• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Regional constrained control problem for a class of semilinear distributed systems

    2018-07-31 03:30:22ElHassanZERRIKNihaleELBOUKHARI
    Control Theory and Technology 2018年3期

    El Hassan ZERRIK,Nihale EL BOUKHARI

    MACS team,Faculty of Sciences,Moulay Ismail University,Meknes,Morocco

    Abstract The aim of this paper is to investigate a regional constrained optimal control problem for a class of semilinear distributed systems,which are linear in the control but nonlinear in the state.For a quadratic cost functional and a closed convex set of admissible controls,the existence of an optimal control is proven,and then this is characterized for three cases of constraints.A useful algorithm is developed,and the approach is illustrated through simulations for a heat equation.

    Keywords:Semilinear distributed systems,regional optimal control,constraints,heat equation

    1 Introduction and problem statement

    Many physical problems in fields such as engineering,economics,and life sciences may be modeled by distributed systems evolving on a spatial domain Ω.These are often linear with nonlinear perturbations,and thus take the form of semilinear distributed systems.Such systems are usually subject to constraints on the control,owing to the nature of the system or limited resources.For instance,if the system models the commercial activity of a firm,and the control u models the amount of merchandise bought,then the system might be subject to the constraint m(t)≤ u(t)≤ M(t),where the bounds m(t)and M(t)are often variable in time,depending on supply and demand,which vary following high and low seasons.In addition,if v(t)models the unitary price of that merchandise at time t,then the system might be subject to the constraintwhere M is the trade budget for the period[t1,t2].To describe another scenario,if the control u(t)models the electric current in a heating system,then the consumed power is proportional to u2(t),and hence the constraintcould represent a bound on the consumed energy over[t1,t2].

    Previous works dealing with semilinear optimal control problems primarily characterized the optimal control,which minimizes a cost functional,using the Hamilton-Jacobi equation or the generalized Pontrya-gin minimum principle.For instance,control problems with box constraints were investigated in[1]for a class of elliptic and parabolic semilinear equations,using the generalized maximum principle,while in[2],the Mayer problem of semilinear systems was studied using a value function satisfying the Hamilton-Jacobi equation.In[3],the existence of an optimal control was proven for semilinear systems with a compact semigroup,and for second order partial differential equations.Then,an infinite dimensional version of the maximum principle was established.In addition,[4]considered an optimal control problem governed by semilinear parabolic equations with distributed and boundary controls,using Pontryagin’s principle.Later,the authors of[5]proved the existence of an optimal control for a class of semilinear elliptic and parabolic equations,derived first-and second order optimality conditions,and showed that the optimal controls satisfy Pontryagin’s maximum principle.A control problem of semilinear systems was studied using the theory of set-valued mapping in[6].

    For a distributed parameter system evolving within a domain Ω,the concept of regional analysis involves approaching a desired state or optimizing the system performance only in a region ω ? Ω.In addition to generalizing the global approach,the regional one is relevant for many real-world applications in thermodynamics,fluid mechanics,and demography,where only a target zone needs to be controlled.This is because it is cheaper with respect to energy,costs,computations,and other such factors,to control the region ω than to control the whole domain Ω.The regional approach was first introduced for linear systems in[7].Then,the authors in[8]studied regional boundary controllability for linear hyperbolic systems,while[9]considered a linear parabolic system and characterized the regional optimal control using the Lagrangian approach.Subsequently,this approach was extended to bilinear systems.In[10],the authors considered a minimum energy regional control problem for bilinear systems,and characterized the optimal control by deriving a corresponding Riccati equation.A similar problem with bounded controls was investigated in[11].

    For semilinear systems,[12,13]studied regional controllability for a class of parabolic and hyperbolic semilinear systems,where the nonlinear perturbation does not depend on the control.

    This paper extends the regional approach to a wider class of semilinear systems,for which the control term is nonlinear.Optimality conditions are derived for a closed convex set of admissible controls,with an emphasis on three cases of constraints,for which the optimal control is characterized using geometric tools.

    More precisely,on a bounded domain Ω?Rnwith a regular boundary?Ω,we consider the following system:

    where A is the infinitesimal generator of a strongly continuous semigroup of linear operators(S(t))t≥0on the state space L2(Ω),endowed with its natural inner product〈·,·〉and the associated norm|·|.

    The control function is u∈Uad,where Uadis the set of admissible controls,which is assumed to be a nonempty closed and convex subset of L2(0,T).

    The inner product and associated norm of L2(0,T)are respectively denoted by 〈·,·〉and ‖·‖.

    B ∶L2(Ω)→ L2(Ω)is a nonlinear operator,such that the following hold:

    ?B is k-Lipschitz,i.e.,

    ?B is everywhere Fréchet-differentiable.For y∈L2(Ω),B′(y)denotes the Fréchet derivative of B at y.We assume that there exists a constantk≥0 such that the mapping y→B′(y)isk-Lipschitz,i.e.,

    In what follows,A*and[B′(y)]*denote the respective adjoint operators of A and B′(y).

    For a given u∈L2(0,T)and y0∈L2(Ω),we say that y is a mild solution(or solution in the sense of semigroups)to system(1)if y ∈ C([0,T];L2(Ω))and y is solution to the following integral equation:

    The existence and uniqueness of a mild solution to system(1)is proven in[14].Indeed,because B is k-Lipschitz,it follows that

    Hence,according to Theorem 2.5.in[14],equation(2)has a unique solution in C([0,T],L2(Ω)).

    Let ω?Ω be a region of positive Lebesgue measure,and let χω∶L2(Ω)→ L2(ω)be the restriction operator given by

    We consider the following quadratic cost functional:

    The regional optimal control problem consists of finding a control that steers the state close to ydwithin the subregion ω,with a reasonable amount of energy.In practice,this may be stated as a minimization of the cost functional(4).Thus,this study is concerned with solving the following problem:

    The remainder of this paper is organized as follows.In Section 2,the existence of an optimal control is proven,and necessary optimality conditions are formulated,which lead to the characterization of the optimal control for three cases of constraints.Next,a sufficient condition for the uniqueness of the optimal control is formulated,and a useful algorithm is developed.In Section 3,the theoretical results are illustrated through simulations for a heat equation.

    2 Optimal control problem

    We first prove the existence of an optimal control solving problem(5).

    Proposition 1There exists a solution u*∈ Uadto problem(5).

    To prove Proposition 1,we need the following lemma.

    Lemma 1[15,Page 250] Let Λ be a continuous linear operator,mapping a normed space X into a reflexive separable Banach space Y.A necessary and sufficient condition forΛto be compact is that the adjoint operator Λ*maps every sequence(zn)that is weakly convergent to zero in Y*to a sequence(Λ*zn)that converges to zero for the norm in X*.

    Proof of Proposition 1The set{J(u)|u∈Uad}is nonempty and nonnegative,and thus it has a nonnegative infimum.Let(un)n∈Nbe a minimizing sequence in Uad.Becauseit follows that(un)n∈Nis bounded.Then,there exists a subsequence,still denoted by(un)n∈N,that converges weakly to a limit u*.Because Uadis closed and convex,it is closed for the weak topology,which implies that u*∈ Uad.

    Let ynand y*be the unique solutions of system(1)associated to unand u*,respectively.

    Here,ynand y*can be written in the form(2),which gives

    so that

    Using Gronwall’s lemma,we obtain that

    There exist constants M ≥ 1 and ρ∈R such that‖S(t)‖≤ M eρt.Then,the above inequality yields

    Let us prove that Λtis compact for any t∈ [0,T].

    To this end,let(zm)be a sequence in L2(Ω)such that zm?0 weakly.Without loss of generality,we can assume that|zm|≤ 1,?m ∈ N.Then,

    Because zm?0 weakly,it follow that0 a.e.on[0,T].Furthermore,for every s∈[0,T]we have that

    Then,by applying the dominated convergence theorem we obtain

    Hence,by virtue of Lemma 1,the operator Λtis compact.

    It follows from the weak convergence(un? u*)? 0 that

    Therefore,by the inequality(6)we obtain

    Hence,the continuity of the operator χωyields that

    and by Fatou’s lemma we obtain

    Because norms are lower semi-continuous for the weak topology,it follows that the weak convergence of(un)nyields that

    Now,we give the necessary optimality conditions by characterizing the derivative of the cost functional(4).

    Proposition 2Let u*be an optimal control solving problem(5).Then,u*satisfies

    where J′(u*)is the Fréchet derivative of J at u*,which is given by

    Here,y is the solution of system(1)associated to u*,and p is the solution of the following adjoint equation:

    ProofAccording to[14],the mapping u■→yu,where yuis the mild solution of(1)associated to u,is Fréchet differentiable.Let Duy denote the derivative of u ■→ yuat u ∈ Uadand zh=Duy ·h,for a given h∈L2(0,T).Then,zhsatisfies the following integral equation:

    where A*generates the semigroup S*(t)=(S(t))*,?t ∈R+.Furthermore,because B is k-Lipschitz,it follows that‖(B′(y(t)))*‖≤ k,?t∈]0,T[.

    Then,for any u∈Uad,it follows using a similar proof to that of Theorem 2.5.in[14]that equation(9)has a unique mild solution in C([0,T],L2(Ω)),which is the solution of the associated integral equation,given by

    Let u,u+h∈Uad.Then,

    Using calculations similar to those given above,we obtain

    and it is easy to see that

    Then,J is Fréchet-differentiable over Uad,and its derivative at u is given by

    From the expression(11),we have that

    Applying Fubini’s theorem yields

    By equation(11),we have that

    Then,

    It is easy to check that

    and applying Fubini’s theorem leads to

    It follows that

    Therefore,the derivative of J can be written as

    By identifying J′(u)with its representative in L2(0,T),we obtain(8).

    Now,let u*be an optimal control,and w ∈Uad.The convexity of Uadimplies that

    Then,J(u*)≤J(u*+λ(w?u*)).Because J is Fréchet differentiable,we then obtain that

    Therefore,

    Hence,we obtain(7). □

    By the above optimality condition,the optimal control can be characterized for special cases of constraints,as shown by the following propositions.

    Proposition 3Let

    where m,M∈L2(0,T)satisfy m(t)<M(t)a.e.on[0,T].Then,an optimal control is given by

    Proof?If m(t)< u*(t)< M(t)over a set I?]0,T[of positive Lebesgue measure:

    For h ∈ L∞(0,T)that is sufficiently small and null outside I it holds that u*+h,u*?h ∈ Uad.

    It follows from applying the condition(7)to both u*+h and u*? h that〈J′(u*),h〉=0.

    Hence,from the density of L∞(I)in L2(I),J′(u*)=0 over I,implying that u*(t)=

    Because m(t)< u*(t)< M(t),the above equality is equivalent to(13)over I.

    ?If u*(t)=m(t)over a set I ?]0,T[of positive Lebesgue measure:

    Let h∈L∞(0,T)be null outside I such that h≥0 on I.

    If‖h‖L∞(0,T)is sufficiently small,then u*+h ∈ Uad.Hence, 〈J′(u*),h〉≥ 0,implying that J′(u*) ≥ 0 on I.

    Therefore,

    which is equivalent to(13)on I.

    ?The case that u*(t)=M(t)is similar to the above case. □

    In many real applications,such as heating systems or population dynamics,the constraints representing the available energy or maximum cost may not be possible to model by(12),and may instead need to be written as integral inequalities or bounds on norms.The following propositions provide characterizations of the optimal control for such constraints.

    Proposition 4Assume that

    where M>0.Then,the optimal control is given by

    ProofIf u*∈ int(Uad),then applying condition(7)to a neighborhood of u*within Uadimplies that J′(u*)=0,which yields(15)with ‖J′(u*)‖=0.

    If u*∈ ?(Uad),then the case J′(u*)=0 is similar to the above case.We assume that J′(u*)≠ 0.

    Then,the optimality condition(7)can be written as

    By the strict convexity of the space L2(0,T),we obtain

    Replacing J′(u*)by its expression leads to

    which yields(15). □

    Proposition 5Let v∈L2(0,T){0},m<M,and

    Then,the optimal control is given by

    where

    Proof?If m < 〈v,u*〉< M,then u*∈ int(Uad),and hence J′(u*)=0.Expression(8)implies that(17)with δ=0.

    ?If〈v,u*〉=M:Let w ∈ (R v)⊥(i.e.,the orthogonal space of R v).Then,u*?w,u*+w ∈ Uad,and hence the condition(7)yields that〈J′(u*),w〉=0.

    Therefore,J′(u*)∈ R v.

    which implies(17)with δ=1.

    ?Similarly to the previous case,if〈v,u*〉=m,then(16)holds with δ = ?1. □

    The next proposition provides a sufficient condition for the uniqueness of the optimal control,solving problem(5).

    Proposition 6We assume that Uadis bounded.

    There exists a constant η≥0,depending on the parameters of system(1),such that if

    holds,then the optimal control,solving problem(5),is unique.

    ProofLet u and v be two optimal controls.Then,by the condition(7),we have that

    which yields

    We know that

    Then,the above equality yields

    where

    Then,by the inequality(19),there exists a constant η> 0 that does not depend on the parameters α,β,and ε such that

    Remark 1The above proof also shows that if(18)holds,then there exists a unique control that satisfies the necessary optimality condition(7).Hence,(7)also becomes a sufficient condition of optimality.

    To search for a control that satisfies the optimality condition(7),we introduce the following algorithm,based on the steepest descent method.

    Algorithm

    Step 1Choose an initial control u0∈Uad,a threshold accuracy κ,a region ω,and a step length λ.Initialize with n=0.

    Step 2Compute ynsolving(1)and pnsolving(9)using the finite difference method.Compute J′(un)by(8).

    Step 3Compute un+1by

    where PUaddenotes the projection operator on the closed convex set Uadin L2(0,T).

    Step 4n=n+1,go to Step 2 and repeat until‖un+1?un‖≤ κ.

    The above algorithm converges if the step length λ is appropriately chosen.We refer to chapter XV of[15]for further details on the choice of λ.

    Remark 2Let w∈L2(0,T).If Uadis given by(12),then PUad(w)is written as

    If Uadis given by(14),then PUad(w)is written as

    If Uadis given by(16),then PUad(w)is written as

    where δ=max[m,min[M,〈v,w〉]].

    3 Simulations

    On a bounded domainΩwith a regular boundary?Ω,we consider the following heat equation with Neumann boundary conditions:

    where c > 0.Denote y(t)=z(·,t)and A=cΔ,with

    Then,equation(20)takes the form of system(1),and A generates a strongly continuous semigroup(S(t))t≥0.

    The operator B ∶L2(Ω)→ L2(Ω)is nonlinear,and k-Lipschitz and everywhere Fréchet-differentiable.

    The purpose of this application is to steer the state y as close as possible to yd=0 at time T,within a target region ω ? Ω.Then,we consider the optimal control problem(5)with the following cost functional:

    over the following set of admissible controls

    Two cases are considered below:a one-dimensional case,where Ω=]0,1[,and a two-dimensional case with Ω =]0,1[×]0,1[.

    3.1 One-dimensional case

    We first consider equation(20)on Ω=]0,1[.The semigroup(S(t))t≥0is written as

    where φ0=1 and φn(x)Furthermore,B ∶L2(Ω)→ L2(Ω)is 1-Lipschitz,and is given by

    where D?Ω is the actuator zone,and has a positive Lebesgue measure.

    For y ∈ L2(Ω),B′(y)is self-adjoint,and is given by

    Simulations are performed using the above algorithm with the following parameters:

    ?For ω =]0,0.4[:

    The evolution of the optimal control is illustrated in Fig.1,while the associated states at times t=0 and t=T=1 are presented in Fig.2.The final state is significantly close to yd=0 within the region ω,where the error is ‖χωy(T)‖L2(ω)=8.16 × 10?4.

    Fig.1 Optimal control for ω=]0,0.4[.

    Fig.2 State for ω=]0,0.4[.

    ?For ω = Ω:

    The optimal control and the associated states at times t=0 and t=T=1 are presented in Figs.3 and 4,respectively.The final state is close to yd=0,but the regional case exhibits a better performance.The error is‖χωy(T)‖L2(ω)=5.89 × 10?3.

    Fig.3 Optimal control for ω=]0,1[.

    Fig.4 State for ω=]0,1[.

    The following table shows the evolution of the error ‖χωy(T)‖L2(ω)and the cost J(u*)with respect to the region ω:

    ω]0,0.4[ ]0,0.6[ ]0,0.8[ ]0,1[‖χωy(T)‖× 10?3 0.81 2.18 4.78 5.89 J(u*)× 10?3 0.18 0.38 1.29 1.90

    3.2 Two-dimensional case

    Now,we consider equation(20)on Ω =]0,1[×]0,1[.The semigroup(S(t))t≥0is written as

    where φn,m(x)=en(x1)em(x2),such that

    where D?Ω is the actuator zone,and has positive Lebesgue measure.

    For y ∈ L2(Ω),B′(y)is self-adjoint,and is given by

    Simulations are performed using the above algorithm,with the following parameters:c=0.2,D=]0.6,1[×]0.6,1[,T=1,M=2,y0(x)=0.05+x1x2(1 ?x1)(1?x2).

    ?For ω =]0,0.4[×]0,0.4[:

    The evolution of the optimal control is illustrated in Fig.5,while the final state y(T)is depicted in Fig.6.The final state is close to yd=0 within the region ω,with an error equal to ‖χωy(T)‖L2(ω)=4.13 × 10?4.

    Fig.5 Optimal control for ω =]0,0.4[×]0,0.4[.

    Fig.6 State for ω =]0,0.4[×]0,0.4[.

    ?For ω = Ω:

    The optimal control and final state are illustrated in Figs.7 and 8,respectively.Similarly to the one dimensional case,the final state is close to yd=0,where the error is ‖χωy(T)‖L2(ω)=4.10 × 10?3,but the regional case provides a better precision.

    The table below shows the evolution of the error‖χωy(T)‖L2(ω)and the cost J(u*)with respect to the region ω:

    ‖χωy(T)‖× 10?3 0.41 0.99 2.10 4.10 J(u*)× 10?4 0.54 0.80 1.25 2.64

    As shown by the above simulations,the regional approach provides an improvement in the performance of the system in the target region ω,even when the actuator zone D and ω are disjoint.The smaller the area of the region ω is,the smaller the error‖χωy(T)? yd‖L2(ω)and the cost J(u*)are,which means that it is cheaper to steer the system to the desired state on a region than on the whole domain.This is crucial to many real-world applications where only a region within the spatial domain has to be controlled,particularly by a distant actuator.

    Fig.7 Optimal control for ω =]0,1[×]0,1[.

    Fig.8 State for ω =]0,1[×]0,1[.

    4 Conclusions

    In this paper,we studied a regional quadratic control problem for a class of semilinear distributed systems.We formulated optimality conditions in the generalcase.Next,we derived characterizations of the optimal control for special cases of constraints.Simulations illustrated the obtained results,and demonstrated the relevance of the regional approach.Many issues remain unresolved,such as regional optimal control problems with bound-ary subregions.These issues will be the focus of a future research paper.

    国产精品久久久久久av不卡| 男男h啪啪无遮挡| 欧美激情极品国产一区二区三区 | 久久精品久久久久久久性| 久久精品人妻少妇| 内地一区二区视频在线| 欧美国产精品一级二级三级 | 美女内射精品一级片tv| 日本av免费视频播放| 老女人水多毛片| 国国产精品蜜臀av免费| 成人免费观看视频高清| 国产老妇伦熟女老妇高清| 日本午夜av视频| 成人一区二区视频在线观看| 日韩成人av中文字幕在线观看| 三级国产精品欧美在线观看| 香蕉精品网在线| 国产亚洲欧美精品永久| 国产一区二区三区综合在线观看 | 国产成人午夜福利电影在线观看| 亚洲av电影在线观看一区二区三区| 精品酒店卫生间| 亚洲精品成人av观看孕妇| 一本色道久久久久久精品综合| 久久久欧美国产精品| 一本一本综合久久| 久久久久精品久久久久真实原创| 人人妻人人看人人澡| 我要看黄色一级片免费的| 哪个播放器可以免费观看大片| 国产精品不卡视频一区二区| 久久午夜福利片| 中文欧美无线码| 午夜视频国产福利| 午夜福利影视在线免费观看| 国内揄拍国产精品人妻在线| 中文字幕久久专区| 六月丁香七月| 国产午夜精品久久久久久一区二区三区| 国产精品麻豆人妻色哟哟久久| 亚洲色图综合在线观看| 亚洲一区二区三区欧美精品| 观看免费一级毛片| 青春草亚洲视频在线观看| 国产精品久久久久久久电影| 香蕉精品网在线| 中国国产av一级| 色综合色国产| 狂野欧美激情性bbbbbb| 美女国产视频在线观看| 亚洲欧美成人精品一区二区| 精品久久久精品久久久| 亚洲精品日韩av片在线观看| 男人添女人高潮全过程视频| 国产精品一区www在线观看| 久久久久久伊人网av| 亚洲中文av在线| 99热这里只有是精品在线观看| 高清av免费在线| 午夜福利在线观看免费完整高清在| 欧美极品一区二区三区四区| 在线观看美女被高潮喷水网站| 亚洲av中文av极速乱| 联通29元200g的流量卡| 欧美xxxx黑人xx丫x性爽| 五月开心婷婷网| 一二三四中文在线观看免费高清| 一级黄片播放器| 国产男女内射视频| 欧美区成人在线视频| 91精品国产九色| 成人漫画全彩无遮挡| 亚洲av国产av综合av卡| 国产免费又黄又爽又色| 99久国产av精品国产电影| 亚洲av.av天堂| 成人亚洲精品一区在线观看 | 欧美日韩视频高清一区二区三区二| 久久久久久九九精品二区国产| 男女无遮挡免费网站观看| 一级毛片我不卡| 91aial.com中文字幕在线观看| 日韩电影二区| 亚洲欧美清纯卡通| 日日撸夜夜添| 美女脱内裤让男人舔精品视频| 中文字幕免费在线视频6| 国产综合精华液| 国产精品一区二区在线观看99| 中文字幕精品免费在线观看视频 | 久久国产乱子免费精品| kizo精华| 亚洲精品成人av观看孕妇| 一区二区av电影网| 在线精品无人区一区二区三 | 18禁动态无遮挡网站| 国产精品精品国产色婷婷| 91aial.com中文字幕在线观看| 免费看光身美女| 九九爱精品视频在线观看| 午夜老司机福利剧场| 最新中文字幕久久久久| 成人高潮视频无遮挡免费网站| 国产无遮挡羞羞视频在线观看| 久久青草综合色| av国产免费在线观看| 九草在线视频观看| 极品少妇高潮喷水抽搐| 在线观看免费高清a一片| 99久久精品热视频| 国产av码专区亚洲av| 亚洲av成人精品一区久久| 99久国产av精品国产电影| 久久人人爽人人爽人人片va| 午夜福利高清视频| kizo精华| 久热久热在线精品观看| 最近中文字幕高清免费大全6| 少妇被粗大猛烈的视频| 亚洲在久久综合| 色婷婷久久久亚洲欧美| 日韩av免费高清视频| 午夜福利高清视频| 久久毛片免费看一区二区三区| 精品久久久精品久久久| 五月玫瑰六月丁香| 亚洲欧美日韩东京热| 中文字幕制服av| 亚洲国产最新在线播放| 99久久中文字幕三级久久日本| 成人免费观看视频高清| 亚洲精品乱码久久久v下载方式| 男女国产视频网站| 日韩一本色道免费dvd| 伦精品一区二区三区| 99热6这里只有精品| 18禁在线播放成人免费| 亚洲精品日韩av片在线观看| 欧美激情国产日韩精品一区| 免费看av在线观看网站| 色视频在线一区二区三区| av免费观看日本| av国产久精品久网站免费入址| 最近最新中文字幕免费大全7| 国产在线免费精品| 尤物成人国产欧美一区二区三区| 欧美xxxx黑人xx丫x性爽| xxx大片免费视频| 亚洲激情五月婷婷啪啪| 亚洲av成人精品一区久久| 亚洲欧美日韩另类电影网站 | 国产精品伦人一区二区| 天堂俺去俺来也www色官网| 少妇 在线观看| 麻豆成人午夜福利视频| 免费观看的影片在线观看| 好男人视频免费观看在线| 黄色怎么调成土黄色| 激情五月婷婷亚洲| 少妇人妻久久综合中文| 久久精品国产亚洲av涩爱| 性色av一级| 国产精品久久久久久av不卡| 国内少妇人妻偷人精品xxx网站| 熟女av电影| 国产91av在线免费观看| 99久国产av精品国产电影| 久久久久视频综合| 久久精品人妻少妇| 亚洲国产精品999| 熟妇人妻不卡中文字幕| 日韩亚洲欧美综合| a级毛片免费高清观看在线播放| 国产精品一区二区性色av| kizo精华| 晚上一个人看的免费电影| 性色avwww在线观看| 97在线视频观看| 观看av在线不卡| av在线蜜桃| 十八禁网站网址无遮挡 | 久久久a久久爽久久v久久| 久久久久精品性色| 亚洲色图综合在线观看| 国产国拍精品亚洲av在线观看| 精品人妻视频免费看| 国产在线免费精品| 蜜桃在线观看..| 尤物成人国产欧美一区二区三区| 久久人人爽人人片av| 在线观看免费高清a一片| 久久久精品94久久精品| 精品久久久久久电影网| 99精国产麻豆久久婷婷| 久久毛片免费看一区二区三区| 亚洲美女搞黄在线观看| 国产黄色视频一区二区在线观看| 日日摸夜夜添夜夜爱| 又粗又硬又长又爽又黄的视频| 免费观看a级毛片全部| 免费观看在线日韩| 晚上一个人看的免费电影| 久久影院123| 久久久午夜欧美精品| 99视频精品全部免费 在线| 在线播放无遮挡| 国产亚洲av片在线观看秒播厂| 91精品伊人久久大香线蕉| 日本猛色少妇xxxxx猛交久久| 搡女人真爽免费视频火全软件| 免费看不卡的av| 日日啪夜夜爽| 女性被躁到高潮视频| 久久久久久久精品精品| 大片电影免费在线观看免费| 91aial.com中文字幕在线观看| 国产熟女欧美一区二区| 日日摸夜夜添夜夜添av毛片| 精品一区在线观看国产| 国产乱来视频区| 中文在线观看免费www的网站| 97精品久久久久久久久久精品| 97精品久久久久久久久久精品| 人妻系列 视频| 超碰97精品在线观看| 久久久久久久大尺度免费视频| av线在线观看网站| 国产高清三级在线| av专区在线播放| 国产又色又爽无遮挡免| 久久亚洲国产成人精品v| 亚洲最大成人中文| 欧美最新免费一区二区三区| 国产av码专区亚洲av| 午夜福利网站1000一区二区三区| 91久久精品电影网| 亚洲美女黄色视频免费看| 久久国产乱子免费精品| 久久99热这里只有精品18| 国产精品人妻久久久影院| 有码 亚洲区| 成人18禁高潮啪啪吃奶动态图 | 春色校园在线视频观看| 久久久久网色| 日韩 亚洲 欧美在线| 秋霞在线观看毛片| 美女视频免费永久观看网站| 日日啪夜夜爽| 日韩视频在线欧美| 97超碰精品成人国产| 中国美白少妇内射xxxbb| 内射极品少妇av片p| 久久久久久久久久久免费av| 永久网站在线| 久久久午夜欧美精品| 美女主播在线视频| 国产精品一及| 各种免费的搞黄视频| 国产男人的电影天堂91| 丰满少妇做爰视频| 伊人久久国产一区二区| 观看免费一级毛片| 日韩一区二区视频免费看| 国产精品不卡视频一区二区| 亚洲最大成人中文| 九九在线视频观看精品| 成人毛片60女人毛片免费| 婷婷色麻豆天堂久久| 日本av免费视频播放| www.色视频.com| 国产亚洲91精品色在线| 97在线视频观看| av国产精品久久久久影院| 国模一区二区三区四区视频| 亚洲国产色片| 99热这里只有是精品在线观看| 亚洲av不卡在线观看| av在线app专区| 在线观看免费视频网站a站| 国产精品蜜桃在线观看| 一级av片app| 国产大屁股一区二区在线视频| 人妻 亚洲 视频| 一个人看视频在线观看www免费| 国产精品.久久久| 人妻夜夜爽99麻豆av| 汤姆久久久久久久影院中文字幕| 99热国产这里只有精品6| 免费久久久久久久精品成人欧美视频 | 日韩强制内射视频| av国产精品久久久久影院| 我要看黄色一级片免费的| 少妇熟女欧美另类| 国产高清三级在线| 熟女av电影| 精品国产露脸久久av麻豆| 亚洲一区二区三区欧美精品| 美女主播在线视频| 国产亚洲91精品色在线| 黄色怎么调成土黄色| 美女cb高潮喷水在线观看| 一级黄片播放器| 久久99蜜桃精品久久| 亚洲av.av天堂| 成人18禁高潮啪啪吃奶动态图 | 精品人妻熟女av久视频| 亚洲人成网站在线播| 欧美97在线视频| 日本黄色日本黄色录像| 久久人妻熟女aⅴ| 亚洲精品,欧美精品| 97超视频在线观看视频| 久久久久久久精品精品| 在现免费观看毛片| 国产精品久久久久久精品古装| av在线老鸭窝| 国产毛片在线视频| 久久人妻熟女aⅴ| 精华霜和精华液先用哪个| 国产亚洲欧美精品永久| 国产黄片视频在线免费观看| 人妻少妇偷人精品九色| 丝瓜视频免费看黄片| 中文资源天堂在线| 久久女婷五月综合色啪小说| 婷婷色麻豆天堂久久| 久久久成人免费电影| 91久久精品国产一区二区三区| 久久韩国三级中文字幕| 久久精品久久久久久久性| 中文在线观看免费www的网站| 91精品一卡2卡3卡4卡| www.av在线官网国产| 亚洲精品自拍成人| www.色视频.com| 美女xxoo啪啪120秒动态图| 国产片特级美女逼逼视频| 欧美成人午夜免费资源| 高清视频免费观看一区二区| 亚洲av日韩在线播放| 九九久久精品国产亚洲av麻豆| 午夜免费鲁丝| 乱系列少妇在线播放| 国产 一区 欧美 日韩| 国产精品.久久久| 街头女战士在线观看网站| 又粗又硬又长又爽又黄的视频| 18禁在线无遮挡免费观看视频| 建设人人有责人人尽责人人享有的 | 免费在线观看成人毛片| 亚洲三级黄色毛片| 大陆偷拍与自拍| 少妇丰满av| 综合色丁香网| 久久精品国产亚洲网站| 亚洲丝袜综合中文字幕| 成人亚洲欧美一区二区av| 精品国产乱码久久久久久小说| 99九九线精品视频在线观看视频| 在线 av 中文字幕| 精品人妻一区二区三区麻豆| 久久av网站| 我的老师免费观看完整版| 亚洲欧洲国产日韩| 欧美性感艳星| 国产中年淑女户外野战色| 欧美一级a爱片免费观看看| 欧美日韩综合久久久久久| 亚洲美女黄色视频免费看| 一级二级三级毛片免费看| 18禁裸乳无遮挡免费网站照片| 国产欧美日韩一区二区三区在线 | 久久精品国产自在天天线| 亚洲精品国产色婷婷电影| 日韩免费高清中文字幕av| 女的被弄到高潮叫床怎么办| 中文资源天堂在线| 国产免费一级a男人的天堂| 国内揄拍国产精品人妻在线| 国产精品精品国产色婷婷| 国产 精品1| 又黄又爽又刺激的免费视频.| 国产精品.久久久| 日日啪夜夜撸| 久久久国产一区二区| 国产精品久久久久成人av| 直男gayav资源| 99国产精品免费福利视频| 亚洲精品乱码久久久久久按摩| 777米奇影视久久| 亚洲,一卡二卡三卡| 午夜激情福利司机影院| videos熟女内射| 国产欧美亚洲国产| 亚洲天堂av无毛| 麻豆国产97在线/欧美| 国产免费视频播放在线视频| 蜜桃亚洲精品一区二区三区| 亚洲性久久影院| 亚洲精品视频女| 欧美另类一区| 能在线免费看毛片的网站| 亚洲图色成人| 一个人看的www免费观看视频| 欧美bdsm另类| 一级二级三级毛片免费看| 最近2019中文字幕mv第一页| 联通29元200g的流量卡| 亚洲av日韩在线播放| 久久久久视频综合| 免费观看的影片在线观看| 欧美成人午夜免费资源| 国产精品一区二区在线观看99| 婷婷色综合大香蕉| 国产高清有码在线观看视频| 免费看日本二区| 亚洲欧美日韩东京热| 少妇人妻一区二区三区视频| 热99国产精品久久久久久7| 99热这里只有是精品50| 久久人妻熟女aⅴ| 99热网站在线观看| 国产亚洲精品久久久com| 黄色欧美视频在线观看| 中文天堂在线官网| 久久久精品94久久精品| 国产精品国产三级国产专区5o| 国产乱人偷精品视频| 成人亚洲欧美一区二区av| 日韩大片免费观看网站| 亚洲精品国产av成人精品| 久久久a久久爽久久v久久| 国产免费一级a男人的天堂| 亚洲欧洲日产国产| 天堂俺去俺来也www色官网| 亚洲久久久国产精品| 日本色播在线视频| 搡老乐熟女国产| 人妻系列 视频| 久久久久国产网址| 搡女人真爽免费视频火全软件| 精品久久久精品久久久| 精品一区二区三卡| 日日啪夜夜撸| 久久97久久精品| 亚洲精品一区蜜桃| 亚洲欧美一区二区三区黑人 | 国产一区有黄有色的免费视频| 亚洲成人av在线免费| 欧美精品国产亚洲| 色视频www国产| 看十八女毛片水多多多| 欧美精品一区二区免费开放| 日日撸夜夜添| 国产精品一区www在线观看| 日日摸夜夜添夜夜添av毛片| 精品国产乱码久久久久久小说| 午夜福利影视在线免费观看| 夜夜爽夜夜爽视频| 久久久久久九九精品二区国产| 久久人人爽av亚洲精品天堂 | 亚洲精品自拍成人| 久久青草综合色| 丝袜喷水一区| 亚洲一区二区三区欧美精品| 国产黄片视频在线免费观看| 精品亚洲成a人片在线观看 | 丰满少妇做爰视频| 久久这里有精品视频免费| 深夜a级毛片| 99久国产av精品国产电影| 人人妻人人看人人澡| 亚洲欧美精品专区久久| 久久6这里有精品| 国产大屁股一区二区在线视频| 亚洲欧美一区二区三区黑人 | 欧美高清性xxxxhd video| 欧美区成人在线视频| 777米奇影视久久| 狂野欧美白嫩少妇大欣赏| 日韩国内少妇激情av| 亚洲av男天堂| 欧美精品亚洲一区二区| 欧美变态另类bdsm刘玥| 亚洲精品,欧美精品| av国产精品久久久久影院| 新久久久久国产一级毛片| 1000部很黄的大片| 精品久久国产蜜桃| 91精品国产九色| av天堂中文字幕网| 激情五月婷婷亚洲| 纯流量卡能插随身wifi吗| av.在线天堂| 99九九线精品视频在线观看视频| 在线免费观看不下载黄p国产| 国产欧美亚洲国产| 久久久国产一区二区| 婷婷色av中文字幕| 欧美日韩一区二区视频在线观看视频在线| 自拍欧美九色日韩亚洲蝌蚪91 | 偷拍熟女少妇极品色| videos熟女内射| freevideosex欧美| 成人无遮挡网站| 秋霞伦理黄片| 在线观看一区二区三区| 久久久色成人| 免费看光身美女| 色吧在线观看| 国产成人aa在线观看| 大香蕉久久网| 国产精品免费大片| 嘟嘟电影网在线观看| 在线看a的网站| 国产综合精华液| 老熟女久久久| 亚洲精品视频女| 91精品国产国语对白视频| 亚洲av中文字字幕乱码综合| 男女下面进入的视频免费午夜| 国产淫片久久久久久久久| 国产在线视频一区二区| 中文精品一卡2卡3卡4更新| 嘟嘟电影网在线观看| 国产免费福利视频在线观看| 人人妻人人添人人爽欧美一区卜 | 少妇人妻精品综合一区二区| 黑丝袜美女国产一区| 人人妻人人添人人爽欧美一区卜 | 人体艺术视频欧美日本| 最近中文字幕高清免费大全6| 成人午夜精彩视频在线观看| 日韩大片免费观看网站| 欧美极品一区二区三区四区| 这个男人来自地球电影免费观看 | 国产 精品1| 欧美日韩一区二区视频在线观看视频在线| 91在线精品国自产拍蜜月| 赤兔流量卡办理| 国产亚洲91精品色在线| 精品人妻一区二区三区麻豆| 最黄视频免费看| 久久精品久久久久久久性| 22中文网久久字幕| 我要看黄色一级片免费的| h日本视频在线播放| 午夜免费鲁丝| 亚洲欧美成人精品一区二区| 国产国拍精品亚洲av在线观看| 国产大屁股一区二区在线视频| 看非洲黑人一级黄片| 久久精品久久久久久久性| 亚洲精品乱码久久久久久按摩| 久久久色成人| 你懂的网址亚洲精品在线观看| 久久6这里有精品| 国产伦在线观看视频一区| 亚洲精品国产成人久久av| 亚洲三级黄色毛片| 18禁裸乳无遮挡动漫免费视频| 丝瓜视频免费看黄片| 免费观看a级毛片全部| 久久精品久久久久久久性| 成人毛片60女人毛片免费| 国产综合精华液| 日日啪夜夜爽| 在线看a的网站| 久久韩国三级中文字幕| 内射极品少妇av片p| 亚洲伊人久久精品综合| a 毛片基地| 日本黄大片高清| 天美传媒精品一区二区| a级一级毛片免费在线观看| 日韩中文字幕视频在线看片 | 国产免费又黄又爽又色| 日日撸夜夜添| 建设人人有责人人尽责人人享有的 | 国产日韩欧美亚洲二区| 日韩一本色道免费dvd| 亚洲四区av| 国产一区二区三区综合在线观看 | 久久久久久九九精品二区国产| 久久综合国产亚洲精品| 免费看不卡的av| 欧美日韩精品成人综合77777| 插阴视频在线观看视频| 波野结衣二区三区在线| 国国产精品蜜臀av免费| 精品久久久噜噜| 黄片wwwwww| 久久久久久久大尺度免费视频| 纵有疾风起免费观看全集完整版| 国产亚洲精品久久久com| 色5月婷婷丁香| 亚洲自偷自拍三级| 男女国产视频网站| av线在线观看网站| 亚洲一区二区三区欧美精品| 国产亚洲午夜精品一区二区久久| 国产高清三级在线| 在线观看免费日韩欧美大片 | 精品久久久精品久久久| 久久鲁丝午夜福利片| 五月玫瑰六月丁香| 免费看日本二区| 国产精品一区二区三区四区免费观看| 久久人人爽av亚洲精品天堂 | 国产黄片美女视频| 亚洲内射少妇av| 久久久久久久亚洲中文字幕| 亚洲av国产av综合av卡| 一级毛片我不卡|