張文彬 白 露 劉 彬 王朋梅 莫照蘭 李 杰
海洋細菌來源低溫褐藻膠裂解酶的分泌表達和酶學性質(zhì)研究*
張文彬1,2#白 露1,2#劉 彬3王朋梅2莫照蘭4李 杰2①
(1. 上海海洋大學 水產(chǎn)科學國家級實驗教學示范中心 國家水生動物病原庫 上海 201306; 2. 中國水產(chǎn)科學研究院黃海水產(chǎn)研究所 農(nóng)業(yè)農(nóng)村部海水養(yǎng)殖病害防治重點實驗室 青島海洋科學與技術(shù)試點國家實驗室海洋漁業(yè)科學與食物產(chǎn)出過程功能實驗室 山東 青島 266071; 3. 青島市精神衛(wèi)生中心 山東 青島 266034;4. 中國海洋大學海洋生命學院 山東 青島 266003)
為了篩選穩(wěn)定性較好的低溫褐藻膠裂解酶,本研究進行了海洋細菌分離鑒定、酶的編碼基因克隆與分析、酶分泌表達與純化、不同因素對酶活力和穩(wěn)定性的影響以及酶解產(chǎn)物分析實驗。結(jié)果顯示,用以褐藻膠為唯一碳源的平板,篩選出一株能分泌低溫褐藻膠裂解酶的海洋細菌SJ-H-12,基于16S rDNA序列構(gòu)建進化樹,該菌株鑒定為sp. SJ-H-12。進而克隆酶的編碼基因,ALYYA屬于PL5家族褐藻膠裂解酶。將基因在食品級宿主解脂耶氏酵母()中進行分泌表達,重組ALYYA的活力達到34.2 U/mL,分子量約為39.0 kDa,具有較強的PolyM偏好性。ALYYA在25℃~35℃時表現(xiàn)出80%以上的活力,且在30℃時表現(xiàn)出最高活力;在pH為5.0~10.0的范圍內(nèi)穩(wěn)定性較好,孵育后剩余超過60%的活力;0~2.0 mol/L的NaCl能明顯激活ALYYA的活力。ALYYA降解褐藻膠的產(chǎn)物主要是二糖,另有少部分單糖和三糖,該酶是一種內(nèi)切褐藻膠裂解酶。綜上所述,本研究篩選到一株產(chǎn)低溫褐藻膠裂解酶細菌,所產(chǎn)ALYYA是典型的低溫褐藻膠裂解酶,具有優(yōu)良的酶活力和穩(wěn)定性。本研究為低溫褐藻膠裂解酶的篩選和開發(fā)利用提供了參考數(shù)據(jù)。
褐藻膠裂解酶;分泌表達;編碼基因;pH穩(wěn)定性
褐藻生物量巨大,生長速度較快,被視為最有前景的生物資源之一(Flórez-Fernández, 2019)。褐藻含有多種生物活性物質(zhì),如褐藻膠、巖藻聚糖、巖藻黃質(zhì)、甘露醇、多酚和植物激素等(Li, 2019a; Sharma, 2014、2016)。其中,褐藻膠約占褐藻干物質(zhì)的22%~44% (/),是褐藻細胞壁的主要成分(Wargacki, 2012)。
褐藻膠是一種線性聚合物,由β-d-甘露糖醛酸(M)和α-1-古羅糖醛酸(G)作為單體單元組成。單體通過1,4-糖苷鍵以不同順序結(jié)合,構(gòu)成聚古羅糖醛酸片段(PolyG)、聚甘露糖醛酸酯片段(PolyM)和雜聚物片段(PolyMG)(Wong, 2000)。褐藻膠裂解酶能切斷褐藻膠的1,4-糖苷鍵,在相對溫和可控的條件下,將褐藻膠水解成褐藻寡糖(alginate oligosaccharides, AOS) (Li, 2019b)。AOS具有抗氧化、抗腫瘤和抗凝血等生理活力,在醫(yī)療健康相關(guān)領(lǐng)域具有潛在的應用(孫麗萍等, 2005; Iwamoto, 2003; 辛現(xiàn)良等, 2001; Lin, 2007)。此外,AOS對植物根系發(fā)育具有顯著的促進作用(Xu, 2003; Zhang, 2014)。
多種海洋細菌可以產(chǎn)生褐藻膠裂解酶,包括鏈霉菌(sp.)、假單胞菌(sp.)、沙門氏菌(sp.)、黃桿菌(sp.)、芽孢桿菌(sp.)和弧菌(sp.)等(Chen, 2016; Inoue, 2016; Jagtap, 2014; Li, 2015; Schiller, 1993; Thomas, 2013)。為了提高褐藻膠裂解酶的活力,研究者克隆了多種褐藻膠裂解酶的編碼基因并進行重組表達(He, 2018; Zhang, 2020)。其中,低溫褐藻膠裂解酶受到廣泛關(guān)注。在低溫條件下,植物激素等活性物質(zhì)的不穩(wěn)定性能夠得到控制,并且低溫催化具有低污染風險和低能耗的優(yōu)勢(Gao, 2018)。但由于低溫酶通常穩(wěn)定性差且活力低,已報道的褐藻膠裂解酶并不能滿足工業(yè)要求。因此,需要篩選出符合工業(yè)應用需求的、具有魯棒性的低溫褐藻膠裂解酶。
本研究篩選到的海洋細菌sp. SJ-H-12能在低溫條件下分泌褐藻膠裂解酶,克隆褐藻膠裂解酶編碼基因并在食品級真核宿主解脂耶氏酵母()中表達,分泌的褐藻膠裂解酶ALYYA具有較好的溫度穩(wěn)定性和pH穩(wěn)定性,可以適應不同鹽度,并可制備較低分子量的寡糖,說明ALYYA可以成為褐藻膠降解的有效工具。
褐藻膠購自明月海藻集團(青島)。PolyM和PolyG購自青島博智匯力生物技術(shù)有限公司。分泌表達采用解脂耶氏酵母系統(tǒng),URA–菌株和表達載體pINA1312由中國海洋大學池振明教授提供。在以褐藻膠為單一碳源的ASC(褐藻酸唯一碳源培養(yǎng)基,alginate as sole carbon source)固體培養(yǎng)基中篩選和培養(yǎng)產(chǎn)褐藻膠裂解酶的菌株。ASC培養(yǎng)基包含10 g/L褐藻膠鈉、5.0 g/L (NH4)2SO4、1.0 g/L MgSO47H2O和0.1 g/L FeSO4,海水配制。在含有1.7 g/L酵母基礎(chǔ)氮源、10.0 g/L葡萄糖、5.0 g/L (NH4)2SO4和25.0 g/L瓊脂的YNB板上篩選解脂耶氏酵母轉(zhuǎn)化子(Madzak, 2015)。GPPB培養(yǎng)基用于重組酶生產(chǎn),包含30.0 g/L葡萄糖、1.0 g/L (NH4)2SO4、2.0 g/L酵母提取物、2.0 g/L KH2PO4、3.0 g/L K2HPO4和0.1 g/L MgSO47H2O,pH為6.8。2216E培養(yǎng)基包含1.0 g/L酵母提取物、5.0 g/L蛋白胨、0.01 g/L磷酸鐵和20.0 g/L瓊脂,海水配制。
對采集的綠爛海帶()樣品使用無菌海水清洗3次,加0.5 mL無菌海水研磨成勻漿液,稀釋涂布在ASC平板,放置于20℃培養(yǎng)7 d。平板上分離得到的菌株轉(zhuǎn)移至ASC液體培養(yǎng)基中,并在20℃下培養(yǎng)48 h,發(fā)酵液以5000×離心。以0.5%(/)褐藻膠溶液作為底物,采用DNS(3,5-二硝基水楊酸)法檢測褐藻膠裂解酶活力,1 U酶活力定義為1 min產(chǎn)生1 μmol還原糖所需酶量(褚洪蕊等, 2008)。分離得到的菌株在含30%甘油的2216E保種液中–80℃保藏。
產(chǎn)褐藻膠裂解酶菌株于2216E液體培養(yǎng)基中培養(yǎng)2~3 d。從每個培養(yǎng)基取1 mL菌液離心,取菌體,95℃保溫5 min,破碎細胞釋放細菌DNA,作為PCR模板DNA,用通用引物27F (5′-AGAGTTTGATCCTGG CTCAG-3′)和1492R (5′-TACGGCTACCTTGTTACGA CTT-3′)擴增細菌的16S rDNA。對菌株的16S rDNA進行測序。通過BLAST,與其他16S rDNA序列進行比較。使用MEGA 7.0軟件根據(jù)Neighbor-Joining的方法構(gòu)建系統(tǒng)發(fā)育樹。
SJ-H-12菌株基因組DNA已完成測序和注釋(諾禾致源)。序列分析顯示,基因組中存在1個潛在的褐藻膠裂解酶基因,大小為1113 bp。使用SignalIP 4.1服務器(http://www.cbs.dtu.dk/services/ SignalP-4.1/)分析信號肽;在保守域數(shù)據(jù)庫(https://www.ncbi.nlm. nih.gov/cdd)中進行結(jié)構(gòu)域分析;在線預測理論pI和MW(http://web.expasy.org/compute_ pi/)?;趫蟮赖暮衷迥z裂解酶,使用MEGA 7.0軟件根據(jù)Neighbor- Joining的方法構(gòu)建系統(tǒng)發(fā)育樹。
對基因進行密碼子優(yōu)化,連接XPR2信號肽基因(Synbio Technologies, 中國)。合成的DNA片段連接pINA1312質(zhì)粒,用于轉(zhuǎn)化URA–菌株。在GPPB (glucose in phosphate buffer)液體培養(yǎng)基中30℃培養(yǎng)84 h,檢測到陽性轉(zhuǎn)化子的褐藻膠裂解酶活力。將菌株M34上清液調(diào)節(jié)pH為7.5,然后加至Ni-NTA瓊脂糖凝膠柱(GE Healthcare, 美國)。將ALYYA酶連接至凝膠,用咪唑溶液洗滌。用12%(/)凝膠SDS- PAGE驗證ALYYA的純度和分子量。以polyM、polyG和褐藻膠為底物,研究ALYYA的底物偏好性。
在溫度為10℃~60℃、pH=8.0的10 mmol/L甘氨酸–NaOH緩沖液中進行ALYYA催化水解反應。檢測活力以確定最佳反應溫度。為評估ALYYA的熱穩(wěn)定性,將純化的ALYYA在10℃~60℃下孵育12 h,然后在35℃下測量剩余活力。在不同pH的10 mmol/L緩沖液[Na2HPO4–檸檬酸(pH 3.0~8.0),甘氨酸–NaOH (pH 8.5~11.0)]中,制備褐藻膠溶液作為底物。使用這些褐藻膠溶液測定酶活力以確定最佳反應pH。通過估計在不同pH的緩沖液中于4℃孵育12 h后剩余的酶活力來檢測pH的穩(wěn)定性。所有反應均重復3次。
配制0.5%(/)的褐藻膠溶液(pH 8.0),分別加入不同量的NaCl。以不同鹽度的褐藻膠溶液為底物,加入等量的ALYYA,在35℃下測定酶活力,研究NaCl對ALYYA活力的影響。
將純化的ALYYA (40 U)加入10 mL、pH 8.0的0.5%(/)褐藻膠溶液中,35℃下反應40 min。每5 min檢測黏度和235 nm的吸光度。當黏度和吸光度均穩(wěn)定時,將降解產(chǎn)物脫鹽并通過ESI-MS確定聚合度(DP)。
從綠爛海帶中共分離得到46株海洋細菌。其中,7個菌株20℃下能在ASC平板上生長,說明這些菌株能夠產(chǎn)生低溫褐藻膠裂解酶。SJ-H-12菌株在液體ASC培養(yǎng)基中能分泌最高活力的褐藻膠裂解酶,達到2.44 U/mL。在2216E平板上,菌株SJ-H-12的菌落光滑且不透明,呈乳黃色,圓形菌落邊緣整齊(圖1a);顯微鏡下,該菌株呈不規(guī)則球形(圖1b)。Blast比對分析發(fā)現(xiàn),其16S rDNA序列與海洋細菌屬相似度最大。聚類分析表明,菌株SJ-H-12與sp. CDJ15B-A02在同一分支上(圖2)。綜合Blast和系統(tǒng)發(fā)育樹的結(jié)果,認為SJ-H-12屬于屬,命名為sp. SJ-H-12。
圖1 SJ-H-12菌株的平板菌落形態(tài)(a)和細胞形態(tài)(b)
圖2 基于16S rDNA序列以Neighbor-Joining的方法構(gòu)建系統(tǒng)發(fā)育樹(比例尺表示0.020的遺傳距離)
菌株SJ-H-12的基因組中存在1個潛在的褐藻膠裂解酶編碼基因。開放閱讀框由1113 bp組成,編碼370個氨基酸的蛋白質(zhì)(MT533612)。該酶被命名為ALYYA,并進行進一步的生物信息學分析。ALYYA的前23個氨基酸是信號肽,與分泌特征一致。去掉信號肽后,成熟酶的理論等電點(pI)為4.00,分子量(MW)為38.1 kDa。在NCBI上分析發(fā)現(xiàn),ALYYA具有單個保守結(jié)構(gòu)域。為確定ALYYA的進化位置,根據(jù)氨基酸序列和其他已報道的褐藻膠裂解酶構(gòu)建了系統(tǒng)進化樹。如圖3所示,ALYYA與sp. E03的AlgA和sp. FY-07的AlgL位于同一分支。已報道的多數(shù)褐藻膠裂解酶屬于多糖水解酶7家族(PL7)和17家族(PL17),而AlgA和AlgL均屬于5家族(PL5),具有polyM片段偏好性(Inoue, 2016; Qin, 2018; Uchimura, 2010)。ALYYA的發(fā)現(xiàn)豐富了PL5家族褐藻膠裂解酶的研究,推測具有較強的polyM片段偏好性。
圖3 基于褐藻膠裂解酶氨基酸序列構(gòu)建的Bootstrap consensus系統(tǒng)發(fā)育樹
在以往研究中,大多數(shù)褐藻膠裂解酶在大腸桿菌()中表達。然而,由于大腸桿菌分泌能力弱、合成內(nèi)毒素且具有細胞壁抗原物質(zhì),大腸桿菌表達褐藻膠裂解酶在工業(yè)生產(chǎn)中受到了限制(Miyamoto, 2009)。本研究在食品級宿主解脂耶氏酵母中表達了ALYYA,這是一種廣泛使用的異源宿主,具有出色的分泌能力(Madzak, 2015)。重組菌株M34顯示出最高的細胞外活力。如圖4a所示,在GPPB培養(yǎng)基中培養(yǎng)60 h后,重組菌株M34中的ALYYA活力達到34.2 U/mL,生物量為16.2 g/L。胞外酶的活力是野生菌株(2.44 U/mL)的14倍。從上清液中純化ALYYA蛋白,并通過SDS-PAGE分析,如圖4b所示,在泳道上具有單一條帶,分子量約為39.0 kDa,與去掉信號肽的氨基酸序列加上有His標簽得到的理論分子量接近。純化的ALYYA對褐藻膠的比活力為676.4 U/mg,而對polyG片段和polyM片段的比活力分別為 213.2 U/mg和913.6 U/mg。此結(jié)果驗證了生物信息學分析ALYYA對polyM偏好的預測。
在酶純化的基礎(chǔ)上,研究了ALYYA的酶學性質(zhì)。如圖5a所示,ALYYA的催化活力在30℃時最高;在25℃~35℃之間檢測到80%以上的最高活力。當溫度升至40℃以上時,活力急劇下降。在較低溫度10℃和20℃下的催化活力分別為最高值的53.2%和38.4%。低于35℃時,ALYYA非常穩(wěn)定;在40℃下孵育2 h后,剩余約60%的活力。高于45℃時,ALYYA喪失大部分活力。多數(shù)褐藻膠裂解酶在約40℃時具有最高活力,而低溫褐藻膠裂解酶在低于35℃時具有最高的催化活力,在20℃時具有最高活力的50%以上。當前,尚無能應用于工業(yè)生產(chǎn)的商品化褐藻膠裂解酶,且報道的褐藻膠裂解酶多數(shù)為中溫酶。與已經(jīng)報道的少數(shù)低溫褐藻膠裂解酶相比,ALYYA在20℃時的活力更高,并具有更好的熱穩(wěn)定性(圖5b)。ALYYA可作為降解褐藻膠的新型工具酶。
圖4 分泌到培養(yǎng)基中的ALYYA活力的時間曲線(a)和純化ALYYA的SDS-PAGE分析(b)
圖5 不同溫度對ALYYA活力(a)和穩(wěn)定性(b)的影響
如圖6a所示,ALYYA活力在pH 8.0時最高,且在pH 6.0~9.0時超過80%。此外,在孵育12 h后,ALYYA在pH 5.0~10.0的范圍內(nèi)保留了超過60%的活力。在本研究的整個pH范圍(3.0~11.0),孵育12 h后均保留了40%以上的活力(圖6b)。而細菌來源的褐藻膠裂解酶多數(shù)傾向于在中性附近催化水解反應(Mochizuki, 2015)。與其他低溫褐藻膠裂解酶相比,ALYYA在更大的pH范圍內(nèi)表現(xiàn)出催化活力。例如,TsAly6A和AlgNJU-03的pH穩(wěn)定范圍分別僅為6.60~8.95和6.0~9.0 (Zhuang, 2018; Zhu, 2017)。實際上,ALYYA的pH穩(wěn)定范圍甚至比中溫褐藻膠裂解酶AlgNJ04的還要大(Zhu, 2018)。這種獨特的pH穩(wěn)定性使ALYYA可以在不同催化環(huán)境下完成褐藻中活性物質(zhì)的提取和轉(zhuǎn)化。另外,sp. E03的AlgA同樣屬于PL5家族,最適反應溫度為30℃,最適反應pH為8,與本研究中ALYYA的pH和溫度特性類似(Zhu, 2015)。
圖6 不同pH對ALYYA活力(a)和穩(wěn)定性(b)的影響
如圖7所示,NaCl在0~2.0 mol/L的濃度下能夠明顯激活ALYYA的活力。在0.75 mol/L NaCl濃度下,ALYYA的活性達到最高(290.0%)。NaCl對大多數(shù)褐藻膠裂解酶的活化是必不可少的。在1 mol/L NaCl中,AlgM4活力比無NaCl時增加了7倍左右(Huang, 2015)。在0.3 mol/L NaCl中的Aly08活力是無NaCl時的8倍左右(Wang, 2019)。相比之下,ALYYA的活力較為穩(wěn)定,對NaCl的依賴較弱,并具有耐鹽性。不同來源、品種和加工方法得到的褐藻的成分和鹽度均有所區(qū)別。因此,ALYYA是一種可以適應不同鹽度的酶,能滿足各種加工需求。
圖7 不同濃度NaCl對ALYYA活力的影響
使用ALYYA水解褐藻膠溶液40 min,當黏度不再下降時,通過負離子ESI-MS檢測終產(chǎn)物。如圖7所示,產(chǎn)物主要為二糖(351.05 m/z),另有少部分單糖(175.00 m/z)和三糖(526.90 m/z)。因此,ALYYA是一種內(nèi)切褐藻膠裂解酶。而低溫褐藻膠裂解酶Algb和AlgNJU-03產(chǎn)生的寡糖主要是DP2~DP5 (Zhu, 2017)。ALYYA可制備較低分子量的寡糖,具有潛在的藥物應用前景。
圖8 通過ESI-MS分析ALYYA的降解產(chǎn)物
綜上所述,本研究克隆了一種新型的低溫褐藻膠裂解酶的編碼基因,并對其進行了胞外分泌表達和性質(zhì)研究。ALYYA在溫度為25℃~35℃時表現(xiàn)出80%以上的活力,且在30℃時表現(xiàn)出最高活力,是典型的低溫褐藻膠裂解酶;此外,ALYYA在pH為4.0~10.0的范圍內(nèi)保持了70%以上的活力,在pH為3.0~11.0的范圍內(nèi)保持了40%以上的活力,它的pH穩(wěn)定范圍比中溫褐藻膠裂解酶大,表現(xiàn)出優(yōu)異的pH穩(wěn)定性;研究發(fā)現(xiàn),ALYYA是一種可以適應不同鹽度的酶,并可制備較低分子量的寡糖。因此,ALYYA可以成為工業(yè)應用的有效工具。
CHEN X, DONG S, XU F,. Characterization of a new cold- adapted and salt-activated polysaccharide lyase family 7 alginate lyase fromsp. SM0524. Frontiers in Microbiology, 2016, 7: 1120–1129
CHU H R, TANG J C. Study on fermentation and enzyme production conditions of alginic acid degrading bacteria A7. Marine Science, 2008, 32(11): 93–96 [褚洪蕊, 唐景春. 褐藻酸降解菌A7的發(fā)酵及產(chǎn)酶條件研究. 海洋科學, 2008, 32(11): 93–96]
FLóREZ-FERNáNDEZ N, TORRES M D, GONZáLEZ- MU?OZ M J,. Recovery of bioactive and gelling extracts from edible brown seaweedby non-isothermal autohydrolysis. Food Chemistry, 2019, 277: 353–361
GAO S, ZHANG Z, LI S. Characterization of a new endo-type polysaccharide lyase (PL) family 6 alginate lyase with cold-adapted and metal ions-resisted property. International Journal of Biological Macromolecules, 2018, 120: 729–735
HE M, GUO M, ZHANG X,. Purification and characterization of alginate lyase fromsp. ZH0.Journal of Bioscience and Bioengineering, 2018, 126(3): 310–316
HUANG G, WANG Q, LU M,. AlgM4: A new salt-activated alginate lyase of the PL7 family with endolytic activity. Marine Drugs, 2018, 16(4): 120–133
INOUE A, ANRAKU M, NAKAGAWA S,. Discovery of a novel alginate lyase fromsp. SB155-2 thriving at deep-sea hydrothermal vents and identification of the residues responsible for its heat stability. Journal of Biological Chemistry, 2016, 291(30): 15551–15563
JAGTAP S, HEHEMANN J, POLZ M,. Comparative biochemical characterization of three exolytic oligoalginate lyases fromreveals complementary substrate scope, temperature, and pH adaptations. Applied and Environmental Microbiology, 2014, 80(14): 4207–4214
LI S Y, HE N N, WANG L N. Efficiently anti-obesity effects of unsaturated alginate oligosaccharides (UAOS) in high-fat diet (HFD)-fed mice. Marine Drugs, 2019a, 17(9): 540
LI S Y, WANG Z P, WANG L N,. Combined enzymatic hydrolysis and selective fermentation for green production of alginate oligosaccharides from. Bioresource Technology, 2019b, 281: 84–89
LI S, YANG X, BAO M,. Family 13 carbohydrate-binding module of alginate lyase fromsp. L11 enhances its catalytic efficiency and thermostability, and alters its substrate preference and product distribution. FEMS Microbiology Letters, 2015, 362(10): 54–61
LIN C Z, GUAN H S, LI H H,. The influence of molecular massof sulfated propylene glycol ester of low-molecular- weight alginate on anticoagulant activities. European Polymer Journal, 2007, 43(7): 3009–3015
MADZAK C.: Recent achievements in heterologous protein expression and pathway engineering. Applied Microbiology and Biotechnology, 2015, 99(11): 4559–4577
MIYAMOTO T, OKANO S, KASAI N. Inactivation ofendotoxin by soft hydrothermal processing. Applied and Environmental Microbiology, 2009, 75(15): 5058–5063
MOCHIZUKI S, NISHIYAMA R, INOUE A,. A novel aldo-keto reductase HdRed from the Pacific abalone, which reduces alginate-derived 4- deoxy-L-erythro- 5-hexoseulose uronic acid to 2-keto- 3-deoxy-D-gluconate. Journal of Biological Chemistry, 2015, 290(52): 30962–30974
QIN H M, MIYAKAWA T, INOUE A,. Structural basis for controlling the enzymatic properties of polymannuronate preferred alginate lyase FlAlyA from the PL-7 family. Chemical Communication, 2018, 54: 555–558
SCHILLER N, MONDAY S, BOYD C,. Characterization of thealginate lyase gene (): Cloning, sequencing, and expression in. Journal of Bacteriology, 1993, 175(15): 4780–4789
SHARMA H S S, FLEMING C, SELBY C,. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology, 2014, 26(1): 465–490
SHARMA S, HORN S J. Enzymatic saccharification of brown seaweedfor production of fermentable sugars. Bioresource Technology, 2016, 213: 155–161
SUN L P, XUE C H, XU J C,. A study of the antioxidant abilities of alginate oligosaccharides. Periodical of Ocean University of China (Natural Sciences), 2005, 35(5): 811–814 [孫麗萍, 薛長湖, 許家超, 等. 褐藻膠寡糖體外清除自由基活性的研究. 中國海洋大學學報(自然科學版), 2005, 35(5): 811–814]
THOMAS F, LUNDQVIST L, JAM M,. Comparative characterization of two marine alginate lyases fromreveals distinct modes of action and exquisite adaptation to their natural substrate. Journal of Biological Chemistry, 2013, 288: 23021–23037
UCHIMURA K, MIYAZAKI M, NOGI Y,. Cloning and sequencing of alginate lyase genes from deep-sea strains ofandand characterization of a newenzyme. Marine Biotechnology, 2010, 12: 526–533
WANG Y, CHEN X, BI X,Characterization of an alkaline alginate lyase with pH-stable and thermo-tolerance property. Marine Drugs, 2019, 17(5): 308–322
WARGACKI A J, LEONARD E, WIN M N,. An engineered microbialplatform for direct biofuel production from brown macroalgae. Science, 2012, 335(6066): 308–313
WONG T Y, PRESTON L A, SCHILLER N L. Alginate lyase: Review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annual Review of Microbiology, 2000, 54(1): 289–340
XIN X L, GENG M Y, QI X,. Study on the action mechanism of a new type anti-cerebral ischemia marine drug 989.Periodical of Ocean University of China (Natural Sciences), 2001, 31(4): 535–536 [辛現(xiàn)良, 耿美玉, 戚欣, 等. 新型抗腦缺血海洋新藥989作用機理的初步探討. 青島海洋大學學報(自然科學版), 2001, 31(4): 535–536]
XU X, YOSHIKO I, YOSHIE K,. Root growth-promoting activity of unsaturated oligomeric uronates from alginate on carrot and rice plants. Bioscience Biotechnology and Biochemistry, 2003, 67(9): 2022–2025
YOSHIKO I, XU X, TADASHI T,. Enzymatically depolymerized alginate oligomers that cause cytotoxic cytodine production in human mononuclear cells. Bioscience Biotechnology and Biochemistry, 2003, 67(2): 258-263
ZHANG Y, YIN H, ZHAO X,. The promoting effects of alginate oligosaccharides on root development inL. mediated by auxin signaling. Carbohydrate Polymers, 2014, 113: 446–454
ZHANG Z, TANG L, BAO M. Functional characterization of carbohydrate-binding modules in a new alginate lyase, TsAly7B, fromsp. LD5. Marine Drugs, 2020, 18(1): 25–35
ZHU B W, HUANG L S X, TAN H D,. Characterization of a new endo-type polyM-specific alginate lyase fromsp. Biotechnology Letters, 2015, 37(2): 409– 415
ZHU B, NI F, NING L,. Cloning and characterization of a new pH-stable alginate lyase with high salt tolerance from marinesp. NJ-04. International Journal of Biological Macromolecules, 2018, 108: 1063–1070
ZHU B, SUN Y, NI F,. Characterization of a new endo-type alginate lyase fromsp. NJU-03. International Journal of Biological Macromolecules, 2017, 164: 1140–1147
ZHUANG J, ZHANG K, LIU X,. Characterization of a novel polyM-preferred alginate lyase from MarineOU02. Marine Drugs, 2018, 16(9): 295–230
Secretory Expression and Enzymatic Properties of Low-Temperature-Adapted Alginate Lyase from Marine Bacteria
ZHANG Wenbin1,2#, BAI Lu1,2#, LIU Bin3, WANG Pengmei2, MO Zhaolan4, LI Jie2①
(1. Shanghai Ocean University, National Demonstration Center for Experimental Fisheries Science Education, National Pathogen Collection Center for Aquatic Animals, Shanghai 201306, China; 2. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, Shandong 266071, China; 3. Qingdao Mental Health Center, Qingdao, Shandong 266034, China; 4. College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China)
Low-temperature-adapted alginate lyase has unique advantages for alginate oligosaccharide preparation and brown algae processing. Producing alow-temperature-adapted alginate lyase with better stability remains an urgent need for industrial applications. In this study, to screen for a low-temperature- adapted alginate lyase with good stability, we identified and isolated marine bacteria, by cloning and analyzing enzyme-encoding gene and secretory expression and purification of enzyme. The effects of different factors on enzyme activity and stability, as well as analysis of enzymatic hydrolysis products were evaluated. Results showed that the marine bacterium SJ-H-12 is capable of secreting low- temperature-adapted alginate lyase when cultivated with alginate as the sole carbon source. An evolutionary tree was constructed based on 16S rDNA sequences, and the strain was identified assp. SJ-H-12. Furthermore, the gene encoding the enzyme ALYYA was identified as belonging to the PL5 alginate lyase family. The gene was secreted and expressed in, a food-grade host. The activity of recombinant ALYYA reached 34.2 U/mL; the molecular weight of ALYYA was about 39.0kDa, and it had a strong PolyM preference. ALYYA showed more than 80% vitality at 25℃~35℃, with peak vitality at 30℃; it demonstrated good stability in the pH range of 5.0~10.0, with more than 60% vitality remaining after incubation.NaCl could activate the activity of ALYYA at a concentration of 0~2.0 mol/L. The products of ALYYA-degraded alginate are mainly disaccharides and small amounts of monosaccharides and trisaccharides, resulting from its endoalginate lyase activity. In summary, a low-temperature-adapted alginate lyase-producing bacterium was screened, and most of the alginate lyases found were mesophilic enzymes. This study showed that ALYYA is a typical low-temperature- adapted alginate lyase with excellent enzyme activity and stability, providing reference data for the screening and industrial development and utilization of low-temperature-adapted alginate lyase.
Alginate lyase; Secretory expression; Coding gene; pH stability
LI Jie, E-mail: lijie@ysfri.ac.cn
S917.1
A
2095-9869(2021)06-0117-08
10.19663/j.issn2095-9869.20200427001
http://www.yykxjz.cn/
張文彬, 白露, 劉彬, 王朋梅, 莫照蘭, 李杰. 海洋細菌來源低溫褐藻膠裂解酶的分泌表達和酶學性質(zhì)研究. 漁業(yè)科學進展,2021, 42(6): 117–124
ZHANG W B, BAI L, LIU B, WANG P M, MO Z L, LI J. Secretory expression and enzymatic properties of low-temperature-adapted alginate lyase from marine bacteria. Progress in Fishery Sciences, 2021, 42(6): 117–124
李 杰,副研究員,E-mail: lijie@ysfri.ac.cn
2020-04-27,
2020-07-06
*國家藻類產(chǎn)業(yè)技術(shù)體系(CARS-50)資助 [This work was supported by National Algae Industry Technology System (CARS-50)]. #共同第一作者,張文彬,E-mail: zbzwb1996@163.com;白 露,E-mail: bailubai@163.com
(編輯 馮小花)