• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Material and Dimension on TCF,Frequency,and Q of Radial Contour Mode AlN-on-Si MEMS Resonators

    2022-01-08 13:06:26ThiDepHa

    Thi Dep Ha

    Abstract—This paper investigates the effects of material and dimension parameters on the frequency splitting,frequency drift,and quality factor (Q) of aluminium nitride (AlN)-on-n-doped/pure silicon (Si) microelectromechanical systems (MEMS) disk resonators through analysis and simulation.These parameters include the crystallographic orientation,dopant,substrate thickness,and temperature.The resonators operate in the elliptical,higher order,and flexural modes.The simulation results show that i) the turnover points of the resonators exist at 55 °C,-50 °C,40 °C,and -10 °C for n-doped silicon with the doping concentration of 2×1019 cm-3 and the Si thickness of 3.5 μm,and these points are shifted with the substrate thickness and mode variations;ii) compared with pure Si,the modal-frequency splitting for n-doped Si is higher and increases from 5% to 10% for all studied modes;iii) Q of the resonators depends on the temperature and dopant.Therefore,the turnover,modal-frequency splitting,and Q of the resonators depend on the thickness and material of the substrate and the temperature.This work offers an analysis and design platform for high-performance MEMS gyroscopes as well as oscillators in terms of the temperature compensation by n-doped Si.

    Index Terms—Anisotropic,contour mode,doping,gyroscope,microelectromechanical systems (MEMS) resonator,piezoelectric,temperature coefficient of frequency (TCF),temperature compensation,thin-film piezoelectric-onsubstrate (TPoS).

    1.lntroduction

    Microelectromechanical systems (MEMS)[1]resonators have been exploited in many applications (e.g.,oscillators[2],[3],filters[1],[4],[5],radar systems,and communications systems or gyroscopes[6]-[10]) due to a small form factor and integration with the complementary metal oxide semiconductor (CMOS)[11].Such contour mode based MEMS disk resonators have been reported[7]-[12].

    Some of the critical parameters which can affect the resonator performance are the frequency splitting[8]-[10],[12]-[14],frequency drift[15],[16],and quality factor (Q)[11],[17].For instance,an increasedQand a matched modal frequency can improve the gyroscope’s sensitivity and reduce the phase noise[10],[18],[19].The mode matching is to match the resonant frequency between the drive and sense modes and thus to eliminate the frequency splitting[9],[10],[13].The modal frequency of a resonator is the frequency obtained in eigenfrequency analysis when the resonator does not been supplied by external loads.The frequency splitting is the frequency difference between the drive-mode and sense-mode frequencies.Also,the discrepancy between the frequency temperature characteristics affects the resonator’s temperature stability performance[20]-[22].

    One of sources causing the frequency splitting is the anisotropic properties of structure composite materials[8],[9],[23]-[26].To reduce the frequency splitting,most elliptical mode gyroscopes are fabricated in more isotropic materials,such as polysilicon[17],[27]and (111) Si[28].

    The temperature dependence on elastic constants[29]-[34]of the composite structure materials is the cause of the frequency drift in MEMS resonators[32],[35],[36].Hence,the resonant frequency stability over temperature is one of important parameters to evaluate the performance of resonators.Besides the doping effects on the frequency drift,it is necessary to consider them on the frequency splitting.In addition,many studies only focused on the impacts of Si anisotropic properties on the frequency splitting[8]-[10],[13].However,to the best of the author’s knowledge,the effects of the temperature,dopant,and substrate thickness on the frequency splitting and frequency drift of piezoelectric MEMS disk resonators with the elliptical,higher order,and flexural modes have been reported up to now yet.

    The higher theQ,the more the sensitivity and the lower the phase noise[11],[17].Except that the impacts of the geometrical structure of the support tether onQhave been investigated widely[37]-[41],this work focuses on the influences of dopant and temperature.Hence,we only concentrate their influences onQof the thermoelastic damping (TED) (QTED)[42]-[46]and support loss (i.e.,anchor loss) (Qanchor)[37],[38].

    The aim of this paper is to present the effects of the material and dimension on the frequency andQof thin-film piezoelectric AlN-on-n-doped/pure Si disk resonators for gyroscopes.These resonators operate in the contour,higher order,and flexural modes.The material properties and dimension include the crystallographic orientation,dopant,temperature,and substrate thickness.The frequency characteristics include the model frequency,frequency drift,and frequency splitting.

    The main contribution of this paper is summarized as follows:

    1) The analysis,simulation,and evaluation of the effects of material (e.g.,temperature,dopant,and crystallographic orientation) on the modal frequency,frequency drift,frequency splitting,andQare presented.

    2) First,we evaluate the change of the modal frequency along with these parameters.Second,the dependence of the frequency drift on the temperature and substrate thickness for the n-doped/pure Si based resonators is also simulated to determine the turnover point (i.e.,temperature stability point) of the resonators.Qof the resonators is affected by these parameters.

    3) The analysis,simulation,and evaluation of the effects of the dimension in terms of the substrate thickness on the frequency drift and frequency splitting are studied.

    4) The comparison of frequency characteristics andQbetween pure and n-doped Si based resonators in each mode is also studied.

    The design is simulated and computed by using finite element analysis in COMSOL Multiphysics and MATLAB.

    2.Materials and Method

    2.1.Materials

    2.1.1.Dependence of Si Elastic Constants on Temperature and Doping Concentration

    To evaluate the temperature-induced frequency drift,the linear temperature coefficient of frequency (TCF)is expressed in a general form as follows[33]:

    whereTis the temperature;fis the resonant frequency of the thin-film piezoelectric-on-substrate (TPoS)resonators and is expressed in a general form as=whereMis a coefficient depending on the dimension and resonant mode of the resonators,Eeffis the effective Young’s modulus,andρeffis the effective mass density of the structure composite materials in the TPoS resonators.

    For the TPoS disk resonator,this resonant frequency is discussed in detail in the following subsection 2.2.

    To predict TCF of the MEMS resonators with n-doped Si,a method combining Keyes’ theory[47]based quantitative calculation of the influence of free electron on elasticity and the finite element simulation based numerical analysis is applied.This Keyes’ theory shows that the elastic properties of n-doped Si depend upon the electron concentration.In the case of n-doped Si,the elastic constant variation at absolute temperatureTdue to the dopant is determined by[48],[49]

    whereNis the electron concentration,Efis the Fermi energy,Ξis the shear deformation potential constant,andX(T) is the function defined by

    whereηis given byEfoverkT;FandF′are the Fermi integral and its derivatives,which were defined in [50]to [52].The elastic constants of Si at absolute temperatureTare determined by[32],[48]

    whereαi,jis the elasticity temperature coefficient (i.e.,thermal coefficient);(i,j)={(11),(12),(44)}.

    In our work,the temperature dependent elastic constants for pure and n-doped Si are calculated based on the measured data from [34] and[49] and combined with (2) to(4).The values of Si elastic constants at 25 °C are listed inTable 1.The theoretical prediction also agrees well with the experimental results reported in [34] for a similar doping concentration level.

    Table 1:Material properties of AlN[26] and Si[34]

    Additionally,the temperature dependence of AlN Young’s modulus and Poisson’s ratio is calculated from the measured data and formulas in [29] and [30].

    Fig.1illustrates the Si elastic constants versus temperature using Keyes’ theory for the doping concentrationNof 2×1019cm-3.This calculated result agrees with the measured data in [34] and [49].

    Fig.1.Calculated elastic constants versus temperature for pure and n-doped Si:(a) c11,(b) c12,and (c) c44.

    2.1.2.Dependence of Elastic Constants of Si and AlN on Crystallographic Orientation

    Si is a material belonging to the cubic system[23],[53]while AlN belongs to the hexagonal system[25],[53],[54].Both Si and AlN are the anisotropic crystalline materials.Their material properties depend on the orientation relating to the crystal lattice.It means that the exact value of Young’s modulus (E) for analyzing two different designs may differ from each other[23].For instance,the value ofEin the planar direction varies between 130 GPa to 188 GPa for the <100>and <111>directions,respectively[23].

    The material matrices of Si and AlN are given in Appendix A.

    The dependence of the stiffness and compliance of Si and AlN on the crystallographic orientation is calculated and predicted using the bond matrix based transformation law and Euler angle[55]as follows:

    For a converted stiffness form,its expression is given by

    or in a converted compliance form as

    where s and c are the stiffness and compliance matrices,respectively;M and N are the bond transformation matrices given in Appendix B.

    Young’s moduli and Poisson’s ratios of AlN and Si in any crystallographic orientations can be determined by[24],[56]

    Fig.2shows the crystallographic orientation dependence on Young’s moduli,elastic constants,and Poisson’s ratios of Si and AlN in the (100) plane.Figs.2 (a)and(b)illustrate the pure and n-doped Si Young’s moduli and elastic constants versus the crystallographic orientation.The AlN Young’s modulus is shown inFig.2 (c).The Poisson’s ratios of Si and AlN are plotted inFig.2 (d).

    Fig.2.Polar plots.Calculated Young’s moduli and elastic constants of (a) pure Si and (b) n-doped Si,(c) calculated Young’s modulus of AlN,and (d) Poisson’s ratios of AlN,pure Si,and n-doped Si.

    2.2.Method

    2.2.1.Model of Resonators

    Fig.3illustrates the schematic view of the elliptical mode TPoS resonator based gyroscope.The resonator operation bases on the direct and reverse piezoelectric effects occurring in the thin-film piezoelectric plate.An applied electric field across the film sandwiched between two metallic electrode layers generates the strain.This strain causes the deformation of the whole structure through the reverse piezoelectric effect.This vibration then induces charges on the metallic electrode surfaces through the direct piezoelectric effect.The disk-like gyroscope vibrates in the in-plane modes,which involves both radial and circumferential displacements in the disk and utilizes a degenerate vibration mode pair as the drive mode and the sense mode.

    Fig.3.Schematic view of (a) resonator in the case of top electrodes for the elliptical mode and (b) symmetrical part of the center support tether,PML,and resonator body.

    The displacement components of the disk resonator can be expressed as[8],[10]

    wherekmandhmare the dimensionless frequency parameters for themth mode,Ris the radius of the disk,AmandBmare the constants,andJmis the Bessel function of the first kind.The resonance frequency of the resonator is given as[8]

    whereνeffis the effective Poisson’s ratio of the structure composite materials.

    Eeff,νeff,andρeffare calculated from [57]

    wherePeqis the effective Young’s modulus,Poisson’s ratio,or mass density of the structure composite materials;Pjis the Young’s modulus,Poisson’s ratio,or mass density of the materialj;tjis the thickness of the materialj;jis the metallic electrode,piezoelectric,or substrate materials,respectively.

    Here it can be seen that the metallic top and bottom electrodes are made of isotropic materials while the piezoelectric and Si substrate materials are anisotropic.The mass density is independent on the crystallographic orientation.Hence,the modal resonant frequency of the disk resonators depends onEandνof piezoelectric and Si materials (i.e.,depend on elastic constants).Due to the elastic constant difference in arbitrary crystallographic orientations,Eandνmaybe have different values for these corresponding orientations.

    The designed disk has a 50-μm radius.It consists of a 0.5-μm AlN piezoelectric thin film,a 3.5-μm Si substrate,and 0.1-μm molybden (Mo) electrodes,as shown inFig.3 (a).The center support tether has the lengthLTofλ/16 (λis the wavelength) and the tether radius of 5 μm.The radius of the spherical tetherRTisλ/4.Fig.3 (b)illustrates the tether configuration,resonant body,and perfectly match layer (PML)[5],[37],[38].

    2.2.2.Modeling

    The simulation in our work is performed via COMSOL and post processing results are then processed and computed by MATLAB.The simulation scenarios referring to the temperature dependent parameters are carried out by combining the parametric sweep.Qof the resonators depends on several loss sources[37],[38].However,as discussed in Section 1,we only focus onQTEDandQanchorin this work.Other losses are assumed not to affectQ.Hence,Qis calculated by using

    To predictQanchorof the resonators,PML in COMSOL is used to model the anchor loss.PML is a mimic domain that absorbs all energy from the tether to the substrate and prevents the waves back to the device,and thus allows losing energy to the surroundings[58].The resonators are anchored at the center of the disk.Qanchorcan be obtained by[38]

    whereωis the eigenfrequency of the desired mode of the resonators solved via FE simulation in COMSOL.Also,the thermoelasticity (te) module in COMSOL is utilized to model TED.QTEDis also obtained by applying(12).The material parameters which are used in simulation are also listed inTable 1.

    3.Results and Discussion

    3.1.Model Mode Shape

    The eigenmode shapes of degenerate vibration mode pairs of the elliptical and its higher order modes as well as the flexural mode occurring in the resonator are illustrated inFig.4.Figs.4 (a)and(b)show the elliptical degenerate mode pair with the oblique angle of 45°.Figs.4 (c)and(d)demonstrate the third degenerate mode pair with the oblique angle of 30°.This angle is 15° for the fourth mode,which is illustrated inFigs.4 (e)and(f).For the flexural mode,the angle is 45°,as shown inFigs.4 (g)and(h).

    Fig.4.Simulated eigenmode shapes of the degenerate vibration mode pairs of (a) and (b) elliptical mode,(c) and (d) third mode,(e) and (f) fourth mode,and (g) and (h) flexural mode.

    3.2.Model-Frequency Drift versus Temperature,Dopant,and Substrate Thickness

    Fig.5illustrates the frequency-temperature characteristics of the elliptical,third,fourth,and flexural modes corresponding with pure and n-doped Si.For n-doped Si,the simulated frequency drift versus temperature results in a resemble parabolic trend with the turnover point[32].The turnover points occur at 55 °C,-50 °C,40 °C,and -10 °C for the elliptical,third,fourth,and flexural modes,respectively,which are indicated by the circle-marked black,triangle-marked blue,diamond-marked yellow,and hexagram-marked cyan lines,respectively.The turnover points for the elliptical mode and its fourth mode are close to the room temperature point,while the ones for the flexural and third modes are towards a lower temperature range (i.e.,to the negative direction of the axis).In particular,the turnover point of the third mode tends to out of the temperature range.

    On the contrary,the TCF constants are approximate -22.34 ppm/°C,22.21 ppm/°C,22.45 ppm/°C,and 23.43 ppm/°C for pure Si (no turnover point existence).These TCF constants insignificantly change among the different modes.Specifically,these facts indicate that the elastic constants have impacts on the change of the frequency of the distinct modes.

    The substrate thickness dependence of the temperature induced frequency drift is illustrated inFig.6.

    Fig.5.Dependence of simulated frequency drift on n-doped and pure Si for elliptical,third,fourth,and flexural modes.

    Fig.6.Dependence of the simulated frequency drift on the n-doped Si thickness of the resonator with (a) elliptical mode,(b) third mode,(c) fourth mode,and (d) flexural mode.

    Fig.6shows that the turnover point is affected by the substrate thickness.However,these points are towards the positively higher temperature range when the substrate thickness becomes thicker (manifested by the offset center in the figure).Fig.6 (a)illustrates the turnover points with the substrate thickness varying from 3 μm to 6 μm for the elliptical mode.These values are 50 °C,55 °C,60 °C,70 °C,and 75 °C,corresponding to the substrate thickness of 3.0 μm,3.5 μm,4.0 μm,5.0 μm,and 6.0 μm,respectively.The thicker the substrate,the higher the value of the turnover point.For the third mode,the turnover points concentrate around 45 °C and may be pushed out of the temperature range when the Si thickness becomes thinner,as shown inFig.6 (b).The turnover points are approximate in the range from 20 °C to 60 °C for the fourth mode and are illustrated inFig.6 (c).These points shift to lower values for the flexural mode,about -15 °C to -5 °C,as plotted inFig.6 (d).These simulated results can be explained based on the graph shown inFig.1and the formulas in [59].It means that the dopant causes the variation of the elastic constants of Si.As a result,the resonant frequency of the resonators depends on these elastic constants.

    3.3.Modal Frequency and Frequency Splitting versus Crystallographic Orientation and Dopant

    The crystallographic orientation dependence of the modal frequency and frequency splitting is illustrated inFig.7.These results are simulated using the parameters of Si and AlN at 25 °C.As shown inFig.7 (a),the modal frequency of the resonators with different modes increases when the rotation angle is higher.This is due to the increase of Si Young’s modulus,as calculated in subsection 2.1 and plotted inFig.2.The frequency splitting for the elliptical mode achieves the highest as compared with the other simulated modes,about 5.63 kHz and 5.91 kHz corresponding to pure and n-doped Si and 0° rotated-orientation.This frequency splitting for the third,fourth,and flexural modes in pure Si is 0.342 kHz,2.080 kHz,and 1.100 kHz,respectively.Similarly,these values are 0.372 kHz,2.290 kHz,and 1.020 kHz for n-doped Si.The detailed values are shown inTable 2,where*indicates kHz;a and b represent pure Si and n-doped Si,respectively;1 to 4 denote the elliptical,third,fourth,and flexural modes,respectively.The graph for the frequency splitting is illustrated inFig.7 (b).Compared with pure Si,the frequency splitting for n-doped Si increases up to 5.0%,8.8%,10.1%,and 7.3% for the elliptical,third,fourth,and flexural modes,respectively.

    Table 2:Effects of the crystallographic orientation and dopant on the frequency splitting of the resonator for the elliptical,third,fourth,and flexural modes

    Fig.7.Dependence of simulated (a) modal frequency and (b) frequency splitting on pure/n-doped oriented Si and AlN and vibration modes.

    In summary,in all simulated cases,the frequency splitting for n-doped Si is always higher than the one for pure Si.These can be explained that the difference among the values of the frequency splitting for pure and n-doped Si is due to the different dependence of the elastic constantsc11andc12on the temperature,as shown inFigs.1 (a)and(b).

    3.4.Q versus Dopant and Temperature

    Fig.8illustratesQof the resonators for n-doped (the marked blue lines) and pure (the marked red lines)Si.Qis computed using (11).Fig.8 (a)showsQfor the elliptical mode in both cases of n-doped and pure Si.The results indicate that the higher the temperature,the lower theQ.For the third mode,whileQis reduced for pure Si,it is increased for n-doped Si when the temperature is higher,as shown inFig.8 (b).TheQvalues of the fourth and flexural modes increase more and more when the temperature is towards to positively higher values,as shown inFigs.8 (c)and(d).Qwith n-doped Si is only higher than the one with pure Si corresponding with the elliptical mode.The detailed values are listed inTable 3for the temperature of 25 °C.It can be concluded thatQis affected by bothQanchorandQTED.Obviously,the dopant and temperature are the causes of the changes in these parameters.

    Table 3:Simulated QTED and Qanchor of resonators with different modes for n-doped and pure Si (@25 °C)

    Fig.8.Dependence of Q on the temperature for pure and n-doped Si with (a) elliptical mode,(b) third mode,(c) fourth mode,and (d) flexural mode.

    Fig.9plotsQanchorof the resonator with the flexural mode versus the mesh element number.

    The following conclusions can be concluded:

    1) For n-doped Si,the existence of turnover points tends to shift to the lower temperature when the mode order is higher with the same doping concentration.

    2) For pure Si,the TCF constants are approximate up to 22 ppm/°C for all simulated modes.

    3) The higher the value of the turnover point,the thicker the substrate.

    4) The resonant frequency is a function of temperature and dopant.

    5)Qof the resonator depends on the dopant,temperature,and vibration mode.

    Fig.9.Qanchor versus the mesh element number for the flexural mode.

    4.Conclusion

    In this paper,we presented the simulation of the impacts of the substrate thickness,dopant,and temperature on the modal frequency,frequency drift,andQof the AlN-on-Si resonators with different modes for gyroscopes as well as oscillators.The vibration modes studied in our work included the elliptical and its higher order modes and the flexural mode.Furthermore,the comparison of performance parameters was also carried out between n-doped and pure Si in our work.The simulated results show that the performance of the resonators changes as the material properties and thickness of the resonators vary.

    Appendix

    Appendix A

    The standard Si and AlN stiffness (i.e.,elastic) matrices are given as follows[53]:

    1) For the cubic system,

    2) For the hexagonal system,

    Appendix B

    The bond transformation matrices M and N are denoted as

    whereai,j(i,j=x,y,z) is the element of the coordinate transformation matrix a that is given by

    whereθis the rotation angle.

    Acknowledgment

    The authors wish to thank the anonymous reviewers for his/her efforts in spending time to process our paper.

    Disclosures

    The authors declare no conflicts of interest.

    欧美最黄视频在线播放免费| 亚洲国产欧美人成| 婷婷精品国产亚洲av| 日韩一区二区视频免费看| 在线观看美女被高潮喷水网站| 国产精品国产三级国产av玫瑰| 成人午夜高清在线视频| 亚洲精品456在线播放app | 国产午夜精品久久久久久一区二区三区 | 在线播放无遮挡| 国产熟女欧美一区二区| 久久精品国产自在天天线| 中文字幕熟女人妻在线| 三级毛片av免费| 联通29元200g的流量卡| 大型黄色视频在线免费观看| 欧美黑人欧美精品刺激| 高清毛片免费观看视频网站| 久久久久久久久久久丰满 | 舔av片在线| 国产精品美女特级片免费视频播放器| 免费人成在线观看视频色| 全区人妻精品视频| 日韩欧美一区二区三区在线观看| 精品久久久久久久末码| 中文在线观看免费www的网站| 成年版毛片免费区| 日韩中字成人| 毛片一级片免费看久久久久 | 人人妻,人人澡人人爽秒播| 国产精品日韩av在线免费观看| 男人和女人高潮做爰伦理| av黄色大香蕉| 免费观看在线日韩| 九色成人免费人妻av| 日本欧美国产在线视频| 一本精品99久久精品77| 免费观看在线日韩| 亚洲自偷自拍三级| 国产成人aa在线观看| 啦啦啦观看免费观看视频高清| 全区人妻精品视频| АⅤ资源中文在线天堂| 很黄的视频免费| 中文字幕高清在线视频| 午夜福利18| 欧美性猛交黑人性爽| 一进一出抽搐动态| 尾随美女入室| 午夜福利欧美成人| 午夜老司机福利剧场| 麻豆av噜噜一区二区三区| 国内精品久久久久久久电影| 亚洲av免费高清在线观看| 久久久久久久精品吃奶| 观看美女的网站| 一夜夜www| 国产高清有码在线观看视频| 免费观看人在逋| 欧美成人性av电影在线观看| 热99在线观看视频| 一区福利在线观看| 国产黄a三级三级三级人| 午夜亚洲福利在线播放| 久久九九热精品免费| 桃色一区二区三区在线观看| 九色国产91popny在线| 亚洲成av人片在线播放无| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产高清在线一区二区三| 久久国产乱子免费精品| 五月玫瑰六月丁香| 嫩草影院新地址| 日韩亚洲欧美综合| 91麻豆av在线| 丰满乱子伦码专区| 国产亚洲欧美98| 一个人看视频在线观看www免费| 色在线成人网| 日韩欧美精品免费久久| 免费人成在线观看视频色| 久久久久久九九精品二区国产| 国产成人福利小说| 99热6这里只有精品| 小蜜桃在线观看免费完整版高清| 日韩欧美国产一区二区入口| 免费观看人在逋| aaaaa片日本免费| 小蜜桃在线观看免费完整版高清| 亚洲自拍偷在线| 校园人妻丝袜中文字幕| 亚洲不卡免费看| 亚洲专区国产一区二区| 亚洲18禁久久av| 午夜精品久久久久久毛片777| 国产av麻豆久久久久久久| 精品人妻偷拍中文字幕| 国产精品自产拍在线观看55亚洲| 91精品国产九色| 亚洲无线观看免费| 村上凉子中文字幕在线| 国模一区二区三区四区视频| 欧美最黄视频在线播放免费| 色在线成人网| 亚洲va在线va天堂va国产| 亚洲人成网站高清观看| 日本五十路高清| 亚洲av一区综合| 国产日本99.免费观看| 老师上课跳d突然被开到最大视频| 精品久久久久久久久久免费视频| 亚洲av免费在线观看| av国产免费在线观看| 婷婷色综合大香蕉| 亚洲最大成人av| 性色avwww在线观看| 久久精品国产99精品国产亚洲性色| 人妻丰满熟妇av一区二区三区| 99久久九九国产精品国产免费| av中文乱码字幕在线| 草草在线视频免费看| 国产欧美日韩精品亚洲av| 俺也久久电影网| 精品人妻熟女av久视频| 色尼玛亚洲综合影院| 国产白丝娇喘喷水9色精品| 亚洲精品在线观看二区| 久久精品国产亚洲av香蕉五月| 亚洲成人中文字幕在线播放| 亚洲四区av| 干丝袜人妻中文字幕| 久久6这里有精品| 一进一出抽搐gif免费好疼| 国产精品av视频在线免费观看| 深爱激情五月婷婷| 日本爱情动作片www.在线观看 | 欧美高清性xxxxhd video| 欧洲精品卡2卡3卡4卡5卡区| 又爽又黄a免费视频| 中文字幕人妻熟人妻熟丝袜美| 可以在线观看毛片的网站| av福利片在线观看| 3wmmmm亚洲av在线观看| 五月玫瑰六月丁香| 一边摸一边抽搐一进一小说| 亚洲avbb在线观看| 欧美日本视频| 亚洲专区中文字幕在线| 久久中文看片网| 国产精品久久久久久av不卡| 91麻豆av在线| 韩国av一区二区三区四区| 1000部很黄的大片| 色吧在线观看| 午夜老司机福利剧场| 热99re8久久精品国产| 午夜视频国产福利| 99久久九九国产精品国产免费| 成人国产一区最新在线观看| 亚洲av免费在线观看| 最后的刺客免费高清国语| 国产精品久久电影中文字幕| 日韩,欧美,国产一区二区三区 | 色在线成人网| 偷拍熟女少妇极品色| 狂野欧美白嫩少妇大欣赏| 日韩大尺度精品在线看网址| 小说图片视频综合网站| 国产精品av视频在线免费观看| 18禁在线播放成人免费| 在线播放国产精品三级| 精品一区二区三区人妻视频| 一个人免费在线观看电影| 久久久久精品国产欧美久久久| 久久热精品热| 日本爱情动作片www.在线观看 | 精品一区二区三区视频在线观看免费| 我要搜黄色片| 国产爱豆传媒在线观看| 日韩欧美一区二区三区在线观看| 一级黄片播放器| 婷婷亚洲欧美| 精品久久久久久,| 免费高清视频大片| 久久草成人影院| 成人特级黄色片久久久久久久| 综合色av麻豆| 中文字幕人妻熟人妻熟丝袜美| 成人国产一区最新在线观看| 性色avwww在线观看| 久久久久久久亚洲中文字幕| 久久精品91蜜桃| 久久这里只有精品中国| 国产黄a三级三级三级人| 久9热在线精品视频| 精品久久久久久久久久久久久| 亚洲va日本ⅴa欧美va伊人久久| 久久人人精品亚洲av| 91久久精品国产一区二区三区| 麻豆国产av国片精品| 久久久精品大字幕| 亚洲第一区二区三区不卡| 亚洲天堂国产精品一区在线| 成年女人毛片免费观看观看9| 夜夜夜夜夜久久久久| 亚洲中文日韩欧美视频| 亚洲 国产 在线| 床上黄色一级片| 国产一区二区三区在线臀色熟女| 桃红色精品国产亚洲av| 日韩欧美国产在线观看| 日本成人三级电影网站| 亚洲美女视频黄频| 亚洲五月天丁香| 色尼玛亚洲综合影院| 老熟妇乱子伦视频在线观看| 狂野欧美激情性xxxx在线观看| 色尼玛亚洲综合影院| 波多野结衣高清无吗| 亚洲五月天丁香| 久久久久久久久中文| 久久亚洲精品不卡| 男人狂女人下面高潮的视频| 日韩欧美 国产精品| 99国产精品一区二区蜜桃av| 亚洲午夜理论影院| 国产av不卡久久| 亚洲av电影不卡..在线观看| 亚洲精品一区av在线观看| 禁无遮挡网站| 看免费成人av毛片| 嫩草影院精品99| 国产又黄又爽又无遮挡在线| 日韩精品有码人妻一区| 国产成人av教育| 一级黄色大片毛片| 一区二区三区四区激情视频 | av女优亚洲男人天堂| 又黄又爽又免费观看的视频| 91久久精品国产一区二区三区| 又爽又黄a免费视频| 亚洲乱码一区二区免费版| 桃红色精品国产亚洲av| 看免费成人av毛片| 欧美一区二区亚洲| 99久久精品一区二区三区| 黄色女人牲交| 免费看日本二区| 免费在线观看影片大全网站| 日韩高清综合在线| 白带黄色成豆腐渣| 国内毛片毛片毛片毛片毛片| 小蜜桃在线观看免费完整版高清| 国产男人的电影天堂91| 国产 一区 欧美 日韩| 搡老岳熟女国产| 一进一出抽搐动态| 12—13女人毛片做爰片一| 亚洲精华国产精华精| 国产精品一区二区免费欧美| 午夜福利高清视频| 欧美成人一区二区免费高清观看| 国产精品电影一区二区三区| 亚洲成人精品中文字幕电影| 精品无人区乱码1区二区| 国产精品久久久久久久电影| 最近最新免费中文字幕在线| 内射极品少妇av片p| 九色成人免费人妻av| 99久久成人亚洲精品观看| 亚洲成人精品中文字幕电影| 日本撒尿小便嘘嘘汇集6| 成年女人看的毛片在线观看| 97热精品久久久久久| 伦精品一区二区三区| 男女边吃奶边做爰视频| 99热精品在线国产| 精品午夜福利在线看| 内地一区二区视频在线| 无遮挡黄片免费观看| 午夜爱爱视频在线播放| 亚洲一区二区三区色噜噜| 亚洲黑人精品在线| 国产精品99久久久久久久久| 极品教师在线免费播放| 亚洲中文日韩欧美视频| 久久精品综合一区二区三区| 国产探花在线观看一区二区| 五月玫瑰六月丁香| 国产成人a区在线观看| 久久精品国产亚洲av香蕉五月| 免费看av在线观看网站| 亚洲精品一区av在线观看| 成人av在线播放网站| 日本成人三级电影网站| 精品久久久久久久末码| 欧美不卡视频在线免费观看| 欧美成人性av电影在线观看| 在线观看舔阴道视频| 国产av不卡久久| 国产又黄又爽又无遮挡在线| 国产精品,欧美在线| 九九爱精品视频在线观看| 国产 一区精品| 免费在线观看成人毛片| 婷婷精品国产亚洲av在线| 男人和女人高潮做爰伦理| 麻豆成人av在线观看| 日韩av在线大香蕉| 老熟妇乱子伦视频在线观看| 免费搜索国产男女视频| 亚洲av五月六月丁香网| 18禁在线播放成人免费| 欧美日韩国产亚洲二区| 免费观看人在逋| 国产亚洲精品综合一区在线观看| 国产精品日韩av在线免费观看| 亚洲在线自拍视频| 久久久成人免费电影| 国产亚洲精品久久久com| 97热精品久久久久久| 夜夜爽天天搞| 校园春色视频在线观看| 亚洲人成网站在线播放欧美日韩| 高清日韩中文字幕在线| 欧美+亚洲+日韩+国产| 久久精品国产自在天天线| 有码 亚洲区| 18禁黄网站禁片午夜丰满| 黄色欧美视频在线观看| 日韩欧美国产一区二区入口| 欧美在线一区亚洲| 精品久久久久久久久久免费视频| 午夜福利在线在线| 一边摸一边抽搐一进一小说| 在线播放无遮挡| 国产精品久久久久久精品电影| 美女 人体艺术 gogo| 日韩 亚洲 欧美在线| 看片在线看免费视频| 国产三级在线视频| 国模一区二区三区四区视频| 亚洲成av人片在线播放无| 少妇人妻一区二区三区视频| 午夜激情福利司机影院| 日韩精品青青久久久久久| 色精品久久人妻99蜜桃| 久久精品国产鲁丝片午夜精品 | 国产三级在线视频| 一级毛片久久久久久久久女| 99热这里只有精品一区| 亚洲成人免费电影在线观看| 亚洲一级一片aⅴ在线观看| 午夜免费激情av| 午夜视频国产福利| 婷婷六月久久综合丁香| 国产精品一区www在线观看 | 一级毛片久久久久久久久女| 真实男女啪啪啪动态图| 亚洲成人中文字幕在线播放| 91麻豆av在线| 国产高清激情床上av| 免费黄网站久久成人精品| 色噜噜av男人的天堂激情| 中出人妻视频一区二区| 成人国产麻豆网| 亚洲人成网站在线播| www日本黄色视频网| 亚洲欧美精品综合久久99| 成人三级黄色视频| 极品教师在线视频| 搡女人真爽免费视频火全软件 | 久久久久久久亚洲中文字幕| 国产欧美日韩精品亚洲av| 亚洲欧美日韩高清在线视频| 精品久久久久久久久av| 国产欧美日韩精品一区二区| 综合色av麻豆| 特级一级黄色大片| 免费搜索国产男女视频| 久久香蕉精品热| 男插女下体视频免费在线播放| 久久香蕉精品热| 国产精华一区二区三区| 国产高潮美女av| 久99久视频精品免费| 国产爱豆传媒在线观看| 日本撒尿小便嘘嘘汇集6| 人人妻人人澡欧美一区二区| 国产精品久久久久久久久免| 婷婷六月久久综合丁香| 国产精品一区二区免费欧美| 国产精品三级大全| 色综合婷婷激情| 黄色视频,在线免费观看| 国产精品亚洲美女久久久| 一个人免费在线观看电影| 日韩,欧美,国产一区二区三区 | 精品一区二区三区人妻视频| 狂野欧美白嫩少妇大欣赏| 欧美又色又爽又黄视频| 91精品国产九色| 久久精品久久久久久噜噜老黄 | 亚洲av日韩精品久久久久久密| 久久久久久久久中文| 国产精品精品国产色婷婷| 在线观看舔阴道视频| 免费观看人在逋| 国内精品一区二区在线观看| 一边摸一边抽搐一进一小说| 人妻夜夜爽99麻豆av| 亚洲人与动物交配视频| 日本与韩国留学比较| 国产精品久久久久久久久免| 精品一区二区免费观看| 亚洲av成人精品一区久久| 波多野结衣高清作品| 黄色欧美视频在线观看| or卡值多少钱| 伊人久久精品亚洲午夜| 夜夜爽天天搞| 国产一级毛片七仙女欲春2| 国产淫片久久久久久久久| 国产高清视频在线播放一区| 免费在线观看成人毛片| 国产一区二区在线观看日韩| 国产aⅴ精品一区二区三区波| 久久精品国产清高在天天线| 可以在线观看毛片的网站| 嫩草影院精品99| 伊人久久精品亚洲午夜| 在线观看午夜福利视频| 成人av一区二区三区在线看| 日本黄色片子视频| 午夜a级毛片| 国产又黄又爽又无遮挡在线| 成年女人永久免费观看视频| 亚洲,欧美,日韩| 91久久精品国产一区二区成人| 女同久久另类99精品国产91| 午夜爱爱视频在线播放| 少妇人妻一区二区三区视频| 尤物成人国产欧美一区二区三区| 波多野结衣高清作品| 久久久久久久久中文| 一夜夜www| 波野结衣二区三区在线| 好男人在线观看高清免费视频| 国产三级中文精品| 精品日产1卡2卡| 黄色女人牲交| 欧美潮喷喷水| 天美传媒精品一区二区| 在线观看免费视频日本深夜| 日韩 亚洲 欧美在线| 亚洲成人精品中文字幕电影| 看黄色毛片网站| 黄色女人牲交| 国内精品久久久久精免费| 亚洲精品粉嫩美女一区| 老司机深夜福利视频在线观看| 啪啪无遮挡十八禁网站| 国产精品一区二区性色av| x7x7x7水蜜桃| 国产主播在线观看一区二区| 亚洲欧美日韩高清在线视频| 最近视频中文字幕2019在线8| 国内精品一区二区在线观看| 国产亚洲精品久久久com| 此物有八面人人有两片| 国产精品久久电影中文字幕| 国产国拍精品亚洲av在线观看| 国产精品人妻久久久久久| 精品免费久久久久久久清纯| 99视频精品全部免费 在线| 精品人妻熟女av久视频| 美女免费视频网站| 国产色爽女视频免费观看| 亚洲无线在线观看| 色综合色国产| 最近在线观看免费完整版| 神马国产精品三级电影在线观看| 蜜桃久久精品国产亚洲av| 亚洲av免费在线观看| 国产亚洲精品综合一区在线观看| 99久久无色码亚洲精品果冻| 国产高潮美女av| 一级av片app| 我的女老师完整版在线观看| 又爽又黄a免费视频| 丰满人妻一区二区三区视频av| 男人的好看免费观看在线视频| 99热这里只有精品一区| 在线观看一区二区三区| 欧美极品一区二区三区四区| 一区福利在线观看| 亚洲久久久久久中文字幕| 久久精品国产自在天天线| 午夜福利成人在线免费观看| 久久这里只有精品中国| av在线老鸭窝| 欧美一区二区国产精品久久精品| 亚洲国产日韩欧美精品在线观看| 国产高清有码在线观看视频| 国产精品1区2区在线观看.| 精品久久久久久久末码| 免费av不卡在线播放| 成年女人看的毛片在线观看| 最近在线观看免费完整版| 国内精品美女久久久久久| 男人和女人高潮做爰伦理| av.在线天堂| 熟女人妻精品中文字幕| 国产av在哪里看| 亚洲一区高清亚洲精品| 五月伊人婷婷丁香| 蜜桃久久精品国产亚洲av| 国产精品久久久久久精品电影| 亚洲在线自拍视频| 色哟哟·www| 免费av观看视频| 欧美一区二区亚洲| 搞女人的毛片| 亚洲aⅴ乱码一区二区在线播放| 国产精品国产高清国产av| 最近最新免费中文字幕在线| 久久精品91蜜桃| 能在线免费观看的黄片| 国产三级中文精品| 啦啦啦啦在线视频资源| 3wmmmm亚洲av在线观看| 亚洲精品乱码久久久v下载方式| 婷婷六月久久综合丁香| 精品人妻一区二区三区麻豆 | 老熟妇乱子伦视频在线观看| 国产精品久久久久久av不卡| 在线a可以看的网站| 在线观看午夜福利视频| 女同久久另类99精品国产91| 91在线精品国自产拍蜜月| 少妇的逼水好多| 精品久久国产蜜桃| 国产成人a区在线观看| 久久久久久久午夜电影| 国产高清三级在线| 床上黄色一级片| 在线观看舔阴道视频| 99国产精品一区二区蜜桃av| 在线观看免费视频日本深夜| 1024手机看黄色片| 国产乱人视频| 久久99热6这里只有精品| 色在线成人网| 一卡2卡三卡四卡精品乱码亚洲| 国产蜜桃级精品一区二区三区| 欧美一级a爱片免费观看看| 天堂√8在线中文| 欧美一级a爱片免费观看看| 国产黄a三级三级三级人| 精品久久久久久久人妻蜜臀av| 黄色视频,在线免费观看| 国产精品亚洲美女久久久| 99九九线精品视频在线观看视频| 赤兔流量卡办理| 亚洲av美国av| 国产av一区在线观看免费| 成人三级黄色视频| 日本撒尿小便嘘嘘汇集6| 亚洲成人久久性| 成人性生交大片免费视频hd| 国产av在哪里看| 一级av片app| 成人国产麻豆网| 老师上课跳d突然被开到最大视频| 男女下面进入的视频免费午夜| 热99re8久久精品国产| 精品不卡国产一区二区三区| av在线天堂中文字幕| 亚洲在线观看片| 18禁黄网站禁片免费观看直播| 最近在线观看免费完整版| 婷婷亚洲欧美| 舔av片在线| 国产色婷婷99| 日韩精品有码人妻一区| 51国产日韩欧美| 欧美区成人在线视频| 制服丝袜大香蕉在线| 亚洲三级黄色毛片| 午夜a级毛片| 热99re8久久精品国产| 99视频精品全部免费 在线| 免费观看人在逋| 联通29元200g的流量卡| 日韩精品有码人妻一区| 国产中年淑女户外野战色| 日韩中文字幕欧美一区二区| 偷拍熟女少妇极品色| 免费av观看视频| 一个人免费在线观看电影| 搞女人的毛片| 国产男人的电影天堂91| 亚洲精品乱码久久久v下载方式| 亚洲精品一区av在线观看| 国产淫片久久久久久久久| .国产精品久久| 午夜福利在线观看吧| 成年版毛片免费区| 欧美一区二区亚洲| 看片在线看免费视频| 欧美黑人欧美精品刺激| 内地一区二区视频在线| 日本与韩国留学比较| 乱系列少妇在线播放| 日本黄色视频三级网站网址|