费免费高清| 久久午夜福利片| 日本av免费视频播放| h视频一区二区三区| 午夜老司机福利剧场| 亚洲天堂av无毛| av视频免费观看在线观看| 日韩免费高清中文字幕av| 日韩中字成人| 免费看不卡的av| 老司机亚洲免费影院| 日韩精品有码人妻一区| 日韩成人伦理影院| av女优亚洲男人天堂| 美女国产视频在线观看| 亚洲精品美女久久av网站| 午夜激情福利司机影院| 中国三级夫妇交换| 亚洲中文av在线| 天堂俺去俺来也www色官网| 一边亲一边摸免费视频| 99精国产麻豆久久婷婷|