• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Balanced Functional Maps for Three-Dimensional Non-Rigid Shape Registration

    2022-01-08 13:06:34XuPengWangHangLeiYanLiuNanSang

    Xu-Peng Wang| Hang Lei | Yan Liu | Nan Sang

    Abstract—Three-dimensional (3D) shape registration is a challenging problem,especially for shapes under nonrigid transformations.In this paper,a 3D non-rigid shape registration method is proposed,called balanced functional maps (BFM).The BFM algorithm generalizes the point-based correspondence to functions.By choosing the Laplace-Beltrami eigenfunctions as the function basis,the transformations between shapes can be represented by the functional map (FM) matrix.In addition,many constraints on shape registration,such as the feature descriptor,keypoint,and salient region correspondence,can be formulated linearly using the matrix.By bi-directionally searching for the nearest neighbors of points’ indicator functions in the function space,the point-based correspondence can be derived from FMs.We conducted several experiments on the Topology and Orchestration Specification for Cloud Applications (TOSCA) dataset and the Shape Completion and Animation of People (SCAPE)dataset.Experimental results show that the proposed BFM algorithm is effective and has superior performance than the state-of-the-art methods on both datasets.

    Index Terms—Functional map (FM),Laplace-Beltrami operator,shape registration,three-dimensional (3D) non-rigid shape.

    1.lntroduction

    In recent years,with the fast development of three-dimensional (3D) scanning and computational devices,the acquisition and processing of depth data are becoming more and more efficient.There are a large amount of 3D shapes data.Compared with the traditional multimedia data,such as the image,audio,and video,depth data capture the geometric information of surfaces in a scene,and therefore show the pose of an object more accurately.Although it is insensitive to view changes or illumination,it is widely used in intelligent manufacturing,virtual reality,intelligent surveillance,robotics,remote sensing analysis,and so on[1]-[4].

    The 3D shape registration is to compute the correspondence of shapes under different poses.It is a fundamental task in computer vision and computer graphics,and has been applied in 3D reconstruction,object recognition,and shape retrieval.A common transformation is isometric,where the geodesic distances between points remain stable.In the real world,there are a large amount of non-rigid transformations (approximately isometric),such as the articulation movement.Therefore,it is of great importance to compute the registration of 3D non-rigid shapes[5]-[10].

    Most of the existing methods try to tackle the problem by first extracting some sparse matching point pairs and then extending to the whole shape.Since the matching points are sparse,it is necessary to incorporate additional constraints to ensure the accuracy of the shape registration,such as the geodesic distance between matching points[11],spectral features[12],and the standard domain based on matching feature points[13]or the global consistency of various geometric and topological feature combinations[14]-[16].However,since all the above algorithms are developed from point-based shape registration,it is a non-convex and non-linear problem,which is extremely hard to solve[17].

    In this paper,we propose another 3D non-rigid shape registration method,called balanced functional maps (BFM).The algorithm generalizes the traditional point-based shape registration to functions.The Laplace-Beltrami eigenfunctions are adopted by the BFM algorithm as the function basis.Thus,non-rigid shape transformations can be represented as a functional map (FM) matrix.The point-based correspondence can be derived from FM through bi-directionally searching for the nearest neighbors of points’ indicator functions in the function space.The main contributions of this paper are as follows:

    First,a representation of non-rigid shape transformation is proposed.Second,a shape registration algorithm is proposed based on the bi-directional nearest neighbor search.

    2.FM

    where Φaand Φbare the eigenfunctions.Thus,any functionf∈L2(M) can be represented as follows:

    2.1.FM Definition

    Given two 2D Riemannian manifolds M and N,there is a surjection between them,which is given as T ∶M →N .Thus,for any functionfdefined on M ,the corresponding functiongdefined on N can be derived according tog=f°T?1.Here,the operator ° denotes the composite function.

    Therefore,FM between 3D shapes is defined as

    Thus,FM can be formulated as follows:

    2.2.Choice of Basis Function

    Since FM is represented by a matrix,the standard linear algebra methods can be applied,and it is highly efficient to compute TF.The choice of the basis functions determines the compactness and robustness of the operations based on FM.Compactness means that the functions defined on 3D shapes can be represented with a small set of basis functions,while robustness means that the function space described by the basis functions remain stable under various shape transformations.

    The Laplace-Beltrami operator,denoted as ΔM,is a generalization of the Laplace operator in the Euclidean space.It operates on the twice-differentiable functions defined on M,and describes the differences of function values between a point and its neighborhood.The Laplace-Beltrami operator is defined as the divergence of the function’s gradients,as follows:

    The Laplace-Beltrami operator ΔMadmits the eigendecomposition ΔMΦi=λiΦiwith the eigenvalues 0=λ1≤λ2≤…≤λiand the corresponding eigenfunctions { Φi,i≥1}.The Laplace-Beltrami eigenfunctions are ordered with respect to the frequency and provide a standard orthogonal basis function forL2(M),which can be used to describe functions defined on M in multi-scales.In addition,the function space described by the first few eigenfunctions keeps stable under isometric transformations of a shape.

    Therefore,with the non-rigid transformation T between them,the firstnLaplace-Beltrami eigenfunctions are adopted as the basis function for the function spacesL2(M) andL2(N).According to (1),the elementci,jof the matrix C is non-zero only if the eigenfunctionsandcorrespond to the same eigenvalues,i.e.,i=j.Thus,C is a sparse matrix.If the transformation T is approximately isometric,the matrix C is still close to sparse.

    The illustration of shape registrations with the corresponding FM matrix is given inFig.1.There is an approximately isometric transformation between two cat models,which are from the Topology and Orchestration Specification for Cloud Applications (TOSCA) dataset[18].Three ways of shape registration are demonstrated,which are:(a) approximately isometric mapping,(b) left-to-right mapping,and (c) head-to-tail mapping.The point-based shape registration is shown with color correspondence.The first 20 Laplace-Beltrami eigenfunctions are used as the basis function,and FM is shown with the heat map of the map matrix C20×20.As shown inFigs.1(a) and (b),in approximately isometric transformation,the FM matrix is sparse,and close to a diagonal matrix.On the other hand,the matrix under the head-to-tail mapping does not have the property of sparsity.

    Fig.1.Illustration of three shape registrations with FM matrix:(a) source,(b) ground truth,(c) left-to-right map,and (d)head-to-tail map.

    2.3.FM Computation

    Given two 2D Riemannian manifolds M and N ,letrepresent the firstnLaplace-Beltrami eigenfunctions defined on them,respectively.Denotef∈L2(M) andg∈L2(N) as a pair of corresponding functions,they can be represented by the coefficients vectors a=(a1,a2,…,an) and b=(b1,b2,…,bn),based on the Laplace-Beltrami eigenfunctions.

    According to (7),FM betweenfandgcan be formulated as Ca=b.Therefore,the problem of shape registration can be solved by adding sufficient constraints,which can be regarded as functions defined on shapes,and are described by the FM matrix C linearly.

    A.Feature Descriptor Correspondence

    The correspondence between feature descriptors requires that the local features of points should be preserved under shape transformations as much as possible.Let f and g be thek-dimensional feature descriptors on M and N ,that is,f(x)=(f1(x),f2(x),…,fk(x)),g(x)=(g1(x),g2(x),…,gk(x)),and f(x),g(x)∈Rk.Each dimension of the feature descriptor provides a constraint for shape registration.

    In this paper,the heat kernel signature (HKS)[19]withmdimensions and the wave kernel signature(WKS)[20]withndimensions are adopted,forming an (m+n)-dimensional feature descriptor,as follows:

    B.Keypoint Correspondence

    Given correspondence between keypoints on 3D shapes,i.e.,T(PM)=PN,wherePM={∈M,1 ≤i≤n},PN={∈N,1 ≤i≤n},andnrepresents the number of keypoints.Letfandgbe the functions,which describe the distances between the keypoints and the rest of the points on the shape,i.e.,fi(x)=andfi(x),gi(x)∈R .The operator GD(?,?) calculates the geodesic distances between points.Thus,each distance function associated with a keypoint provides a constraint for shape registration.

    In this paper,the persistence-based keypoint detection method[21]is adopted to select the firstksalient points,forming a distance function ofkdimensions,as follows:

    where 1 ≤i≤k.

    C.Salient Region Correspondence

    Given correspondence between salient regions on 3D shapes,i.e.,T(RM)=RNT(PM)=PN,whereandnrepresent the number of salient regions on shapes.Letδi(x) be the indicator function of each salient region,andδi(x) is defined as follows:

    Thus,each indicator function of a salient region provides a constraint for shape registration.

    In this paper,the scale space clustering evolution algorithm[22]is used to extractksalient regions onM and N ,producing an indicator function ofkdimensions,as follows:

    where 1 ≤i≤k.

    3.Shape Registration Based on Balanced FM

    Given two 3D shapes M and N ,represent them by 3D triangle meshesMandN,respectively.There are non-rigid transformations between M and N,which can be approximated by an isometric transformation T ∶M →N .Suppose FM TFis given,and its mapping matrix is C.

    The Laplace-Beltrami eigenfunctions ΦM,ΦN∈Rn×kcan be looked as functions defined on M and N ,the number of which isn.It satisfiesThe point-based correspondence can be described by a permutation matrix P ∈(0,1)n×n.Thus,the FM matrix can be formulated by ΦM,ΦN,and P,as follows:

    where C =(ci,j)∈Rk×kand its rank isk.

    Deriving shape registration from FM TFmeans calculating P for given ΦM,ΦN,and C,that is,

    satisfying PTI=I and P I=I.HereD(?,?) represents a measureof distance.

    Denote the indicator function of the pointxon M ,as follows:

    The indicator function can be represented as a linear combination of the Laplace-Beltrami eigenfunctions,as follows:

    According to (7),the corresponding indicator function of the pointx′on N can be comput ed as follows:

    In this way,the corresponding indicator functions of all points can be derived.Equation (14) is transformed as a linear assignment problem,that is,

    satisfying PTI=I and P I=I.Here,‖ ?‖F(xiàn)representsthe Frobenius norm.

    To solve the problem of one-to-many point mappings[17],[23],an additional constraint is introduced,producing the balanced FM:

    satisfying PTI=I,P I=I,QTI=I,and Q I=I.

    To further reduce the complexity,the linear assignment problem (as shown in (19)) is solved by using the nearest neighbor search method.In our implementation,we compute an approximate solution by alternating minimization on P and Q.The final matrix (P or Q) is the derived permutation matrix,which is the computed point-based representation of shape registration.

    4.Experiment

    In this section,a series of experiments are conducted to examine the effectiveness of the proposed BFM algorithm.First,the experiments were carried out on the TOSCA dataset[18]to evaluate the performance of the BFM algorithm with different Laplace-Beltrami operator discretization methods or different numbers of eigenfunctions.Then,the performance of the BFM algorithm is tested and compared with the state-of-the-art methods on two datasets,i.e.,the TOSCA dataset and the Shape Completion and Animation of People(SCAPE) dataset[24].

    4.1.Evaluation Methods

    According to [25],the average geodesic error (AVE) and the matching rate (MR) are adopted to evaluate the performance of shape registration methods.

    Given two 3D shapesM1andM2,there are the ground truthftrue∶M1→M2and a computed shape registration resultf∶M1→M2.For a pointp∈M1,its matching error is defined as the geodesic distance(f(p),ftrue(p)) between its computed matching pointf(p) and the ground truthftrue(p).

    Thus,AVE is defined as

    To eliminate the effect of shape scaling,AVE is normalized,as follows:

    where A rea(?) calculates the surface area ofM2.

    Given a geodesic distance errorr,for a pointp∈M1,if the geodesic distancedM2(f(p),ftrue(p)) between its computed matching pointf(p) and the ground truthftrue(p) is less thanr,the pointpis said to be correctly matched.MRM(r) is defined as the percentage of correctly matched points on a shape according tor.

    4.2.Experiments on TOSCA Dataset

    The TOSCA dataset consists of nine models,i.e.,Cat,Centaur,David,Dog,Gorilla,Horse,Michael,Victoria,and Wolf.Each model contains a symmetric null shape and its transformed shapes with approximately isometric transformations,producing 80 models in total.The point-based correspondence between the transformed shapes and their corresponding null shape is known as prior information,called the ground truth.The number of points on each shape ranges from 5000 to 50000.

    In this section,we first evaluate the performance of the BFM algorithm on the Cat model,with different Laplace-Beltrami operator discretization methods or different numbers of eigenfunctionsnE.The functional mapping matrix is computed using the ground truth,and the proposed BFM method is applied to compute the point-wise shape registration.AVE is adopted to evaluate its performance.Two widely used Laplace-Beltrami operator discretization methods were tested,i.e.,the cotangent weight scheme (CWS) and area normalized cotangent weight scheme (ANCWS).The number of eigenfunctions ranges from 1 to 300.The experimental result is shown inFig.2.

    We can learn fromFig.2that the unnormalized discretization method is able to represent FM more compactly.It means that a smaller matching error is achieved with the same number of eigenfunctions.Because the surface area may change during shape transformations,and the ANCWS method is more sensitive.In addition,while the number of eigenvaluesnEincreases from 1 to 50,AVE is reduced significantly.This is because that the additional eigenfunctions improve the accuracy to describe FM.When only 30 to 40 eigenfunctions are used,the BFM algorithm achieves a small error,and is more capable of encoding shape registration.However,as the number of eigenfunctions increasing,the size of the FM matrix is enlarged.At the same time,the computational and storage cost is increased.

    Fig.2.Performance of the BFM algorithm on the Cat model.

    We tested the BFM algorithm on the TOSCA dataset,and compared with the state-of-the-art methods,i.e.,FM and blended intrinsic maps (BIM).The experimental result is shown inFig.3.

    We can learn fromFig.3that the proposed BFM algorithm improves the best performance on the TOSCA dataset.When the geodesic distance error is 0,the BFM method is able to successfully find almost 40% matching points,while only 20% can be achieved by the FM algorithm.When the error is at around 0.10,the proposed BFM can produce shape registration with almost full accuracy.In contrast,the FM method gets a full score at 0.15.

    Fig.3.Performance of the BFM,FM,and BIM algorithms on the TOSCA dataset.

    Fig.4.Performance of the BFM,FM,and BIM algorithms on the SCAPE dataset.

    4.3.Experiments on SCAPE Dataset

    In this section,the proposed BFM algorithm is tested on the SCAPE dataset,and also compared with FM and BIM methods.The MR measure is adopted to evaluate the performance of shape registration.The experimental result is shown inFig.4.

    We can learn fromFig.4that the proposed BFM algorithm improves the performance of the current state-of-the-art on the SCAPE dataset.Particularly,when the geodesic distance error is set to be 0,the BFM algorithm is able to find almost 40% matching points,in comparison with 10% achieved by the FM method and 5% by the BIM method.

    5.Conclusions

    In this paper,a 3D shape registration method is developed,which can deal with shapes under non-rigid transformations.The proposed BFM algorithm generalizes the traditional point-based correspondence to functions.By choosing the Laplace-Beltrami eigenfunctions as the function basis,non-rigid transformations of 3D shapes can be represented as an FM matrix.The point-based correspondence can be derived from FM using the bi-directional nearest-neighbor search to obtain the points’ indicator functions in the function space.Experimental results show that the proposed algorithm is effective and improves the current state-of-the-art performance.

    Acknowledgment

    The authors would like to acknowledge Prof.Michael Bronstein for providing the TOSCA dataset.The authors also acknowledge Prof.Daphne Koller for providing the SCAPE dataset.

    Disclosures

    The authors declare no conflicts of interest.

    欧美成人一区二区免费高清观看 | 午夜福利在线观看免费完整高清在 | 欧美av亚洲av综合av国产av| 一卡2卡三卡四卡精品乱码亚洲| 欧美一区二区国产精品久久精品| 国产一区在线观看成人免费| 老熟妇乱子伦视频在线观看| 国产黄片美女视频| 国产精品一区二区免费欧美| 日本在线视频免费播放| 日韩欧美在线乱码| 日本熟妇午夜| 亚洲成人免费电影在线观看| 99久久久亚洲精品蜜臀av| 国语自产精品视频在线第100页| 国产乱人伦免费视频| 精品一区二区三区视频在线观看免费| 日韩免费av在线播放| 国产不卡一卡二| 波多野结衣高清作品| 国产黄色小视频在线观看| 18禁裸乳无遮挡免费网站照片| 欧美日韩一级在线毛片| 精品日产1卡2卡| 国产精品 欧美亚洲| 精品国内亚洲2022精品成人| 欧美绝顶高潮抽搐喷水| 欧美日韩精品网址| 老汉色∧v一级毛片| 午夜福利18| 一夜夜www| 国产成年人精品一区二区| 噜噜噜噜噜久久久久久91| 亚洲精华国产精华精| 精品熟女少妇八av免费久了| 久久久久国产一级毛片高清牌| 天堂影院成人在线观看| 亚洲欧美精品综合一区二区三区| 日韩欧美三级三区| 天堂动漫精品| 亚洲av美国av| 亚洲精品美女久久av网站| 国产精品自产拍在线观看55亚洲| 老鸭窝网址在线观看| 又爽又黄无遮挡网站| 在线播放国产精品三级| 久久久久久久久中文| 亚洲熟女毛片儿| 中文字幕人成人乱码亚洲影| 国产一区二区在线av高清观看| 香蕉丝袜av| 亚洲人成伊人成综合网2020| 成人av在线播放网站| 高清在线国产一区| 亚洲专区字幕在线| 色哟哟哟哟哟哟| 亚洲精品一区av在线观看| 国产成年人精品一区二区| 欧美在线一区亚洲| 国产麻豆成人av免费视频| 在线播放国产精品三级| 国产aⅴ精品一区二区三区波| 亚洲欧洲精品一区二区精品久久久| 中文在线观看免费www的网站| 国产熟女xx| 黄色 视频免费看| 日韩欧美 国产精品| 亚洲成人精品中文字幕电影| 国产91精品成人一区二区三区| or卡值多少钱| 精品欧美国产一区二区三| 亚洲人与动物交配视频| 国产熟女xx| 日韩成人在线观看一区二区三区| 天天躁日日操中文字幕| 亚洲在线自拍视频| 婷婷精品国产亚洲av在线| 嫩草影院精品99| 最新在线观看一区二区三区| 免费看光身美女| www日本黄色视频网| 欧美成人性av电影在线观看| 久久午夜综合久久蜜桃| 国产乱人视频| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美三级三区| 久久中文字幕一级| 这个男人来自地球电影免费观看| 欧美日韩一级在线毛片| 99热这里只有精品一区 | 亚洲自偷自拍图片 自拍| 亚洲成人免费电影在线观看| 2021天堂中文幕一二区在线观| 色吧在线观看| 久久久久久久精品吃奶| 午夜精品久久久久久毛片777| 亚洲精品456在线播放app | 免费在线观看日本一区| 好看av亚洲va欧美ⅴa在| 亚洲电影在线观看av| 午夜福利18| 十八禁网站免费在线| 精品久久久久久久末码| 老司机午夜福利在线观看视频| 午夜久久久久精精品| 欧美日韩国产亚洲二区| 全区人妻精品视频| 久久欧美精品欧美久久欧美| 日韩欧美三级三区| 国产黄色小视频在线观看| 麻豆国产av国片精品| www.熟女人妻精品国产| 高潮久久久久久久久久久不卡| 99国产精品99久久久久| 国产精品亚洲一级av第二区| 精品人妻1区二区| 国产成年人精品一区二区| 丝袜人妻中文字幕| 国产69精品久久久久777片 | 欧美黑人欧美精品刺激| 岛国在线免费视频观看| a在线观看视频网站| 精品久久蜜臀av无| 国产精品电影一区二区三区| 小说图片视频综合网站| 99re在线观看精品视频| 国产伦精品一区二区三区视频9 | 十八禁网站免费在线| 国产成人av教育| 国产成+人综合+亚洲专区| 午夜福利高清视频| 午夜免费观看网址| 欧美性猛交╳xxx乱大交人| 国产精品 国内视频| 麻豆国产av国片精品| 最新美女视频免费是黄的| 亚洲午夜精品一区,二区,三区| 亚洲真实伦在线观看| 琪琪午夜伦伦电影理论片6080| 国产精华一区二区三区| 蜜桃久久精品国产亚洲av| 老司机深夜福利视频在线观看| 亚洲精品一区av在线观看| a级毛片a级免费在线| 好男人在线观看高清免费视频| 真实男女啪啪啪动态图| 老熟妇乱子伦视频在线观看| 久久久国产欧美日韩av| 丰满的人妻完整版| 99久久成人亚洲精品观看| 中文字幕久久专区| 白带黄色成豆腐渣| 婷婷精品国产亚洲av在线| 久久精品影院6| 日韩av在线大香蕉| aaaaa片日本免费| 亚洲在线观看片| 婷婷亚洲欧美| 2021天堂中文幕一二区在线观| 亚洲中文av在线| 美女cb高潮喷水在线观看 | 在线观看一区二区三区| 18禁美女被吸乳视频| 精品久久久久久久末码| 免费在线观看亚洲国产| 淫妇啪啪啪对白视频| 成人国产综合亚洲| 又粗又爽又猛毛片免费看| 丰满的人妻完整版| 国内毛片毛片毛片毛片毛片| 国产成人一区二区三区免费视频网站| 一二三四在线观看免费中文在| 久久精品国产亚洲av香蕉五月| 男女之事视频高清在线观看| 青草久久国产| 国产亚洲欧美98| 99久久99久久久精品蜜桃| 国内精品美女久久久久久| 国产成年人精品一区二区| 日本撒尿小便嘘嘘汇集6| 成年版毛片免费区| 淫秽高清视频在线观看| 伦理电影免费视频| 免费看a级黄色片| 免费看十八禁软件| 亚洲av中文字字幕乱码综合| 免费av毛片视频| 国产精品美女特级片免费视频播放器 | 啦啦啦免费观看视频1| 禁无遮挡网站| 天天一区二区日本电影三级| 国产精品九九99| 午夜福利成人在线免费观看| 麻豆久久精品国产亚洲av| 国产黄色小视频在线观看| 男女那种视频在线观看| 18禁黄网站禁片免费观看直播| 午夜福利视频1000在线观看| 国内精品一区二区在线观看| 亚洲av成人av| 欧洲精品卡2卡3卡4卡5卡区| 女人高潮潮喷娇喘18禁视频| 久久午夜亚洲精品久久| 精品福利观看| 国产精品女同一区二区软件 | 在线十欧美十亚洲十日本专区| av中文乱码字幕在线| 免费大片18禁| 亚洲avbb在线观看| 午夜两性在线视频| 国产精品九九99| 在线看三级毛片| 国产免费男女视频| 又粗又爽又猛毛片免费看| 一a级毛片在线观看| 毛片女人毛片| 欧美日韩瑟瑟在线播放| 国产av不卡久久| 精品日产1卡2卡| 久久久久久人人人人人| 又大又爽又粗| 757午夜福利合集在线观看| 国产高清视频在线观看网站| svipshipincom国产片| 亚洲专区中文字幕在线| 禁无遮挡网站| 欧美日韩国产亚洲二区| 欧美在线黄色| 国产精品自产拍在线观看55亚洲| 俺也久久电影网| 午夜福利视频1000在线观看| 国产精品美女特级片免费视频播放器 | 人妻夜夜爽99麻豆av| 日日干狠狠操夜夜爽| 成人欧美大片| 五月玫瑰六月丁香| 国内久久婷婷六月综合欲色啪| 国产99白浆流出| 久久这里只有精品中国| 日日干狠狠操夜夜爽| 97超级碰碰碰精品色视频在线观看| 日韩欧美在线乱码| 亚洲欧美日韩无卡精品| 成年人黄色毛片网站| 天天一区二区日本电影三级| 国产午夜精品久久久久久| 国产久久久一区二区三区| 嫩草影视91久久| 性色avwww在线观看| 国产午夜精品论理片| 男女床上黄色一级片免费看| 亚洲欧洲精品一区二区精品久久久| 亚洲乱码一区二区免费版| 精品久久久久久久末码| 天堂网av新在线| 成人av一区二区三区在线看| 精品乱码久久久久久99久播| 在线观看午夜福利视频| 99久久成人亚洲精品观看| 一个人看视频在线观看www免费 | 真实男女啪啪啪动态图| 男人舔奶头视频| 欧美性猛交╳xxx乱大交人| 亚洲精品乱码久久久v下载方式 | 不卡一级毛片| 97碰自拍视频| 国产美女午夜福利| 在线a可以看的网站| 国产成人福利小说| 熟女人妻精品中文字幕| 国产午夜精品论理片| 亚洲成人中文字幕在线播放| 噜噜噜噜噜久久久久久91| 狂野欧美激情性xxxx| 国产毛片a区久久久久| 男女做爰动态图高潮gif福利片| 亚洲人与动物交配视频| 成人特级黄色片久久久久久久| 岛国在线免费视频观看| 两性午夜刺激爽爽歪歪视频在线观看| or卡值多少钱| 在线观看66精品国产| 免费看美女性在线毛片视频| 中文字幕av在线有码专区| 欧美黄色片欧美黄色片| 亚洲天堂国产精品一区在线| 国产蜜桃级精品一区二区三区| 美女高潮的动态| 999久久久国产精品视频| 亚洲五月婷婷丁香| 亚洲熟女毛片儿| 久久久久久久精品吃奶| 欧美日韩瑟瑟在线播放| 亚洲精品中文字幕一二三四区| 一区二区三区国产精品乱码| 在线免费观看的www视频| 欧美另类亚洲清纯唯美| 97人妻精品一区二区三区麻豆| 亚洲色图 男人天堂 中文字幕| 丁香六月欧美| 国产又色又爽无遮挡免费看| 18禁裸乳无遮挡免费网站照片| 99精品在免费线老司机午夜| 2021天堂中文幕一二区在线观| 亚洲五月婷婷丁香| 午夜两性在线视频| 久久久久九九精品影院| 亚洲人成网站在线播放欧美日韩| 老鸭窝网址在线观看| 免费看光身美女| 欧美性猛交╳xxx乱大交人| 丁香六月欧美| 亚洲中文av在线| 国内精品久久久久精免费| 欧美午夜高清在线| 99久久成人亚洲精品观看| 午夜福利欧美成人| 成年女人毛片免费观看观看9| 麻豆久久精品国产亚洲av| a在线观看视频网站| 一个人看的www免费观看视频| 性色av乱码一区二区三区2| 久久久久久久久中文| 床上黄色一级片| 亚洲在线自拍视频| 老汉色av国产亚洲站长工具| 怎么达到女性高潮| 波多野结衣高清作品| 最近最新中文字幕大全电影3| 一区福利在线观看| 久久伊人香网站| 巨乳人妻的诱惑在线观看| 亚洲欧美激情综合另类| 国产野战对白在线观看| 又爽又黄无遮挡网站| 免费看a级黄色片| 美女 人体艺术 gogo| 国产精品久久久久久久电影 | 午夜福利在线观看吧| 国产aⅴ精品一区二区三区波| 日韩人妻高清精品专区| 国产伦人伦偷精品视频| 99热这里只有是精品50| 欧美在线黄色| tocl精华| 好看av亚洲va欧美ⅴa在| 黄色女人牲交| 国产v大片淫在线免费观看| 日本与韩国留学比较| 欧美色欧美亚洲另类二区| 欧美+亚洲+日韩+国产| 亚洲成人久久爱视频| 国产高清视频在线播放一区| 亚洲人与动物交配视频| 午夜免费成人在线视频| 欧美黄色淫秽网站| 美女午夜性视频免费| 女人被狂操c到高潮| 久久人人精品亚洲av| 国产亚洲欧美98| 国产三级在线视频| 久久久久国产一级毛片高清牌| 亚洲自拍偷在线| 成年免费大片在线观看| 国产成人系列免费观看| 蜜桃久久精品国产亚洲av| 亚洲片人在线观看| 久久久久精品国产欧美久久久| 国产高清激情床上av| 国产久久久一区二区三区| 精品国产三级普通话版| 日本三级黄在线观看| 婷婷六月久久综合丁香| 精品久久久久久久久久久久久| 免费av毛片视频| 久久午夜综合久久蜜桃| 久久精品影院6| 欧美最黄视频在线播放免费| 露出奶头的视频| 国产精品电影一区二区三区| 一个人免费在线观看的高清视频| 又黄又粗又硬又大视频| 亚洲欧美日韩卡通动漫| 精品不卡国产一区二区三区| 久久性视频一级片| 午夜福利高清视频| 两人在一起打扑克的视频| 亚洲美女黄片视频| 美女扒开内裤让男人捅视频| 午夜免费成人在线视频| 久久午夜亚洲精品久久| 国产精品女同一区二区软件 | 最新在线观看一区二区三区| 国内精品美女久久久久久| 久久久色成人| 嫩草影视91久久| 97超级碰碰碰精品色视频在线观看| 午夜影院日韩av| 久久久久国产一级毛片高清牌| 国产又色又爽无遮挡免费看| 天堂影院成人在线观看| 哪里可以看免费的av片| 99久久99久久久精品蜜桃| 国内毛片毛片毛片毛片毛片| 成年版毛片免费区| 禁无遮挡网站| 好男人电影高清在线观看| 国内精品久久久久久久电影| 亚洲真实伦在线观看| 狂野欧美激情性xxxx| 一a级毛片在线观看| 国产精品永久免费网站| 中文字幕人妻丝袜一区二区| 99国产精品99久久久久| 男女之事视频高清在线观看| 免费av不卡在线播放| 黄片大片在线免费观看| 久久久久久九九精品二区国产| 无人区码免费观看不卡| 18禁黄网站禁片免费观看直播| 亚洲国产中文字幕在线视频| 美女高潮喷水抽搐中文字幕| 天堂av国产一区二区熟女人妻| 成在线人永久免费视频| www日本在线高清视频| 亚洲aⅴ乱码一区二区在线播放| 一个人看的www免费观看视频| 丝袜人妻中文字幕| 老熟妇仑乱视频hdxx| 欧美色欧美亚洲另类二区| 亚洲国产精品sss在线观看| 国产精品久久电影中文字幕| 日本精品一区二区三区蜜桃| 人人妻人人看人人澡| 香蕉丝袜av| 成年版毛片免费区| 精品欧美国产一区二区三| 又粗又爽又猛毛片免费看| 性欧美人与动物交配| 国产精品香港三级国产av潘金莲| 国产精品一区二区免费欧美| 一个人免费在线观看的高清视频| 欧美精品啪啪一区二区三区| 亚洲五月婷婷丁香| 神马国产精品三级电影在线观看| 国产黄片美女视频| 一个人观看的视频www高清免费观看 | 午夜福利在线在线| 欧美成人免费av一区二区三区| 丰满的人妻完整版| 国产高清激情床上av| 伦理电影免费视频| 成年女人永久免费观看视频| 日韩国内少妇激情av| 欧美黑人巨大hd| 夜夜看夜夜爽夜夜摸| 亚洲成人久久爱视频| 亚洲自拍偷在线| 国产成人啪精品午夜网站| 亚洲精品色激情综合| 中文字幕高清在线视频| 欧美zozozo另类| 亚洲熟女毛片儿| 欧美日韩福利视频一区二区| 欧美av亚洲av综合av国产av| 国产av一区在线观看免费| 亚洲精品美女久久av网站| 亚洲无线观看免费| 国模一区二区三区四区视频 | 美女高潮的动态| 男女做爰动态图高潮gif福利片| 久久久精品大字幕| 精品国产乱码久久久久久男人| 国产精品98久久久久久宅男小说| 成人av在线播放网站| 最好的美女福利视频网| 久久久久精品国产欧美久久久| 亚洲熟妇熟女久久| 国产精品乱码一区二三区的特点| 免费观看的影片在线观看| 日韩精品青青久久久久久| 色综合欧美亚洲国产小说| 在线永久观看黄色视频| 看免费av毛片| 国产精品av久久久久免费| 欧美日韩精品网址| 一级作爱视频免费观看| av国产免费在线观看| 制服人妻中文乱码| a级毛片a级免费在线| 又黄又爽又免费观看的视频| 亚洲欧美日韩高清专用| 丁香欧美五月| 91老司机精品| 制服丝袜大香蕉在线| 国产亚洲精品久久久久久毛片| 无人区码免费观看不卡| 久久亚洲精品不卡| 国产1区2区3区精品| 亚洲欧美日韩卡通动漫| 每晚都被弄得嗷嗷叫到高潮| 成年女人毛片免费观看观看9| 美女黄网站色视频| 香蕉久久夜色| 午夜福利视频1000在线观看| 2021天堂中文幕一二区在线观| 在线播放国产精品三级| 一个人免费在线观看的高清视频| 免费av不卡在线播放| bbb黄色大片| 最新中文字幕久久久久 | 在线永久观看黄色视频| 人人妻人人看人人澡| 亚洲五月天丁香| 日韩人妻高清精品专区| 法律面前人人平等表现在哪些方面| 亚洲精品美女久久av网站| 天天一区二区日本电影三级| 精品欧美国产一区二区三| 少妇人妻一区二区三区视频| 国产成人av激情在线播放| 俄罗斯特黄特色一大片| 亚洲熟女毛片儿| 成年免费大片在线观看| 久久久久久久久久黄片| 一本综合久久免费| 国产亚洲精品久久久com| 久久久国产欧美日韩av| 91老司机精品| 两个人视频免费观看高清| 不卡一级毛片| 人妻久久中文字幕网| 亚洲熟妇中文字幕五十中出| 在线十欧美十亚洲十日本专区| 精品欧美国产一区二区三| av国产免费在线观看| 免费观看精品视频网站| 欧美zozozo另类| 午夜福利高清视频| 色尼玛亚洲综合影院| 国产精品日韩av在线免费观看| 国产黄片美女视频| 久久这里只有精品19| 香蕉av资源在线| 亚洲国产日韩欧美精品在线观看 | 国产又黄又爽又无遮挡在线| 黄色视频,在线免费观看| 中文亚洲av片在线观看爽| 18禁黄网站禁片午夜丰满| 男女做爰动态图高潮gif福利片| 一区二区三区国产精品乱码| 欧美成人一区二区免费高清观看 | 高清在线国产一区| 国产精品自产拍在线观看55亚洲| 亚洲中文字幕日韩| 久久久国产成人精品二区| 亚洲国产欧洲综合997久久,| 日韩精品中文字幕看吧| 熟女人妻精品中文字幕| 在线永久观看黄色视频| 国产伦一二天堂av在线观看| 日本 欧美在线| 亚洲中文字幕一区二区三区有码在线看 | 白带黄色成豆腐渣| 美女cb高潮喷水在线观看 | 99热6这里只有精品| 久久久成人免费电影| 国产亚洲精品综合一区在线观看| 黄片大片在线免费观看| 五月伊人婷婷丁香| 99国产精品99久久久久| 18禁裸乳无遮挡免费网站照片| 精品久久久久久,| 国产探花在线观看一区二区| 久久亚洲真实| 国产av在哪里看| 精品一区二区三区av网在线观看| 99国产精品一区二区蜜桃av| 国产三级中文精品| 观看免费一级毛片| 亚洲av熟女| 久久精品人妻少妇| 最近最新中文字幕大全电影3| 18禁美女被吸乳视频| 日韩人妻高清精品专区| 久久午夜综合久久蜜桃| 亚洲精品中文字幕一二三四区| 精品电影一区二区在线| 一本精品99久久精品77| 黄频高清免费视频| 18禁观看日本| 观看免费一级毛片| 欧美激情在线99| 亚洲电影在线观看av| 久久这里只有精品19| 国产又色又爽无遮挡免费看| 制服人妻中文乱码| 五月玫瑰六月丁香| 一级毛片精品| 香蕉丝袜av| 黄色成人免费大全| tocl精华| 亚洲真实伦在线观看| 欧美日韩亚洲国产一区二区在线观看| 午夜免费观看网址| 精品久久久久久久人妻蜜臀av| 俄罗斯特黄特色一大片| 国产精品99久久99久久久不卡| 亚洲欧美日韩高清专用| 国产野战对白在线观看| 成人18禁在线播放| 一二三四社区在线视频社区8| 搡老熟女国产l中国老女人| 免费搜索国产男女视频| 久久欧美精品欧美久久欧美|