李哲 劉子倩 王胤 曾煥玉 李培峰
摘要:
為了尋找氧化應(yīng)激狀態(tài)下與心臟疾病有關(guān)的lncRNA,采用基因芯片法對(duì)正常心肌細(xì)胞和H2O2誘導(dǎo)的心肌細(xì)胞進(jìn)行l(wèi)ncRNA和mRNA表達(dá)圖譜分析,通過(guò)基因本體論和通路分析探索差異表達(dá)基因的功能,構(gòu)建lncRNA和mRNA共表達(dá)網(wǎng)絡(luò),從差異表達(dá)的lncRNA中選取10組上調(diào)和10組下調(diào)差異顯著的lncRNA進(jìn)行RT-qPCR驗(yàn)證。研究結(jié)果表明,在正常心肌細(xì)胞和氧化應(yīng)激下的心肌細(xì)胞中,lncRNA和mRNA的表達(dá)均有差異,在差異上調(diào)顯著的10組lncRNA中,RT-qPCR檢測(cè)結(jié)果與芯片結(jié)果一致,這表示它們可能是心臟疾病的潛在治療靶點(diǎn)。
關(guān)鍵詞:
芯片分析;lncRNA;基因本體論分析;通路分析;共表達(dá)網(wǎng)絡(luò);RT-qPCR
中圖分類號(hào): R735.7
文獻(xiàn)標(biāo)志碼:A
收稿日期:2021-04-25
基金項(xiàng)目:
國(guó)家自然科學(xué)基金海外青年基金(批準(zhǔn)號(hào):82050410450、81850410551)資助;山東省自然科學(xué)基金(批準(zhǔn)號(hào):ZR2019BH014)資助。
通信作者:
曾煥玉(AUNG Lynn Htet Htet),女,博士,主要研究方向?yàn)槔酶咄繙y(cè)序,生物信息學(xué),細(xì)胞生物學(xué)方法研究衰老及心腦血管疾病的機(jī)理機(jī)制;李培峰,男,博士,教授,主要研究方向?yàn)樯窠?jīng)元衰老,自由基生物醫(yī)學(xué)研究,細(xì)胞凋亡與心血管疾病的研究,心血管疾病的分子機(jī)制研究等。E-mail:peifli@qdu.edu.cn
氧化應(yīng)激誘導(dǎo)的心肌細(xì)胞凋亡在冠狀動(dòng)脈疾病[1]、心肌病[2]、心肌炎[3]、心力衰竭[4]和高血壓[5]等多種類型心臟病的病理過(guò)程中起著重要作用[6],心肌細(xì)胞的凋亡通常始于心肌中活性氧的產(chǎn)生[7],而活性氧的產(chǎn)生會(huì)造成細(xì)胞積累大量的自由基[8],自由基不僅損傷組織和細(xì)胞[9],還能誘發(fā)心臟病[10]。目前,保護(hù)H9c2等心肌細(xì)胞免受氧化應(yīng)激誘導(dǎo)凋亡的分子機(jī)制尚不清楚[11-12],因此尋找與氧化應(yīng)激有關(guān)的潛在的治療靶點(diǎn)迫在眉睫。長(zhǎng)鏈非編碼RNA(Long noncoding RNA,lncRNA)是指長(zhǎng)度大于200 nt[13],序列保守且表達(dá)水平低的RNA[14],lncRNA在表觀遺傳[15]、轉(zhuǎn)錄[16]和轉(zhuǎn)錄后[17]水平上調(diào)節(jié)多種生物學(xué)功能,或直接調(diào)節(jié)蛋白活性[18],近年來(lái),許多研究發(fā)現(xiàn)lncRNA是心臟類疾病的治療靶點(diǎn)[19],在心臟再生[20]和修復(fù)[21]中起著至關(guān)重要的作用。在H2O2介導(dǎo)的氧化應(yīng)激反應(yīng)中,02 mmol H2O2僅誘導(dǎo)心肌細(xì)胞凋亡[22-23]。本文采用生物信息學(xué)方法篩選出差異表達(dá)的lncRNA和mRNA,對(duì)差異表達(dá)的基因進(jìn)行富集分析,通過(guò)RT-qPCR實(shí)驗(yàn)對(duì)預(yù)測(cè)結(jié)果進(jìn)行驗(yàn)證,為尋找心臟疾病的潛在治療靶點(diǎn)、探究心臟疾病的發(fā)生發(fā)展提供理論基礎(chǔ)。
1 材料與方法
1.1 樣本
實(shí)驗(yàn)所用H9c2細(xì)胞來(lái)源于大鼠心肌細(xì)胞系,由中國(guó)科學(xué)院(上海)細(xì)胞庫(kù)提供。從每組樣本中提取總的RNA,通過(guò)瓊脂糖凝膠電泳評(píng)估RNA完整性,采用Nanodrop ND-1000檢測(cè)RNA的質(zhì)量和數(shù)量。
1.2 微陣列分析
設(shè)計(jì)大鼠lncRNA陣列來(lái)識(shí)別lncRNA和蛋白編碼基因。從Rat lncRNA Orthologo數(shù)據(jù)庫(kù)、NCBI Refseq數(shù)據(jù)庫(kù)和UCSC ALL-mRNA記錄數(shù)據(jù)庫(kù)中篩選出約9 000個(gè)lncRNA。
1.3 RNA標(biāo)記和陣列雜交
按照安捷倫單色微陣列基因表達(dá)方法進(jìn)行樣品標(biāo)記和陣列雜交。mRNA從總RNA中純化,去除rRNA。對(duì)每個(gè)樣本進(jìn)行擴(kuò)增,采用隨機(jī)引物法轉(zhuǎn)錄成熒光cRNA。標(biāo)記的cRNA用RNeasy Mini Kit純化,用NanoDrop ND-1000測(cè)定標(biāo)記cRNA的濃度和比活性。加入阻斷劑和破碎緩沖液,將標(biāo)記的cRNA片段化,60 ℃加熱30 min,最后加入雜交緩沖液稀釋標(biāo)記cRNA。將雜交溶液組裝到lncRNA芯片載玻片上,載玻片在雜交儀中65°C孵育17 h后用DNA微陣列掃描儀對(duì)雜交陣列進(jìn)行清洗、固定和掃描。
1.4 數(shù)據(jù)分析
應(yīng)用Agilent Feature Extraction軟件(版本11011)分析采集的微陣列圖像。使用genspring GX v1151軟件包分析lncRNA和mRNA。篩選標(biāo)準(zhǔn):P<005,logFC>2。
1.5 LncRNA的篩選和驗(yàn)證
從下調(diào)和上調(diào)差異表達(dá)的lncRNA中分別選出差異顯著的10組lncRNA,進(jìn)行RT-qPCR驗(yàn)證,分析其表達(dá)變化。
2 結(jié)果與討論
2.1 兩組樣本中l(wèi)ncRNA和mRNA表達(dá)的變化
用基因芯片法對(duì)正常H9c2和H2O2誘導(dǎo)的H9c2兩組樣本中l(wèi)ncRNA和mRNA的表達(dá)圖譜進(jìn)行分析,如圖1所示。圖中“綠色”表示低相對(duì)表達(dá),“紅色”表示高相對(duì)表達(dá)。箱式圖表示數(shù)據(jù)經(jīng)歸一化處理后,所有l(wèi)ncRNA和mRNA的數(shù)據(jù)分布基本相同。散點(diǎn)圖中X軸和Y軸的值是兩組樣本數(shù)據(jù)歸一化后的平均值,綠色的線代表變化倍數(shù)(默認(rèn)的變化倍數(shù)值是20)。結(jié)果顯示,正常H9c2細(xì)胞和H2O2處理的H9c2細(xì)胞中l(wèi)ncRNA的表達(dá)存在顯著差異,共有1 097個(gè)顯著失調(diào)的lncRNA,包括662個(gè)上調(diào)和435個(gè)下調(diào)的lncRNA。
2.2 差異表達(dá)基因的GO分析
GO分析包括生物過(guò)程分析、細(xì)胞成分分析和分子功能分析三個(gè)領(lǐng)域,如圖2所示。在生物過(guò)程分析中,單生物過(guò)程、單生物細(xì)胞過(guò)程以及生物調(diào)控是與下調(diào)mRNA相關(guān)的三個(gè)最重要的過(guò)程;而單個(gè)生物體的過(guò)程、自然調(diào)節(jié)和對(duì)刺激的反應(yīng)是與上調(diào)mRNA相關(guān)的三個(gè)最重要的過(guò)程。在細(xì)胞成分分析中,細(xì)胞外周、質(zhì)膜以及細(xì)胞外區(qū)是與下調(diào)mRNA相關(guān)的三個(gè)最重要的過(guò)程;而膜部分、膜和細(xì)胞外周的內(nèi)在組成部分與上調(diào)mRNA相關(guān)的三個(gè)最重要的過(guò)程。在分子功能分析中,結(jié)合,蛋白質(zhì)結(jié)合以及離子結(jié)合是與下調(diào)mRNA相關(guān)的三個(gè)最重要的過(guò)程;而結(jié)合、蛋白質(zhì)結(jié)合和轉(zhuǎn)運(yùn)蛋白活性是與上調(diào)mRNA相關(guān)的三個(gè)最重要的過(guò)程。
2.3 差異表達(dá)基因的通路分析
差異表達(dá)上調(diào)和下調(diào)的lncRNA的富集分析和通路分析如圖3。富集分析顯示,差異表達(dá)的lncRNA主要與細(xì)胞受體有關(guān)。通路分析鑒定了27條和51條由上調(diào)和下調(diào)的差異表達(dá)基因靶向的基因通路。
2.4 共表達(dá)網(wǎng)絡(luò)的構(gòu)建
選取數(shù)個(gè)歸一化高表達(dá)、高倍數(shù)變化的mRNA,將其疊加在lncRNA-mRNA相關(guān)網(wǎng)絡(luò)上,以確定它們與lncRNA的關(guān)聯(lián)。差異顯著的基因被用于構(gòu)建lncRNA-mRNA調(diào)控網(wǎng)絡(luò),如圖4所示。在網(wǎng)絡(luò)中,紅色節(jié)點(diǎn)代表顯著上調(diào)的基因,綠色節(jié)點(diǎn)代表顯著下調(diào)的基因,藍(lán)色節(jié)點(diǎn)表示lncRNA的編碼基因。
2.5 差異表達(dá)lncRNA的篩選和驗(yàn)證
從下調(diào)和上調(diào)的差異lncRNA中分別選出10組差異顯著的lncRNA,如表1、表2所示。用RT-qPCR對(duì)lncRNA的表達(dá)進(jìn)行驗(yàn)證,如圖5所示。RT-qPCR結(jié)果顯示,在10組下調(diào)顯著的lncRNA中有2組與芯片結(jié)果一致,其余的無(wú)意義。在上調(diào)顯著的10組lncRNA中,RT-qPCR結(jié)果與芯片結(jié)果基本一致,因此可能是氧化應(yīng)激的潛在治療靶點(diǎn)。*P<005,** P <001,*** P <0001。
2.6 討論
心臟疾病發(fā)病過(guò)程漫長(zhǎng),很難治愈,對(duì)人類健康造成了嚴(yán)重的威脅。隨著生活水平的提高,心臟疾病的患病率和死亡率逐年增加,心臟疾病會(huì)造成心肌細(xì)胞的凋亡[24-25],而氧化應(yīng)激在心肌細(xì)胞凋亡過(guò)程中扮演著重要的角色[26-27],因此研究氧化應(yīng)激狀態(tài)下心肌細(xì)胞凋亡的靶點(diǎn)尤為重要。
本研究使用基因芯片法,對(duì)兩組樣本的lncRNA和mRNA進(jìn)行分析,篩選出1 097個(gè)差異表達(dá)的lncRNA,包括662個(gè)差異上調(diào)的lncRNA和435個(gè)差異下調(diào)的lncRNA?;虮倔w論分析顯示,這些差異表達(dá)的lncRNA可能與蛋白質(zhì)結(jié)合,從而參與細(xì)胞的代謝;RT-qPCR結(jié)果顯示,在下調(diào)顯著的10個(gè)lncRNA中,只有Y08882_P1和BC085355_P1在兩組樣本中的表達(dá)與芯片結(jié)果一致,而上調(diào)顯著的10個(gè)lncRNA在兩組樣本中的表達(dá)均與芯片結(jié)果一致。
在動(dòng)脈粥樣硬化中l(wèi)ncRNA有表達(dá)調(diào)控的作用[28-29],通過(guò)與下游靶點(diǎn)的結(jié)合,從而調(diào)控與動(dòng)脈粥樣硬化有關(guān)的基因的表達(dá)[30]。在分子功能分析中,結(jié)合、蛋白質(zhì)結(jié)合以及轉(zhuǎn)運(yùn)蛋白活性是與上調(diào)基因相關(guān)的三個(gè)最重要的過(guò)程,這提示10組差異上調(diào)的lncRNA可能通過(guò)與下游蛋白結(jié)合繼而參與調(diào)控與心臟疾病有關(guān)基因的表達(dá)。
3 結(jié)論
本研究通過(guò)生物信息學(xué)和RT-qPCR等方法對(duì)樣本進(jìn)行分析,最終篩選出10個(gè)可能與心臟疾病有關(guān)的lncRNA,可能是心臟疾病潛在的治療靶點(diǎn),這為研究心臟疾病的機(jī)制提供了可靠的理論依據(jù)。本文還未詳細(xì)研究與10組上調(diào)lncRNA有關(guān)的下游靶基因,今后將重點(diǎn)研究其下游通路。
參考文獻(xiàn)
[1]MALAKAR A K, CHOUDHURY D, HALDER B, et al. A review on coronary artery disease, its risk factors, and therapeutics[J]. Journal of Cellular Physiology, 2019, 234(10): 16812-16823.
[2]SHI X X, LI W J, LIU H H, et al. The ROS/NF-kappa B/NR4A2 pathway is involved in H2O2 induced apoptosis of resident cardiac stem cells via autophagy[J]. Oncotarget, 2017, 8(44):77634-77648.
[3]HKIMIAN G, COMBES A. Myocarditis[J]. Revue Medecine Interne, 2017, 38(8): 531-538.
[4]MISHRA P, SAMANTA L. Oxidative stress and heart failure in altered thyroid states[J]. Scientific World Journal, 2012, 2012: 741861.
[5]OLIVERAS A, DE LA SIERRA A. Resistant hypertension: Patient characteristics, risk factors, co-morbidities and outcomes[J]. Journal of Human Hypertension, 2014, 28(4): 213-217.
[6]TSUTSU H, KINUGAWA S, MATSUSHIMA S. Oxidative stress and heart failure[J]. American Journal of Physiology Heart and Circulatory Physiology, 2011, 301(6):H2181-H2190.
[7]YU B W, LI J L, GUO B B, et al. Chlorogenic acid analogues from gynura nepalensis protect H9c2 cardiomyoblasts against H2O2-induced apoptosis[J]. Acta Pharmacologica Sinica, 2016, 37(11): 1413-1422.
[8]黃海蘭, 徐波. 米口袋清除自由基活性及其成分研究[J]. 青島大學(xué)學(xué)報(bào)(自然科學(xué)版), 2006, 19(4): 30-35.
[9]劉召, 劉玉琳. 中醫(yī)藥清除自由基的研究現(xiàn)狀[J]. 西部中醫(yī)藥, 2007, 20(10): 55-57.
[10] 胡博路, 孟潔. 30種中草藥清除自由基的研究[J]. 青島大學(xué)學(xué)報(bào)(自然科學(xué)版), 2000, 13(2): 38-40.
[11] REN G, QIAO H X, YANG J, et al. Protective effects of steroids from allium chinense against H2O2-induced oxidative stress in rat cardiac H9c2 cells[J]. Phytotherapy Research, 2010, 24(3): 404-409.
[12] LIU C H, LU D Y, YOU J R, et al. Efficacy of water fraction from dioscorea cirrhosa on oxidative stress and apoptosis in H9c2 cardiomyocytes induced by H2O2[J]. Journal of Traditional Chinese Medicine, 2021, 41(1): 51-58.
[13] KOPP F, MENDELL J T. Functional classification and experimental dissection of long noncoding RNAs[J]. Cell, 2018, 172(3): 393-407.
[14] ST LAURENT G, WAHLESTEDT C, KAPRANOV P. The landscape of long noncoding RNA classification[J]. Trends in Genetics, 2015, 31(5): 239-251.
[15] MERCER T R, MATTICK J S. Structure and function of long noncoding RNAs in epigenetic regulation[J]. Nature Structural & Molecular Biology, 2013, 20(3): 300-307.
[16] CHOI S W, KIM H W, NAM J W. The small peptide world in long noncoding RNAs[J]. Briefings in Bioinformatics, 2019, 20(5): 1853-1864.
[17] SUN X, ZHENG H X, SUI N. Regulation mechanism of long non-coding RNA in plant response to stress[J]. Biochemical and Biophysical Research Communications, 2018, 503(2): 402-407.
[18] HUANG Y. The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases[J]. Journal of Cellular and Molecular Medicine, 2018, 22(12): 5768-5775.
[19] HE L, CHEN Y, HAO S Q, et al. Uncovering novel landscape of cardiovascular diseases and therapeutic targets for cardioprotection via long noncoding RNA-miRNA-mRNA axes[J]. Epigenomics, 2018, 10(5): 661-671.
[20] CAI B Z, MA W Y, DING F Z, et al. The long noncoding RNA CAREL controls cardiac regeneration[J]. Journal of the American College of Cardiology, 2018, 72(5): 534-550.
[21] PONNUSAMY M, LIU F, ZHANG Y H, et al. Long noncoding RNA CPR (cardiomyocyte proliferation regulator) regulates cardiomyocyte proliferation and cardiac repair[J]. Circulation, 2019, 139(23): 2668-2684.
[22] AUNG L H H, LI Y Z, YU H, et al. Mitochondrial protein 18 is a positive apoptotic regulator in cardiomyocytes under oxidative stress[J]. Clinical Science, 2019, 133(9): 1067-1084.
[23] KEMP T J, CAUSTON H C, CLERK A. Changes in gene expression induced by H2O2 in cardiac myocytes[J]. Biochemical and Biophysical Research Communications, 2003, 307(2): 416-421.
[24] SU Q, LV X. Revealing new landscape of cardiovascular disease through circular RNA-miRNA-mRNA axis[J]. Genomics, 2020, 112(2): 1680-1685.
[25] QI W C, LI Z H, XIA L J, et al. LncRNA GABPB1-AS1 and GABPB1 regulate oxidative stress during erastin-induced ferroptosis in HepG2 hepatocellular carcinoma cells[J]. Scientific Reports, 2019, 9(1): 16185.
[26] LI M, DUAN L W, LI Y X, et al. Long noncoding RNA/circular noncoding RNA-miRNA-mRNA axes in cardiovascular diseases[J]. Life Sciences, 2019, 233: 116440.
[27] ZENG J, ZHU L, LIU J, et al. Metformin protects against oxidative stress injury induced by ischemia/reperfusion via regulation of the lncRNA-H19/miR-148a-3p/Rock2 axis[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 8768327.
[28] KUMAR S, WILLIAMS D, SUR S, et al. Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis[J]. Vascular Pharmacology, 2019, 114: 76-92.
[29] REN K, XU X D, YU X H, et al. LncRNA-modulated autophagy in plaque cells: A new paradigm of gene regulation in atherosclerosis?[J]. Aging (Albany NY), 2020, 12(21): 22335-22349.
[30] PIERCE J B, FEINBERG M W. Long noncoding RNAs in atherosclerosis and vascular injury: Pathobiology, biomarkers, and targets for therapy[J]. Arteriosclerosis Thrombosis and Vascular Biology, 2020, 40(9): 2002-2017.
Abstract:
In order to search for lncRNA related to heart disease under oxidative stress, the expression profiles of lncRNA and mRNA in normal cardiomyocytes and H2O2-induced cardiomyocytes were analyzed by microarray analysis. Then, the function of differentially expressed gene was explored through Gene Ontology (GO) and pathway analysis, and construct a lncRNA-mRNA co-expression network. Among the differentially expressed lncRNA, 10 lncRNA significantly differentially up-regulated and 10 down-regulated groups were selected for RT-qPCR verification. The results show that the expressions of lncRNA and mRNA were different in normal cardiomyocytes and in cardiomyocytes under oxidative stress. In the ten groups of significantly upregulated lncRNA, RT-qPCR detection results were consistent with the microarray results, indicating that they may be potential therapeutic targets for heart disease.
Keywords:
microarray; lncRNA; Go analysis; pathaway analysis; co-expression network; RT-qPCR
青島大學(xué)學(xué)報(bào)(自然科學(xué)版)2021年4期