• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    lmpact of Fiber Dispersion on Performance of Entanglement-Based Dispersive Optics Quantum Key Distribution

    2022-01-08 13:06:20JingYuanLiuXuLiuWeiZhangYiDongHuang

    Jing-Yuan Liu | Xu Liu | Wei Zhang| Yi-Dong Huang

    Abstract—Dispersive optics quantum key distribution (DO-QKD) based on energy-time entangled photon pairs is an important QKD scheme.In DO-QKD,the arrival time of photons is used in key generation and security analysis,which would be greatly affected by fiber dispersion.In this work,we establish a theoretical model of the entanglement-based DO-QKD system,considering the protocol,physical processes (such as fiber transmission and single-photon detection),and the analysis of security tests.Based on this theoretical model,we investigate the influence of chromatic dispersion introduced by transmission fibers on the performance of DO-QKD.By analyzing the benefits and costs of dispersion compensation,the system performance under G.652 and G.655 optical fibers are shown,respectively.The results show that dispersion compensation is unnecessary for DO-QKD systems in campus networks and even metro networks.Whereas,it is still required in DO-QKD systems with longer fiber transmission distances.

    Index Terms—Dispersion compensation,dispersive optics quantum key distribution (DO-QKD),fiber chromatic dispersion,quantum networks.

    1.lntroduction

    Quantum key distribution (QKD) enables two remote parties to generate secure and random cryptographic keys,with unconditional security guaranteed by quantum mechanics[1]-[3].Quantum secure communications based on QKD have great potential in modern communications[4].There are mainly two schemes in the experimental implementation of QKD,which are the prepare-and-measurement scheme[5],[6]and the entanglement-based scheme[7]-[9].The entanglement-based QKD scheme naturally establishes network connections between users,showing advantages in the implementation of quantum networks[10]-[12].The entangled photon pairs from the quantum light source are distributed to Alice and Bob,respectively.And the coincidence events between the two users are used to generate cryptographic keys.In addition,the highdimensional encoding process can increase the information carried per coincidence event,which utilizes these quantum resources more effectively[13],[14].

    Dispersive optics quantum key distribution (DO-QKD) is a recently proposed QKD protocol[15].In entanglement-based DO-QKD,the energy-time entangled photon pairs are generated from the quantum light source[9],[15],[16].Normal and anomalous dispersion components are introduced at Alice’s and Bob’s sides,constructing time and frequency bases.The arrival time of photons at the time base is further used for key generation.The high-dimensional encoding process is introduced in post-processing,in order to maximize the key generation rate under technical constraints.The security analysis of DO-QKD can be realized by the measurements of unbiased time-frequency bases,which has been proven to be secure against collective attacks[15].However,chromatic dispersion introduced by optical fibers will lead to the broadening of the coincidence peak,consequently affecting the generation of secret keys.In our previous entanglement-based DO-QKD experiment over optical fibers[9],the dispersion compensation module (DCM) is used to compensate for fiber dispersion.Nevertheless,there is still a lack of analysis on the benefits and costs of the dispersion compensation.Recently,entanglement-based DO-QKD was applied to realize QKD networks through entanglement distribution based on passive beam splitting and wavelength division multiplexing[10],[17].Dispersion compensation was not applied since the fiber links were quite short in these experiments.However,it can be expected that fiber dispersion would be a serious problem in a large-scale network and the effects of dispersion compensation should be considered seriously.

    In this work,we focus on the impact of fiber dispersion on the performance of the DO-QKD system.Firstly,we realize the theoretical modeling of the DO-QKD system.Based on the established model,the influence of fiber dispersion on the DO-QKD system is analyzed.Furthermore,we investigate the benefits and costs of dispersion compensation,and concluded that dispersion compensation is unnecessary at short distances.Using G.652 fibers,the DO-QKD system without DCM has better performance,when the fiber length is less than 9 km,while the range can be increased to 30 km using G.655 fibers.The results show the potential of realizing a dispersion-compensation-free DO-QKD network on campus,or even metro scale.

    2.Theoretical Model of DO-QKD System

    The sketch of a DO-QKD system is shown inFig.1,where SMF is the single mode fiber;DCM is the dispersion compensation module;ND is normal dispersion;AD is anomalous dispersion;BS is the 50:50 beam splitter.The telecom-band energy-time entangled photon pairs are generated by a quantum light source.Then,the signal and idler photons of the photon pairs are distributed to Alice and Bob through optical fibers,respectively.At Alice’s side,the photons are separated into two paths by a beam splitter.In one path(A1),photons are detected by a single-photon detector directly and the times of these single-photon events are recorded.In the other path (A2),photons are detected after they pass through a dispersive component with normal dispersion.The similar setup is placed at Bob’s side,with two paths denoted by B1 and B2.The only difference is that the dispersive component of Bob has anomalous dispersion,while,its absolute value is the same as that of the dispersive component of Alice.Path A1 and path B1 form the time base of the measurements for the photon pairs.In this base,the coincidence events show strong temporal correlation,which is indicated by a narrow coincidence peak,and they are used to generate keys.The coincidence events of path A2 and path B2 also show a narrow coincidence peak due to the nonlocal dispersion compensation effect of energy-time entangled photon pairs[16],[18].They form the frequency base,which contributes to security tests.

    Fig.1.Sketch of an entanglement-based DO-QKD system.

    The raw keys are generated by time encoding of the coincidence events in the time base.The largealphabet processing method[13]is applied,which is shown in the upper part ofFig.2.Photons are recorded at both sides in a continuous stream of time,which is divided into consecutive time frames.A time frame includesM(M=2N) consecutive slots and a slot includesItime bins.In the bin sifting process,Alice and Bob firstly communicate their recorded frame numbers to each other which contain one single-photon event through a public channel,and keep the frames in which both sides have single-photon events.Then,for each retained frame,they check the time bin numbers of the single-photon events,and only keep the frames that the single-photon events at the two sides have the same bin number.Finally,Alice and Bob generate the raw keys by the slot numbers of the single-photon events in these frames.In this process,Alice and Bob avoid communications of the slot numbers,hence,Eve cannot get the information of the keys directly from the communications in the public channel.

    Fig.2.Schematic diagram of the raw key generation rate and quantum bit error rate (QBER) in high-dimensional coding format of DO-QKD,when (a) Alice records signal-photon events and (b) Alice records noise events.A frame has 2N slots and a slot has I bins.In the figure,N=2 and I=3.

    We establish a theoretical model to investigate the performance of DO-QKD systems,considering the characteristics of the quantum light source,optical fiber transmission,and process of single-photon detection.The modeling method is described below.

    2.1.Raw Key Generation Rate and QBER

    There are some key parameters to describe the DO-QKD system shown inFig.1.For the quantum light source,there are the generation rate of entangled photon pairsR,and the generation rates of noise photons on signal and idler sides,RsandRi.They can be obtained in the experiment by measuring the single-side photon count rates of signal and idler photons,and the coincidence count rate[19].For the fiber transmission,there are the fiber lengthL,fiber loss coefficientα,and dispersion parameterβ2.The loss of DCM is denoted byland its dispersion value is assumed to compensate that of the transmission fibers exactly.For singlephoton detection,there are the single-photon detection efficiencyηd,dark count rate of the detectordd,and the timing jitter of the detectors (including the electronic circuits for counting)σd.In this model,all the detectors are assumed to have the same performance.

    We start with the analysis of the types of single-photon events recorded by Alice.For each event of Alice,she may record a signal photon which is one of an entangled photon pair,or a noise event (including noise photons and events of dark counts).If we set the arrival time of Alice’s events ast0,the probability distribution of the single-photon events recorded by Bob neart0could be derived.We number the slots in each frame bym(m=1,2,…,2N) and the bins in each slot byi(i=1,2,…,I).Let us consider the single-photon events of Alice recorded in a specific bin with a slot number ofm0and a bin number ofi0.Since the single-photon events of Alice randomly fall into the time bin,we firstly derive the contributions of the events at Alice under a specifict0in the bin to the raw key rate and QBER.Then we calculate the average raw key rate and QBER as the final results by considering all the events at Alice in the bin,i.e.,the contributions of events at Alice under differentt0in the bin are calculated and accumulated.

    For the case that Alice records signal photon,and ideally,the energy-time entangled photon pairs would ideally reach both sides simultaneously.However,the temporal correlation of the photon pairs decreases due to the timing jitters of the detectors,hence the arrival time of photons on each side will be uncertain.When we set the recorded arrival time of Alice’s photons as a fixed valuet0,the uncertainty of the recorded arrival time of Bob’s photons tot0is determined by the timing jitters of detectors on both sides.Its temporal distribution follows the approximate Gaussian distribution with the mean oft0,accompanied by a floor due to noise photons and dark counts,as shown inFig.2 (a).This temporal distribution at Bob’s side is expressed as

    It can be derived from the known parameters of the source,transmission,and detectors.The varianceσinhis mainly caused by the timing jitters of the single-photon detectors on both sides:

    whereσ0is the intrinsic correlation time between the two photons in a pair,after they pass through the filters.Usually,σ0is far smaller than the time jitters of single-photon detectors in typical DO-QKD experiments[9].

    For the case that Alice records noise events,Bob’s recorded events have no temporal correlation with Alice’s records,forming accidental coincidence count events as shown inFig.2 (b).The temporal distribution of Bob’s events is expressed as

    Considering the two cases,we calculate the total number of correct coincidence eventsX1,when Bob’s recorded time is in the same bin witht0.We also calculate the number of error coincidence eventsX2,m(m≠m0),when Bob’s recorded time has the same bin number witht0,but in themth slot (see details in Appendix A).The raw key generation ratebis considered to be the total number of coincidence events multiplied by the encoding dimensionN,which is expressed as

    If there is no bin sifting process,it is obvious that the adjacent slots between Alice and Bob are prone to misjudgment,resulting in bit errors,as shown in the white triangles inFig.2.By sifting and keeping the coincidence counts of the same time bin number,the errors caused by this situation can be greatly eliminated,so QBER of the system is effectively reduced.However,there are still bit errors in the case of the same bin number but different slots,as shown in the gray triangles inFig.2.And QBER is expressed as

    whereemis the bit error ratio when Bob records an event in themth slot.Since one coincidence event generatesNbits in the high-dimensional time coding format,emrepresents the ratio of the error bit number to the total bit number (N),if the recorded single-photon events of Alice and Bob are in different slots.

    Then the average raw key generation rate and QBER are calculated considering allt0in the bin.Although the above analysis only considers the single-photon events of Alice recorded in a specific time bin,the same results could be expected if it is extended to other time bins.Hence,(4) and (5) can be used as final results to calculate the performance of an entanglement-based DO-QKD system.

    2.2.Security Analysis and Secret Key Rate

    Alice and Bob perform the arrival-time measurements under unbiased time-frequency bases with outcomes described by random variablesTAandTB.The security analysis can be performed by analyzing the numerical characteristics of the random variables (see details in Appendix B) and calculating the timefrequency covariance matrix[15].The secret key rate extracted per coincidence count is expressed by the secret key capacity[20]:

    whereβis the reconciliation efficiency,which is set to be 90% in this work.I(A;B) is the Shannon information between Alice and Bob,andχ(A;E) is Eve’s Holevo information.

    2.3.lmpact of Fiber Dispersion on DO-QKD

    The chromatic dispersion introduced by transmission fibers will broaden the coincidence peak,which will greatly deteriorate the secret key rate.Considering the influence of fiber dispersion,the variance of the temporal distribution of Bob’s photons in the first case is modified,which is expressed as

    Nonlocal dispersion cancellation can eliminate most of the broadening caused by dispersion.However,the residual dispersion that has not been well compensated still causes broadening[15],[18],[21],which is characterized by

    The relationship between dispersion parametersDandβ2is expressed asD=When there is residual dispersion,the varianceσinhin the above formulas is replaced withσtot.

    3.Results and Discussion

    3.1.Simulation Results under Experimental Conditions

    Based on the above analysis,the performance of the DO-QKD system under encoding parametersN=4 andI=3 is simulated.The main parameters used in the simulation (in accordance with the experiment in [9])are shown inTable 1,whereRandRs,irefer to the corresponding generation rates at the output of the quantum light source.

    Table 1:Major parameters used in the simulation of the DO-QKD system

    When the bin width is 160 ps that is the same with the experiment in [9],the raw key generation rate is 151 kbps with QBER of 3.69%.Through security analysis,in the case of 20-km transmission with dispersion compensation,the Shannon information between Alice and BobI(A;B) is established as 3.83 bit per coincidence (bpc),and Eve’s Holevo informationχ(A;E) is 0.01 bpc.As a result,the secret key capacity ΔIis 3.44 bpc,leading to the secret key rate of 129.9 kbps.The simulation results are mostly consistent with the experimental results in the previous work[9].It is believed that the model can be used to describe and further analyze the DO-QKD system.

    3.2.lmpact of DCM on DO-QKD

    In order to investigate the impact of DCM on DO-QKD,the performance of the system under 20-km fiber transmission is shown inFig.3.The solid lines are the results of using DCM (with a loss of 3 dB) in the system,while the dashed lines show those without DCM.Without dispersion compensation,σtotof the temporal distribution at Bob’s side under 20-km fiber transmission is broadened from 63.7 ps to 81.6 ps.The bin sifting process is affected as follows:The error bits caused by coincidence counts in different slots increase,hence QBER of the system increases.The bin width at the minimum QBER becomes wider,because the larger bin width is needed to cover the broadened temporal distribution.By introducing the three-level optimization format[9],we optimize the parameters of the bin sifting process,further reducing QBER and increasing the raw key rate.The bin widthτafter the three-level optimization (under the QBER upper bound of 5%) is 260 ps with DCM,while it reduces to 230 ps without DCM.Since the loss introduced by DCM is avoided,the raw key rate is higher than that with dispersion compensation.However,the raw key rate is not necessarily related to QKD performance.It is necessary to perform security analysis on the system to obtain the secret key rate.

    Fig.3.Influence of dispersion compensation on (a) QBER and (b) raw key generation rate b.And high-dimensional encoding parameters:N=4 and I=3.

    The security analysis shows that the secret key capacity ΔI<0 in the case of 20-km transmission without dispersion compensation.It deteriorates greatly due to the uncompensated fiber dispersion.In this situation,no secret keys can be extracted from raw ones after error correction and privacy amplification.Therefore,dispersion compensation must be performed in the DO-QKD system under 20-km optical fiber transmission.

    3.3.Results under Different Transmission Conditions

    Chromatic dispersion leads to the broadening of the temporal distribution of Bob’s photons,which results in the increase of QBER and decrease of the secret key rate.DCM can compensate for the dispersion,whereas it introduces additional losses on the optical links,which would reduce the coincidence counts available for key generation.Hence,the benefits and costs of dispersion compensation should be analyzed to obtain a higher secret key rate.There is a theoretical transmission range in which the performance of the DO-QKD system without dispersion compensation is better than that with dispersion compensation.In this case without dispersion compensation,the increase in the effective coincidence counts makes up for the decrease in the secret key capacity in terms of secret key generation.

    The calculation results of a DO-QKD system with parameters set asTable 1(except the variable fiber lengthLand dispersion parameterD) are shown inFig.4.Fig.4 (a)shows the calculated secret key rate under increasing fiber length when the G.652 fiber (D=17 ps/km/nm at the wavelength of 1550 nm) is applied in the system.The black squares are the results that DCM (with a loss of 3 dB) is used in the system.The white circles show those without DCM.It can be seen that when the transmission distance is relatively short,the system without DCM has better performance.However,the performance of the system with DCM is better when the transmission fiber is over 9 km,since the performance deterioration due to the fiber dispersion is larger than the impact of the loss of DCM.It proves that dispersion compensation is unnecessary in DO-QKD for the short-distance transmission.

    Fig.4.Secret key rates (optimized with the QBER upper bound of 5%) under increasing fiber length:(a) transmission fiber is G.652 fiber and (b) transmission fiber is G.655 fiber.

    Fig.4 (b)shows the calculated secret key rate under the increasing fiber length when the G.655 fiber(D=5 ps/km/nm with the wavelength of 1550 nm) is applied.It can be seen that the results are similar to those inFig.4 (a).Whereas,the system without DCM has better performance when the fiber length is less than 30 km due to the lower dispersion parameter of the G.655 fiber.

    4.Conclusions

    In this work,we theoretically investigate the influence of chromatic dispersion introduced by the transmission fiber on the performance of the DO-QKD system.We firstly establish a theoretical model of the entanglement-based DO-QKD system,and proved the feasibility of the model.Fiber dispersion will greatly deteriorate the performance of the DO-QKD system.However,it is shown that dispersion compensation is unnecessary when the transmission distance is relatively short.Using the G.652 fiber,the DO-QKD system without DCM has better performance when the fiber length is less than 9 km,while this range increases to 30 km using the G.655 fiber due to its lower dispersion parameter.The above results provide theoretical guidance for practical applications of DO-QKD.It shows that in the application scenarios of campus networks and community access networks,the dispersion compensation in DO-QKD is unnecessary.If transmission fibers with lower dispersion are applied,such as the G.655 fiber,DO-QKD without dispersion compensation even can be used in metro networks.

    Acknowledgment

    The authors would like to express their appreciation for the support of Tsinghua Initiative Scientific Research Program.

    Disclosures

    The authors declare no conflicts of interest.

    Appendix A:Number of Coincidence Events between Alice and Bob

    For the cases that Alice records signal photons and noise events,the temporal distribution at Bob’s side is expressed as the two distribution functionsB1(t) andB2(t).It is regarded as a correct coincidence event when the time recorded by Bob is in the same bin witht0.The number of correct coincidence events is denoted byX1:

    wheretm0,iandtm0,erepresent the initial and end time of the bin containingt0,which is in them0th slot.The integrals with respect totare shown in the black areas inFig.2.

    Other coincidence events are regarded as error coincidence events.The number of error coincidence events in themth slot is denoted byX2,m(m≠m0):

    wheretm,iandtm,erepresent the initial time and end time of the bin with the same bin number oft0in themth slot.The integrals with respect totare shown in the gray areas inFig.2.Hence,the total number of error coincidence events is expressed as

    Appendix B:Numerical Characteristics of Random Variables TA and TB

    We assume that Alice and Bob both detect a single-photon event in a given time frame.At Alice’s and Bob’s sides,the arrival-time measurement parameters in the time base are described as

    When Alice and Bob receive a pair of entangled photons,there is a strong temporal correlation between the recorded events of them.The probability of this case over all the coincidence counts isP1.In other cases,there is no temporal correlation between the recorded events of both sides.We have

    whereRcois the coincidence count rate,Racis the accidental coincidence count rate in the time frame with widthT,andT≡6σtot.They are expressed by the known parameters as

    At Alice’s side,we assume that the arrival timeTAfollows the uniform distribution in the timeT,with zero mean.The numerical characteristics ofTAare expressed as

    whereE[?] means the mean of a random variable and V ar[?] means the variance of a random variable.

    At Bob’s side,the time differenceXbetweenTA1andTB1follows the Gaussian distribution with zero mean and varianceσtot.TB2also follows the uniform distribution in the timeT,with zero mean.The random variablesTA1andX,TA2andTB2are independent.Since both the situations at Bob’s side have zero mean,the numerical characteristics ofTBare simplified as:

    Based on the above analysis,the statistical characteristics between the random variables of both sides are derived as

    where Cov[?,?] means the covariance between two random variables.The arrival-time parameters in the frequency base obey corresponding relations.We used the above statistical characteristics in security analysis to obtain the secret key rate[15].

    日韩制服骚丝袜av| 欧美一区二区国产精品久久精品| 欧美三级亚洲精品| 小说图片视频综合网站| 免费av不卡在线播放| 可以在线观看毛片的网站| 久99久视频精品免费| 午夜亚洲福利在线播放| 亚洲av.av天堂| 天天躁夜夜躁狠狠久久av| 国产成人一区二区在线| 亚洲精品乱码久久久v下载方式| 久久久色成人| 狂野欧美激情性xxxx在线观看| 国产伦精品一区二区三区视频9| 最近中文字幕2019免费版| 国产探花在线观看一区二区| 国产单亲对白刺激| av国产久精品久网站免费入址| 色吧在线观看| 精品人妻偷拍中文字幕| 欧美日本视频| 亚洲精品456在线播放app| 99久久精品国产国产毛片| 91久久精品国产一区二区三区| 91av网一区二区| 在线观看66精品国产| 成人美女网站在线观看视频| 国产黄色视频一区二区在线观看 | 蜜桃久久精品国产亚洲av| 男人的好看免费观看在线视频| 一级毛片久久久久久久久女| 看非洲黑人一级黄片| 亚洲欧美精品自产自拍| 赤兔流量卡办理| 午夜精品国产一区二区电影 | 99久国产av精品国产电影| 免费大片18禁| 国产精品av视频在线免费观看| 午夜福利网站1000一区二区三区| av在线亚洲专区| 国产在视频线在精品| 久久久久性生活片| 国产精品久久视频播放| 久久久久久国产a免费观看| 成人国产麻豆网| 22中文网久久字幕| www.av在线官网国产| 成人一区二区视频在线观看| 一级av片app| 国产精品久久久久久精品电影小说 | 欧美日韩精品成人综合77777| 亚洲欧美精品自产自拍| 内射极品少妇av片p| 成人美女网站在线观看视频| 亚洲人成网站高清观看| 亚洲天堂国产精品一区在线| 能在线免费看毛片的网站| av免费在线看不卡| 精品人妻偷拍中文字幕| 国产精品乱码一区二三区的特点| 在线播放国产精品三级| 久久久久网色| 超碰av人人做人人爽久久| 精华霜和精华液先用哪个| 国产伦理片在线播放av一区| 国产伦理片在线播放av一区| 国产真实乱freesex| 亚洲成人中文字幕在线播放| 亚洲在久久综合| 联通29元200g的流量卡| 国产精品久久久久久精品电影小说 | 久久久精品94久久精品| 亚洲精品久久久久久婷婷小说 | 中文资源天堂在线| 老司机福利观看| 国产免费视频播放在线视频 | 黄色一级大片看看| 欧美一级a爱片免费观看看| 午夜爱爱视频在线播放| 欧美精品国产亚洲| 天天躁夜夜躁狠狠久久av| 日韩在线高清观看一区二区三区| 久久精品久久久久久久性| 亚洲av熟女| 国产私拍福利视频在线观看| 永久免费av网站大全| 免费无遮挡裸体视频| 一级爰片在线观看| 少妇熟女欧美另类| 乱人视频在线观看| 91aial.com中文字幕在线观看| 欧美三级亚洲精品| 日韩在线高清观看一区二区三区| 成年免费大片在线观看| 国产黄片视频在线免费观看| 色综合亚洲欧美另类图片| 亚洲中文字幕日韩| 国产激情偷乱视频一区二区| 蜜桃亚洲精品一区二区三区| 亚洲高清免费不卡视频| 亚洲国产欧美在线一区| 神马国产精品三级电影在线观看| 久久久久久久久久久免费av| 亚洲精品一区蜜桃| 国产真实乱freesex| 青青草视频在线视频观看| 五月伊人婷婷丁香| 欧美三级亚洲精品| 国产精品不卡视频一区二区| 中文字幕亚洲精品专区| 毛片一级片免费看久久久久| 色吧在线观看| 亚洲精品久久久久久婷婷小说 | 水蜜桃什么品种好| 男人的好看免费观看在线视频| 69人妻影院| av国产久精品久网站免费入址| 亚洲欧美清纯卡通| 国产私拍福利视频在线观看| 99九九线精品视频在线观看视频| 免费大片18禁| 日本欧美国产在线视频| 精品久久国产蜜桃| 国产真实伦视频高清在线观看| 午夜福利网站1000一区二区三区| 国产精品1区2区在线观看.| 人人妻人人看人人澡| 午夜久久久久精精品| 麻豆精品久久久久久蜜桃| 日本一二三区视频观看| 一级二级三级毛片免费看| 国产成人免费观看mmmm| 亚洲成人精品中文字幕电影| 在线观看66精品国产| h日本视频在线播放| 精品久久久久久久人妻蜜臀av| 国产在视频线在精品| 欧美成人免费av一区二区三区| 成人性生交大片免费视频hd| 久久午夜福利片| 视频中文字幕在线观看| 又粗又硬又长又爽又黄的视频| 色综合亚洲欧美另类图片| 最新中文字幕久久久久| 国产精品无大码| 免费看a级黄色片| 99视频精品全部免费 在线| 伦精品一区二区三区| 国产精品电影一区二区三区| 亚洲av不卡在线观看| 免费搜索国产男女视频| 菩萨蛮人人尽说江南好唐韦庄 | kizo精华| 国产大屁股一区二区在线视频| 蜜桃亚洲精品一区二区三区| 国产精品久久久久久精品电影小说 | 高清毛片免费看| 欧美成人午夜免费资源| 别揉我奶头 嗯啊视频| 亚洲欧美一区二区三区国产| 亚洲人与动物交配视频| 日韩欧美精品免费久久| 精品一区二区免费观看| 在线观看一区二区三区| 伊人久久精品亚洲午夜| 特大巨黑吊av在线直播| 国产麻豆成人av免费视频| 午夜免费激情av| 国产成人a∨麻豆精品| 国产高清国产精品国产三级 | 国产伦一二天堂av在线观看| 啦啦啦韩国在线观看视频| 国产大屁股一区二区在线视频| 精品少妇黑人巨大在线播放 | 亚洲自偷自拍三级| 边亲边吃奶的免费视频| 尤物成人国产欧美一区二区三区| 欧美xxxx性猛交bbbb| 好男人视频免费观看在线| 欧美性猛交黑人性爽| 中文天堂在线官网| 婷婷六月久久综合丁香| 久久久成人免费电影| 日韩精品青青久久久久久| 日本-黄色视频高清免费观看| 国产极品精品免费视频能看的| 久久久久久久久中文| 国产高清三级在线| 一区二区三区乱码不卡18| 日本wwww免费看| 精品无人区乱码1区二区| 久久精品综合一区二区三区| 中文字幕制服av| 国产人妻一区二区三区在| 亚洲婷婷狠狠爱综合网| 国产精品女同一区二区软件| 亚洲欧美清纯卡通| 亚洲精品乱久久久久久| 精品少妇黑人巨大在线播放 | 午夜视频国产福利| 尤物成人国产欧美一区二区三区| 亚洲精品456在线播放app| 中文乱码字字幕精品一区二区三区 | videos熟女内射| 能在线免费看毛片的网站| 亚洲国产精品成人综合色| 国产高清有码在线观看视频| 国国产精品蜜臀av免费| 床上黄色一级片| 97超视频在线观看视频| 少妇人妻一区二区三区视频| 看十八女毛片水多多多| 老女人水多毛片| 一级av片app| 99久国产av精品国产电影| 变态另类丝袜制服| 日韩精品青青久久久久久| 伊人久久精品亚洲午夜| 综合色丁香网| 国产老妇女一区| 国产精品一区二区在线观看99 | 亚洲欧洲日产国产| 亚洲精品色激情综合| 99久久精品热视频| 少妇被粗大猛烈的视频| 只有这里有精品99| 蜜臀久久99精品久久宅男| 欧美又色又爽又黄视频| 日韩av在线免费看完整版不卡| 熟女电影av网| 日本黄色视频三级网站网址| 国内精品一区二区在线观看| 少妇熟女aⅴ在线视频| 免费看光身美女| 中文字幕av在线有码专区| 三级毛片av免费| 97热精品久久久久久| 天天躁日日操中文字幕| 美女内射精品一级片tv| 国产精品久久视频播放| 午夜福利在线观看吧| 丰满少妇做爰视频| 18禁裸乳无遮挡免费网站照片| 国语对白做爰xxxⅹ性视频网站| 69av精品久久久久久| 久久精品综合一区二区三区| 久久精品影院6| 麻豆国产97在线/欧美| 国产精品日韩av在线免费观看| 久久久久久久午夜电影| 久久精品综合一区二区三区| 亚洲欧洲日产国产| 狂野欧美激情性xxxx在线观看| 久久久精品欧美日韩精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品国产成人久久av| 99在线人妻在线中文字幕| 国产精品,欧美在线| 日韩制服骚丝袜av| 亚洲在久久综合| 日韩,欧美,国产一区二区三区 | 亚洲激情五月婷婷啪啪| 波多野结衣高清无吗| 国产午夜精品久久久久久一区二区三区| 亚洲欧美日韩无卡精品| 91av网一区二区| 天天躁日日操中文字幕| 日韩三级伦理在线观看| 97超视频在线观看视频| 国产成人免费观看mmmm| 免费观看在线日韩| 熟女电影av网| 国产伦精品一区二区三区视频9| 日韩人妻高清精品专区| av在线观看视频网站免费| 一级毛片久久久久久久久女| 一个人免费在线观看电影| av在线播放精品| 丰满少妇做爰视频| 99在线视频只有这里精品首页| 日韩 亚洲 欧美在线| 国产亚洲一区二区精品| 晚上一个人看的免费电影| 亚洲av不卡在线观看| 精品无人区乱码1区二区| 久久精品国产99精品国产亚洲性色| 晚上一个人看的免费电影| 女的被弄到高潮叫床怎么办| 别揉我奶头 嗯啊视频| 在线播放国产精品三级| 天堂网av新在线| 久久亚洲国产成人精品v| 国产探花极品一区二区| 少妇高潮的动态图| 久久精品91蜜桃| 国产乱人视频| 91av网一区二区| 日韩欧美在线乱码| 亚洲成人av在线免费| 精品国产露脸久久av麻豆 | 国产午夜精品久久久久久一区二区三区| 91av网一区二区| 成人三级黄色视频| 99久久中文字幕三级久久日本| 精品久久国产蜜桃| 久久这里只有精品中国| 人体艺术视频欧美日本| 色网站视频免费| 永久免费av网站大全| 大话2 男鬼变身卡| av播播在线观看一区| 亚洲国产精品专区欧美| 久久久久久国产a免费观看| 日日干狠狠操夜夜爽| 99久国产av精品国产电影| 三级国产精品片| 国产精品国产三级国产av玫瑰| 我的女老师完整版在线观看| 床上黄色一级片| 好男人视频免费观看在线| 免费观看人在逋| 一级毛片久久久久久久久女| 69人妻影院| 亚洲欧美日韩高清专用| 国产精品美女特级片免费视频播放器| 欧美3d第一页| 99热这里只有精品一区| 老女人水多毛片| 99热精品在线国产| 不卡视频在线观看欧美| 三级经典国产精品| 日本免费一区二区三区高清不卡| 91aial.com中文字幕在线观看| 亚洲怡红院男人天堂| 你懂的网址亚洲精品在线观看 | 伦理电影大哥的女人| 亚洲第一区二区三区不卡| 免费看a级黄色片| 日韩制服骚丝袜av| 国产精品日韩av在线免费观看| 日本猛色少妇xxxxx猛交久久| av在线播放精品| 能在线免费观看的黄片| 中文字幕免费在线视频6| 观看免费一级毛片| 欧美+日韩+精品| 你懂的网址亚洲精品在线观看 | 国产亚洲5aaaaa淫片| 成人国产麻豆网| 国产亚洲最大av| 亚洲国产精品成人综合色| 日韩 亚洲 欧美在线| 日韩亚洲欧美综合| 午夜福利在线观看吧| 免费黄色在线免费观看| 欧美成人免费av一区二区三区| 99热精品在线国产| 亚洲经典国产精华液单| 亚洲性久久影院| 久久亚洲国产成人精品v| 日韩 亚洲 欧美在线| 如何舔出高潮| 人人妻人人看人人澡| 纵有疾风起免费观看全集完整版 | 国产一区亚洲一区在线观看| 麻豆乱淫一区二区| 麻豆成人av视频| 女的被弄到高潮叫床怎么办| 免费大片18禁| 久久6这里有精品| 精品久久久久久久末码| 超碰97精品在线观看| 又黄又爽又刺激的免费视频.| 三级经典国产精品| 亚洲av中文av极速乱| 长腿黑丝高跟| 男插女下体视频免费在线播放| 欧美成人免费av一区二区三区| 18禁动态无遮挡网站| 色尼玛亚洲综合影院| 亚洲,欧美,日韩| 欧美区成人在线视频| 国产不卡一卡二| 中国国产av一级| 99久国产av精品国产电影| 中文字幕熟女人妻在线| 2021少妇久久久久久久久久久| 别揉我奶头 嗯啊视频| 真实男女啪啪啪动态图| 天堂√8在线中文| 毛片一级片免费看久久久久| 中文字幕精品亚洲无线码一区| 一夜夜www| 久久精品久久精品一区二区三区| 高清av免费在线| 国产极品精品免费视频能看的| 91av网一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品蜜桃在线观看| 99热精品在线国产| 欧美人与善性xxx| 精品人妻偷拍中文字幕| 又粗又硬又长又爽又黄的视频| or卡值多少钱| 国产亚洲精品久久久com| 亚洲精品国产av成人精品| 久久久久久久久久久丰满| 国产精品.久久久| 男人舔女人下体高潮全视频| 亚洲18禁久久av| 最近视频中文字幕2019在线8| 乱系列少妇在线播放| 十八禁国产超污无遮挡网站| 色网站视频免费| 最新中文字幕久久久久| 色哟哟·www| 精品欧美国产一区二区三| 18禁动态无遮挡网站| 小蜜桃在线观看免费完整版高清| av.在线天堂| av免费观看日本| 亚洲国产欧美人成| 人妻少妇偷人精品九色| 国产一区有黄有色的免费视频 | 一级二级三级毛片免费看| 色噜噜av男人的天堂激情| 久久6这里有精品| 又黄又爽又刺激的免费视频.| 日韩一本色道免费dvd| 国产av不卡久久| 麻豆av噜噜一区二区三区| 国产精华一区二区三区| 欧美另类亚洲清纯唯美| 日本熟妇午夜| 国产 一区精品| 九色成人免费人妻av| 国产美女午夜福利| 国产片特级美女逼逼视频| 国产色婷婷99| 成人毛片60女人毛片免费| 只有这里有精品99| 亚洲aⅴ乱码一区二区在线播放| 欧美色视频一区免费| 欧美成人a在线观看| 一个人看的www免费观看视频| 最近2019中文字幕mv第一页| 免费一级毛片在线播放高清视频| 国产精品一区二区性色av| 一边亲一边摸免费视频| 91午夜精品亚洲一区二区三区| 高清av免费在线| 国产精华一区二区三区| 国产免费又黄又爽又色| 精品熟女少妇av免费看| 亚洲av免费在线观看| 人妻少妇偷人精品九色| 18+在线观看网站| 亚洲中文字幕一区二区三区有码在线看| 欧美日本亚洲视频在线播放| 久久精品综合一区二区三区| 国产精品一二三区在线看| 尾随美女入室| 亚洲欧美日韩无卡精品| 久久韩国三级中文字幕| 十八禁国产超污无遮挡网站| 男的添女的下面高潮视频| 九色成人免费人妻av| 国产精品美女特级片免费视频播放器| 一级毛片aaaaaa免费看小| 久久久午夜欧美精品| 91在线精品国自产拍蜜月| 中文字幕亚洲精品专区| 在线a可以看的网站| 久久久久久久久大av| 精品一区二区免费观看| 噜噜噜噜噜久久久久久91| 一卡2卡三卡四卡精品乱码亚洲| 精品国产一区二区三区久久久樱花 | 91久久精品国产一区二区三区| 久久精品久久精品一区二区三区| 亚洲欧美精品综合久久99| 中文字幕制服av| 18禁裸乳无遮挡免费网站照片| 国产精品国产三级国产专区5o | 精品99又大又爽又粗少妇毛片| 日韩,欧美,国产一区二区三区 | 国产成人freesex在线| 日韩中字成人| 国产精品嫩草影院av在线观看| 日韩在线高清观看一区二区三区| 真实男女啪啪啪动态图| 亚洲国产日韩欧美精品在线观看| 成人毛片a级毛片在线播放| 五月伊人婷婷丁香| 69av精品久久久久久| 特大巨黑吊av在线直播| 亚洲精品aⅴ在线观看| 综合色丁香网| 中文字幕久久专区| 国产 一区精品| 欧美性感艳星| 国产在线一区二区三区精 | 精品免费久久久久久久清纯| 久久草成人影院| 国内精品一区二区在线观看| 国产不卡一卡二| 六月丁香七月| 亚洲欧美精品综合久久99| 免费人成在线观看视频色| 午夜福利网站1000一区二区三区| 国产精品人妻久久久影院| 久久久色成人| 啦啦啦观看免费观看视频高清| 久久久久久九九精品二区国产| 国产精品日韩av在线免费观看| 三级毛片av免费| 国产伦理片在线播放av一区| 汤姆久久久久久久影院中文字幕 | 国产精品久久久久久精品电影| 视频中文字幕在线观看| 内地一区二区视频在线| 简卡轻食公司| 99热精品在线国产| 亚洲精品日韩在线中文字幕| 久久久久久久久久黄片| 精品午夜福利在线看| 国产精华一区二区三区| 啦啦啦观看免费观看视频高清| 欧美精品一区二区大全| 最近视频中文字幕2019在线8| 亚洲精品456在线播放app| 白带黄色成豆腐渣| 国产私拍福利视频在线观看| 日韩亚洲欧美综合| 国产精品人妻久久久久久| 亚洲精品,欧美精品| 午夜福利在线观看吧| 99热精品在线国产| 自拍偷自拍亚洲精品老妇| 男女视频在线观看网站免费| 国产淫语在线视频| www日本黄色视频网| 青春草亚洲视频在线观看| av视频在线观看入口| 国产老妇伦熟女老妇高清| 搞女人的毛片| 爱豆传媒免费全集在线观看| 亚洲精品国产av成人精品| 国产精品久久电影中文字幕| 少妇高潮的动态图| 五月玫瑰六月丁香| 级片在线观看| 99久久精品热视频| 97热精品久久久久久| 赤兔流量卡办理| 国产精品国产三级专区第一集| 亚洲国产精品成人综合色| 久久久久久久久久久丰满| 男女啪啪激烈高潮av片| 欧美成人a在线观看| 国产欧美日韩精品一区二区| 成人国产麻豆网| 一级毛片久久久久久久久女| 国产淫语在线视频| 日韩制服骚丝袜av| 春色校园在线视频观看| 久久亚洲国产成人精品v| 免费av不卡在线播放| 久久精品国产自在天天线| 国产淫片久久久久久久久| 国产免费男女视频| 中文字幕av在线有码专区| 男人舔女人下体高潮全视频| 亚洲怡红院男人天堂| 51国产日韩欧美| 白带黄色成豆腐渣| 成人特级av手机在线观看| 国产久久久一区二区三区| 国产成人精品久久久久久| 听说在线观看完整版免费高清| 午夜福利成人在线免费观看| 久久人人爽人人片av| 一个人看视频在线观看www免费| 国产男人的电影天堂91| 国产精品久久久久久久久免| 国产女主播在线喷水免费视频网站 | 亚洲怡红院男人天堂| 国产黄色视频一区二区在线观看 | 国产毛片a区久久久久| 国产成人精品婷婷| 欧美另类亚洲清纯唯美| 中文天堂在线官网| 色哟哟·www| 内地一区二区视频在线| 久久欧美精品欧美久久欧美| 久久久久九九精品影院| 亚洲在线观看片| 看免费成人av毛片| 精品久久国产蜜桃| 亚洲不卡免费看| 国产极品天堂在线| 亚洲欧美日韩卡通动漫| 国产精品一区www在线观看| 99在线视频只有这里精品首页| 日韩成人伦理影院| 久久久成人免费电影| 欧美3d第一页| 黄色配什么色好看| 少妇丰满av| 能在线免费观看的黄片| 成人综合一区亚洲| 欧美日韩精品成人综合77777| 51国产日韩欧美| 日本五十路高清|