• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Locating Famous Tea’s Picking Point Based on Shi-Tomasi Algorithm

    2021-12-10 11:57:08LeiZhangLangZouChuanyuWuJiannengChenandHepingChen
    Computers Materials&Continua 2021年10期

    Lei Zhang,Lang Zou,Chuanyu Wu,*,Jianneng Chen and Heping Chen

    1Faculty of Mechanical Engineering&Automation,Zhejiang Sci-Tech University,Hangzhou,310018,China

    2Key Laboratory of Transplanting Equipment and Technology of Zhejiang Province,Hangzhou,310018,China

    3Ingram School of Engineering,Texas State University,San Marcos,Texas,USA

    Abstract:To address the difficulty of locating the picking point of a tea sprout during the intelligent automatic picking of famous tea,this study proposes a method to obtain information on the picking point on the basis of the Shi-Tomasi algorithm.This method can rapidly identify a tea sprout’s picking point and obtain its coordinates.Images of tea sprouts in a tea garden were collected,and the G-B component of tea sprouts was segmented using the Otsu algorithm.The region of interest was set with the lowest point of its contour as the center.The characteristics of tea buds and branches in the area were extracted,and the Otsu algorithm was used for a second segmentation of tea sprout images.The tea buds were segmented using the improved Zhang algorithm.The branch feature binary image was used to refine the skeleton,and the Shi-Tomasi algorithm was used to detect the corners of the skeleton and calculate and mark the picking points of the shoots.Sixty sets of samples were tested.The test identified 1,042 effective shoots for tender buds,and 887 picking points were marked,with a success rate of 85.12%,thereby verifying the effectiveness of the method and providing a theoretical reference for the visual positioning of the automatic picking of famous tea.

    Keywords:Famous tea;picking location;Zhang algorithm; Shi-Tomasi algorithm

    1 Introduction

    The automatic recognition and positioning of picking points is a key technology enabling modern agricultural robots to achieve automatic and precise picking.Scholars have conducted considerable research on this topic because of the wide application of intelligent picking robots and the development of artificial intelligence recognition[1–5].Liang et al.[6]calculated the position information of the picking point of tomato fruit bunch stems on the basis of the corner points of the stem skeleton,achieving a success rate of 90%.Yang et al.[7]constructed a recognition and positioning system based on a convolutional neural network and Kinect V2 for a citrus-picking robot.Huang et al.[8]realized the accurate positioning of objects on the basis of SSD detection and built the Kinect V2 three-dimensional measurement model.Xiong et al.[9]used Hough line fitting and the angle constraint method to realize the positioning of disturbed grape picking points,obtaining an accuracy rate of 80%.Wang et al.[10]proposed an apple target picking point location method based on the contour symmetry axis.Luo et al.[11]proposed a grape picking point location method based on improved clustering image segmentation and a minimum distance constraint between points and lines.

    “Famous tea” is a general term for high-quality tea,with strict requirements on the growth environment,picking time,picking method,and picking quality of the tea itself.The highefficiency and high-quality picking of famous tea is desired.Vision-based automatic picking robots have come into use for picking famous teas.The automatic identification and positioning of picking points is a difficulty that limits the development of these robots.Few studies have been conducted on the positioning of famous tea picking points.Zhang et al.[12]proposed a tender shoot positioning method based on active vision.Pei et al.[13]marked the center of the circumscribed rectangle of the tea outline as the picking point.

    Famous tea is lightweight;hence it swings easily because of wind or the movement of a picking machine.A tea garden has a complex environment,with tea leaves blocking each other.Light can be too strong or dark,resulting in low-resolution images of tea sprouts and old leaves.Therefore,it is difficult to identify and locate the shoot picking points,which restricts automated picking.To realize the rapid identification and positioning of picking points,ensure the efficiency of picking machines,and meet high quality requirements,this study proposes an automatic identification method for famous tea picking points based on theShi-Tomasialgorithm.

    2 Recognition Algorithm Based on Shi-Tomasi

    Fig.1 shows the algorithm’s flowchart.The original image of tea growth and distribution is collected by an industrial camera.Image preprocessing is performed for raw image noise reduction,and the Otsu algorithm is used to segment the images to obtain a contour map of the tea sprouts.The lowest point of each contour is searched,the region of interest(ROI)of a single sprout is set,and the characteristics of sprouts and their growth branches are extracted.A second image segmentation and morphological processing are performed on these characteristics.The Otsu algorithm is used to binarize the image,and a morphological method is used to remove the noise of the binary image in post-processing.The skeleton of the sprouts and branches is refined using the improved Zhang thinning algorithm,and theShi-Tomasialgorithm is used to extract the corner point at a bifurcation and obtain their coordinates.A line segment is fitted between the corner point and the lowest point.The center point’s coordinates are calculated as the coordinates of picking points,which are marked in the original image.

    3 Target Recognition of Tea Sprouts

    3.1 Image Segmentation of Tea Sprouts

    The initial segmentation of the tea sprouts is the basis for the accurate positioning of the picking points.We use the Otsu algorithm to perform the initial segmentation of the tea sprouts under the RGB model,and a 3 × 3 convolution kernel for Gaussian filtering of the collected tea image noise.For the tea sprouts shown in Fig.2a,the differentiation degree between old leaves and tea sprouts is most obvious among the G-B components of the image in Fig.2b.Thus the G-B component is used as the input source for image segmentation.The segmentation effect is shown in Fig.2c.Some small,wrong target points or contours still exist because of noise and for other reasons.Morphological procedures facilitate later operations.The result is shown in Fig.2d.The small contours caused by noise and other factors have been filtered out.

    Figure 1:Flowchart of recognition algorithm based on Shi-Tomasi

    3.2 Setting the ROI of Tea Sprouts

    To reduce the influence of factors irrelevant to the picking point,and to reduce the number of pixels and improve the real-time performance of image processing,each sprout in image acquisition has its own ROI.Only this region is regarded as the target when identifying the picking point object.Based on research and experiments,the following search algorithm for setting the ROI with the lowest point of the contour of tea sprouts as the center is proposed.

    (1)The edge points of each contour,as shown in Fig.2c,are traversed.The lowest and highest points of contours are found,with coordinates set as(x0,y0)and(x1,y1),respectively.

    (2)The contour height filter parameters are set to filter out some sprouts that are too small in the visible area because of occlusion and for other reasons.When the straight line between the highest and lowest points has length greater than or equal to a preset valueD,the contour numberiis entered in the list to be processed,list[];otherwise,it is discarded and recorded as?,as follows:

    (3)With the lowest point(x0,y0)of each contour inlist[]as the center,a rectangular ROI is set with lengthRoi_Land heightRoi_H,

    wherexmin,ymaxandxmax,yminare the coordinates of the top-left and bottom-right vertices,respectively,of the rectangular ROI.In this study,xmin=x0?30pixels,xmax=x0+30pixels,ymin=y0?30pixels,andymax=y0+25pixels.

    The ROI setting result is shown in Fig.3.The red point is the lowest point of the contour of the sprout for first-time segmentation.Some points deviate from the actual picking point.

    Figure 2:Image segmentation process.a.Original image b.G-B component c.Image segmentation d.Morphological operation

    Figure 3:ROI

    4 Picking Point Identification and Positioning

    The quality requirements of famous tea make it necessary to ensure the integrity of sprouts and to limit the extraction of the petiole during picking.The growth characteristics of the tea suggest that its sprouts grow diagonally upward.The tea picking point calculation model is shown in Fig.4.The growth point area of the sprouts on the branches is extracted to obtain the corner point position and picking point direction,and a straight line fits the corner point and lowest point.The coordinates of the picking point in the ideal area are calculated through a process combined with agronomic technology.

    Figure 4:Picking point calculation model.1.Tea sprout;2.Lowest point of contour;3.Ideal area for picking;4.Corner point;5.Petiole;6.Branches

    4.1 Feature Extraction

    Fig.5a shows the HSV color space of the ROI,from which the characteristics of the sprouts and their growth points are extracted,as follows.

    (1)The H,S,and V channels are separated from the ROI of the HSV space.The upper and lower limits of the pixel values of the H,S,and V channels are set.The area where the sprouts and branches are located is selected,and amaskas large as the original image is set as

    wheresrc,min,andmaxare the pixel value and its lower and upper limits,respectively.The treatment results are shown in Figs.5b–5d.In the HSV color space,the color difference of tea sprouts,old leaves,and branches is mainly manifested in their H channel values.After experimental comparison,the value ranges of the channels are set asH=[80,150],S=[35,250],and V=[35,250].

    (2)The sprouts and branches are extracted by the bitwise AND operation of ROI andmaskin the RGB space.As shown in Fig.5e,the results highlight the characteristics of tea sprouts and branches.

    Figure 5:Extraction of sprout and branch features.a.HSV color space,b.H channel,c.S channel,d.V channel,e.Characteristics of sprouts and branches

    4.2 Skeleton Refinement

    The Otsu algorithm is used to binarize the image in Fig.5e,and morphological manipulation corrosion is applied to remove small areas in the binarized image.Fig.6 shows the result of binary and morphological processing.

    TheZhangthinning algorithm is fast and can maintain the curve characteristics of the original image,with fewer burrs after thinning[14,15].However,the thinning skeletons of sprouts and branches are incomplete,and all the curves cannot be kept as a single pixel.We apply an improvedZhangthinning algorithm[16].A pixel at the boundary of a binary image is denoted asP1,and eight neighboring pixels are denoted clockwise asP2,P3,...,P8,P9.P2is directly aboveP1.The steps of the algorithm are as follows.

    (1)Boundary points that meet the following conditions are marked simultaneously:

    1)2 ≤N(P1)≤6

    2)S(P1)=1 orB(P1)∈{5,13,20,22,52,54,65,80,133,141}

    3)P2×P4×P6=0

    4)P4×P6×P8=0

    (2)Boundary points that meet the following conditions are deleted simultaneously:

    1)2 ≤N(P1)≤6

    2)S(P1)=1 orB(P1)∈{5,13,20,22,52,54,65,80,133,141}

    3)P2×P4×P8=0

    4)P2×P6×P8=0

    whereN(P1)is the number of nonzero neighbors ofP1,andS(P1)is the number of times the value changes from 0 to 1.WhenP2,P3,...,P8,P9is the order,B(P1)is the binary coded value of theP1eight-neighborhood point.

    Iteration continues until all points meet the above conditions.The tea images’skeleton refinement results are shown in Fig.7.The original tea branches and sprouts’growth features are retained,and a single-pixel skeleton is generated.

    Figure 6:Secondary segmentation result

    Figure 7:Skeleton thinning process and results.a.Original image b.Binarization c.Skeleton refinement

    4.3 Corner Extraction of Skeleton

    After refining,the bifurcation points of sprouts and branches must be determined as corner points.There are many corner detection methods,such asHarriscorner detection algorithm andShi-Tomasicorner detection[17–22].The latter is used in this study.

    Suppose the pixel coordinates of a point in the window are(x,y),the amount of movement is(Δx,Δy),and the gray level isI.Then the gray level change is obtained as

    where the window functionω(x,y)is expressed by the Gaussian function as

    The Taylor formula(4)is expanded,and the higher-order terms are omitted:

    where

    whereIxandIyare the gradient values of the image gray in thexandydirections,respectively,

    The corner response function is defined as

    whereλ1andλ2are the two eigenvalues of the matrixM.

    WhenRexceeds the thresholdT0and is a local maximum in its neighborhood,the point is aShi-Tomasicharacteristic corner point,and its coordinatesx′,y′)are output.

    Fig.8 shows the results of corner detection using theHarrisandShi-Tomasialgorithms,respectively.Harrisis easily affected by the environment,and the number of detected wrong corner points(yellow dots in Fig.8a)is high.Shi-Tomasidetects only one of the best points(the red dot in Fig.8b);it is not easily affected by the environment,and it has a stronger adaptive ability.This method can avoid clustering.Shi-Tomasiis more suitable for complex and changeable tea sprout picking situations.

    Figure 8:Corner detection.a.Harris,b.Shi-Tomasi

    4.4 Calculation of Picking Point

    The lowest and corner points of the tea branches and sprouts’ contours are fitted to a straight-line segment,and the center point is taken as the picking point,with horizontal and vertical coordinates expressed as

    respectively.

    5 Experimental Results and Analysis

    5.1 Experimental Process

    Tea samples were collected from the Shengzhou tea plantation base on March 11,2020.We used anFLIR BFS-U3-16S2Cindustrial color area scan camera with a shooting angle of 45°from horizontal orientation.There were 60 groups of samples,and each group was run three times.The original image size was 1670 × 3000.The experimental process was conducted in the Python-OpenCV 4.1.1.26 algorithm environment on a BIS-6670 industrial computer(North China).The experimental results of the marked partial picking points are shown in Fig.9,wherea–dshow partially marked successful picking points,ande–hare partially marked picking points that failed.The black points in the figure represent the lowest point of the initial segmentation contour,red dots indicate marked picking points,and blue dots are detected corners.

    5.2 Analysis of Experimental Results

    For tea sprouts with growth points hidden by branches and leaves,the red dot lies between the black and blue dots,and is in the ideal area of the tea petiole.The tea sprout’s picking point is marked successfully;otherwise,it is recorded as a mark failure.The statistics of the identification of 60 groups of samples are shown in Tabs.1–3.

    The tables show that 1,545 tea sprouts were effectively identified in 60 groups of tea samples.Among them,503 corner points were hidden and failed to be marked by default.The other 1,042 corner points were not hidden.Among the unhidden points,887 corner points were successfully marked.The effective marking success rate(ES)and overall marking success rate(RS)are defined as

    whereSis the number of successfully marked sprouts,N is the number of unobstructed sprouts,andTis the total number of identified sprouts.The effective labeling success rate and overall labeling success rate of the 60 groups of samples are shown in Fig.10.

    Figure 9:Marked results of picking points.a.Sprout 1,b.Sprout 2,c.Sprout 3,d.Sprout 4,e.Sprout 5,f.Sprout 6,g.Sprout 7,h.Sprout 8

    Table 1:Data statistics 1 of test results

    Table 2:Data statistics 2 of test results

    Table 3:Data statistics 3 of test results

    In the 60 groups of samples,the overall labeling success rate was 50%–65%,and the effective labeling success rate was 75%–90%.The average overall labeling success rate was 57.41%,and the average effective labeling success rate was 85.12%.The low success rate of overall labeling was mainly caused by a large proportion of tea sprouts hidden by old leaves,branches,or other objects,thereby making their identification impossible.Considering that the sprouts are picked and the camera moved during the picking process,the picking point of the hidden sprouts will be re-identified and positioned.The low success rate of effective labeling is mainly due to the complicated growth environment of tea sprouts and the interlacing of multiple branches in the ROI,which leads to deviations in corner monitoring and affects the accurate positioning of picking points.The corner points of two or more tea sprouts are very close,and the petiole parts may overlap.This phenomenon leads to positioning errors of tea sprouts.Some sprouts bend greatly,thereby causing the positioning point to deviate from the petiole itself.The environmental light may be too strong or too dark while the tea images were obtained,thereby causing inaccurate segmentation of some tea sprouts.As a result,deviations occurred in the calculation of the coordinates of tea sprout picking points.

    Figure 10:Effective marking success rate and overall marking success rate

    We calculated the effective mark success rate of the picking points of sprouts,based on whether the picking point fell on the petiole.Sprouts whose marked picking point fell within a certain range around the petiole could also be obtained.Thus the actual effective picking rate obtained by this algorithm must have been higher than the labeling success rate of 85.12%.

    6 Conclusion

    We proposed a famous tea sprout automatic segmentation and positioning method based on the Otsu algorithm,improved Zhang thinning algorithm,andShi-Tomasialgorithm.The Otsu algorithm was first used to segment the tea sprouts,and the ROI with the lowest point on its contour was set as the center.The characteristics of the sprouts and branches were extracted on the basis of the HSV space H channel,and the sprouts were segmented again with the Otsu algorithm.The sprouts’single-pixel feature was refined,and theShi-Tomasialgorithm was used to detect the corner points of the sprouts on the branches.The line segment between the corner point and the lowest point was fitted,and the center point was taken as the picking point.The proposed algorithm effectively solved the problem of low accuracy of tea sprout automatic segmentation and positioning.The effectiveness of this algorithm was verified by using 60 sets of samples and by conducting marked experiments on 1,545 sprouts’picking points across these 60 sets.The reasons for the failed marking of picking points were analyzed from multiple aspects,thereby providing certain ideas for subsequent research on automatic picking of tea sprouts by robots.The proposed method had an effective marked success rate of 85.12% for the picking points of tea sprouts,thereby meeting the picking requirements of famous tea.This study provides a reference for the realization of mechanized automatic picking of famous tea.

    Funding Statement:The authors gratefully acknowledge the financial support provided by the Special Fund for the Construction of Modern Agricultural Industrial Technology Systems(CARS-19)in China.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    日韩免费高清中文字幕av| 精品人妻在线不人妻| 咕卡用的链子| 成人国语在线视频| 国产精品 国内视频| a级片在线免费高清观看视频| 欧美日韩亚洲高清精品| 夜夜夜夜夜久久久久| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲av电影在线观看一区二区三区| 亚洲性夜色夜夜综合| 国产深夜福利视频在线观看| 欧美激情久久久久久爽电影 | 啦啦啦中文免费视频观看日本| 丝袜人妻中文字幕| 日韩三级视频一区二区三区| 精品国产国语对白av| 男女国产视频网站| 亚洲精品粉嫩美女一区| 1024香蕉在线观看| 久久精品国产亚洲av香蕉五月 | 亚洲午夜精品一区,二区,三区| 少妇人妻久久综合中文| 欧美日韩成人在线一区二区| 国产日韩欧美在线精品| 久久久久网色| 99精品久久久久人妻精品| 国产伦理片在线播放av一区| 又黄又粗又硬又大视频| 亚洲一区二区三区欧美精品| 精品亚洲成a人片在线观看| av免费在线观看网站| 脱女人内裤的视频| 少妇的丰满在线观看| 汤姆久久久久久久影院中文字幕| 精品一品国产午夜福利视频| 亚洲欧美精品综合一区二区三区| 亚洲精品国产av成人精品| 国产成人啪精品午夜网站| 国产在线免费精品| 精品视频人人做人人爽| 国产一级毛片在线| 亚洲精品成人av观看孕妇| 国产成人免费观看mmmm| videosex国产| 日韩视频在线欧美| 波多野结衣av一区二区av| 日本五十路高清| av不卡在线播放| 国产av国产精品国产| 精品一品国产午夜福利视频| 我要看黄色一级片免费的| 淫妇啪啪啪对白视频 | 久久久久国产精品人妻一区二区| 高潮久久久久久久久久久不卡| 国产精品 国内视频| 国产亚洲欧美在线一区二区| 高清视频免费观看一区二区| 黄片小视频在线播放| 久久久久网色| 精品一区二区三区av网在线观看 | 国产不卡av网站在线观看| 18禁观看日本| 狂野欧美激情性bbbbbb| 国产成人a∨麻豆精品| 亚洲精品国产一区二区精华液| 69精品国产乱码久久久| 69av精品久久久久久 | 日本五十路高清| 脱女人内裤的视频| 亚洲国产精品一区三区| 丰满人妻熟妇乱又伦精品不卡| 叶爱在线成人免费视频播放| 精品亚洲乱码少妇综合久久| 999精品在线视频| 国产精品久久久久久精品电影小说| 欧美精品av麻豆av| 久久天躁狠狠躁夜夜2o2o| 久久久欧美国产精品| 国产伦理片在线播放av一区| 亚洲第一青青草原| 中文字幕人妻丝袜一区二区| 美女午夜性视频免费| 97在线人人人人妻| 12—13女人毛片做爰片一| 丝袜美足系列| 欧美另类亚洲清纯唯美| 国产极品粉嫩免费观看在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产麻豆69| 高清av免费在线| 99热网站在线观看| 在线看a的网站| 日韩三级视频一区二区三区| 十八禁网站网址无遮挡| 亚洲精品国产精品久久久不卡| 国产欧美日韩一区二区三 | 97精品久久久久久久久久精品| 美女福利国产在线| 亚洲精品av麻豆狂野| 99久久国产精品久久久| 国产黄色免费在线视频| 亚洲欧美一区二区三区黑人| 日韩熟女老妇一区二区性免费视频| 国产av一区二区精品久久| 欧美av亚洲av综合av国产av| 久久精品国产a三级三级三级| 成人三级做爰电影| 国产精品秋霞免费鲁丝片| 在线av久久热| 久久午夜综合久久蜜桃| 视频区图区小说| 国产欧美亚洲国产| 黑人巨大精品欧美一区二区蜜桃| 国产高清视频在线播放一区 | 久久中文字幕一级| 久久综合国产亚洲精品| 这个男人来自地球电影免费观看| 一级片免费观看大全| 69精品国产乱码久久久| 日本av免费视频播放| 国产在线免费精品| 国产成人精品在线电影| 99re6热这里在线精品视频| 亚洲专区中文字幕在线| 久久久国产欧美日韩av| 国产真人三级小视频在线观看| 久久亚洲国产成人精品v| 男女无遮挡免费网站观看| 丁香六月欧美| 国产一区二区 视频在线| 亚洲中文日韩欧美视频| 亚洲欧美日韩另类电影网站| 亚洲三区欧美一区| 精品久久蜜臀av无| 欧美在线黄色| 欧美日韩黄片免| 九色亚洲精品在线播放| 99九九在线精品视频| 丝袜美足系列| 美女福利国产在线| 少妇猛男粗大的猛烈进出视频| 人人澡人人妻人| 久久国产精品人妻蜜桃| 爱豆传媒免费全集在线观看| 菩萨蛮人人尽说江南好唐韦庄| 欧美精品一区二区免费开放| 亚洲国产看品久久| 亚洲成人免费av在线播放| 青春草视频在线免费观看| 午夜福利在线免费观看网站| 天天操日日干夜夜撸| 一本一本久久a久久精品综合妖精| 国产精品麻豆人妻色哟哟久久| 热re99久久精品国产66热6| 蜜桃国产av成人99| 国产日韩欧美亚洲二区| 欧美日韩亚洲高清精品| 亚洲精品久久午夜乱码| 欧美国产精品一级二级三级| 91大片在线观看| 亚洲国产欧美网| 久热爱精品视频在线9| 国产精品一区二区精品视频观看| www日本在线高清视频| 日韩一区二区三区影片| 一边摸一边做爽爽视频免费| 免费在线观看视频国产中文字幕亚洲 | 精品久久久精品久久久| 午夜两性在线视频| 国产精品久久久久久精品古装| 热99国产精品久久久久久7| 亚洲av片天天在线观看| 国产亚洲精品一区二区www | 精品国产一区二区三区四区第35| 欧美日韩亚洲高清精品| 天天躁日日躁夜夜躁夜夜| 欧美另类一区| 久久青草综合色| 一本大道久久a久久精品| 丰满少妇做爰视频| 9191精品国产免费久久| 国产免费一区二区三区四区乱码| 午夜日韩欧美国产| 国产亚洲精品一区二区www | 精品少妇黑人巨大在线播放| 老汉色av国产亚洲站长工具| 成年人免费黄色播放视频| 国产在线免费精品| 成在线人永久免费视频| 国产亚洲精品久久久久5区| 女性生殖器流出的白浆| 精品乱码久久久久久99久播| 国产一卡二卡三卡精品| 91成年电影在线观看| 啪啪无遮挡十八禁网站| 国产精品av久久久久免费| 成人亚洲精品一区在线观看| 成人亚洲精品一区在线观看| cao死你这个sao货| 中文欧美无线码| 麻豆国产av国片精品| 日韩欧美免费精品| 欧美黄色片欧美黄色片| 国产av一区二区精品久久| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲视频免费观看视频| videos熟女内射| 日韩欧美一区视频在线观看| 蜜桃在线观看..| 久久中文字幕一级| 国产黄色免费在线视频| av福利片在线| 99精国产麻豆久久婷婷| 国产一区二区三区综合在线观看| 久久狼人影院| a级片在线免费高清观看视频| 日本黄色日本黄色录像| 99久久人妻综合| 久久国产精品影院| 欧美精品啪啪一区二区三区 | 免费av中文字幕在线| av一本久久久久| 亚洲av电影在线观看一区二区三区| 国产深夜福利视频在线观看| 亚洲欧美日韩另类电影网站| 精品国产超薄肉色丝袜足j| 性色av一级| 欧美日韩黄片免| 午夜视频精品福利| 日韩制服丝袜自拍偷拍| 国产亚洲精品第一综合不卡| 精品人妻在线不人妻| 国产精品二区激情视频| 精品一品国产午夜福利视频| 男人添女人高潮全过程视频| 另类亚洲欧美激情| 99精品欧美一区二区三区四区| 国产亚洲欧美在线一区二区| 午夜福利免费观看在线| 亚洲精品一二三| 欧美变态另类bdsm刘玥| 久久亚洲国产成人精品v| 中文字幕另类日韩欧美亚洲嫩草| 如日韩欧美国产精品一区二区三区| 日韩有码中文字幕| 日本猛色少妇xxxxx猛交久久| 丁香六月欧美| 下体分泌物呈黄色| 韩国高清视频一区二区三区| 国产亚洲av片在线观看秒播厂| 一二三四社区在线视频社区8| 最新的欧美精品一区二区| 日韩中文字幕视频在线看片| 国产成人免费无遮挡视频| 无限看片的www在线观看| 中文字幕av电影在线播放| 一区二区三区四区激情视频| 水蜜桃什么品种好| 亚洲第一av免费看| 啦啦啦免费观看视频1| 国产精品久久久av美女十八| 精品亚洲成国产av| 80岁老熟妇乱子伦牲交| 满18在线观看网站| 中文欧美无线码| 日本撒尿小便嘘嘘汇集6| 欧美精品av麻豆av| 欧美日韩国产mv在线观看视频| 97人妻天天添夜夜摸| 成年av动漫网址| 亚洲久久久国产精品| 日韩欧美免费精品| 两性夫妻黄色片| 精品欧美一区二区三区在线| 久久青草综合色| 下体分泌物呈黄色| 自线自在国产av| 欧美午夜高清在线| 久久中文字幕一级| tocl精华| 多毛熟女@视频| 精品国产国语对白av| 天堂俺去俺来也www色官网| videos熟女内射| 国产在线免费精品| 亚洲一区二区三区欧美精品| 亚洲av男天堂| 精品国产乱子伦一区二区三区 | 久久亚洲国产成人精品v| 天堂中文最新版在线下载| 99精品久久久久人妻精品| 亚洲欧洲日产国产| 亚洲精品国产av成人精品| 午夜激情av网站| 老熟妇仑乱视频hdxx| 精品人妻在线不人妻| 精品久久久久久久毛片微露脸 | 一本色道久久久久久精品综合| 欧美中文综合在线视频| 精品久久久精品久久久| 在线观看www视频免费| 亚洲av成人不卡在线观看播放网 | 亚洲av日韩在线播放| 成年美女黄网站色视频大全免费| 日韩熟女老妇一区二区性免费视频| 满18在线观看网站| 电影成人av| 国产97色在线日韩免费| 老司机深夜福利视频在线观看 | 欧美在线一区亚洲| 狂野欧美激情性xxxx| 热99国产精品久久久久久7| 老熟妇仑乱视频hdxx| 国产精品国产av在线观看| 亚洲黑人精品在线| 国产亚洲午夜精品一区二区久久| av免费在线观看网站| 久久毛片免费看一区二区三区| 中国美女看黄片| 亚洲国产中文字幕在线视频| 窝窝影院91人妻| 黄网站色视频无遮挡免费观看| 人人妻人人爽人人添夜夜欢视频| 别揉我奶头~嗯~啊~动态视频 | 久久毛片免费看一区二区三区| 亚洲性夜色夜夜综合| 久久性视频一级片| 国产人伦9x9x在线观看| 国产成+人综合+亚洲专区| 午夜免费成人在线视频| 久久99一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 黄色怎么调成土黄色| 建设人人有责人人尽责人人享有的| 欧美成狂野欧美在线观看| 日韩中文字幕视频在线看片| 99久久99久久久精品蜜桃| 美女视频免费永久观看网站| 91麻豆精品激情在线观看国产 | 国产精品av久久久久免费| 一进一出抽搐动态| 精品少妇久久久久久888优播| 久久久久国产精品人妻一区二区| 啦啦啦免费观看视频1| 亚洲九九香蕉| 少妇人妻久久综合中文| 真人做人爱边吃奶动态| 亚洲伊人色综图| 欧美黄色片欧美黄色片| 亚洲一区二区三区欧美精品| 亚洲avbb在线观看| 久久久久久免费高清国产稀缺| 欧美日本中文国产一区发布| 日本wwww免费看| 两个人看的免费小视频| 麻豆乱淫一区二区| 精品人妻在线不人妻| 亚洲精品久久久久久婷婷小说| 天堂8中文在线网| 好男人电影高清在线观看| 人成视频在线观看免费观看| 免费观看a级毛片全部| 9色porny在线观看| 亚洲专区中文字幕在线| 91成年电影在线观看| 亚洲精品乱久久久久久| 老司机亚洲免费影院| 欧美97在线视频| 亚洲精品自拍成人| 窝窝影院91人妻| 每晚都被弄得嗷嗷叫到高潮| 99国产精品免费福利视频| 色精品久久人妻99蜜桃| 国产日韩一区二区三区精品不卡| 成人av一区二区三区在线看 | 久久久久精品国产欧美久久久 | 搡老熟女国产l中国老女人| 激情视频va一区二区三区| 国产一卡二卡三卡精品| 欧美亚洲 丝袜 人妻 在线| 久久国产精品人妻蜜桃| 国产精品一二三区在线看| 免费在线观看完整版高清| 久久精品亚洲av国产电影网| 国产精品一区二区免费欧美 | 老鸭窝网址在线观看| 久久久精品94久久精品| 狂野欧美激情性bbbbbb| 亚洲国产精品999| 后天国语完整版免费观看| 亚洲色图综合在线观看| 亚洲 国产 在线| 天天添夜夜摸| 各种免费的搞黄视频| 在线 av 中文字幕| 日韩欧美一区视频在线观看| 午夜福利在线观看吧| 久久ye,这里只有精品| 丰满饥渴人妻一区二区三| 99国产精品免费福利视频| 亚洲国产av影院在线观看| 日韩免费高清中文字幕av| 免费黄频网站在线观看国产| 汤姆久久久久久久影院中文字幕| 午夜91福利影院| 在线永久观看黄色视频| 欧美人与性动交α欧美精品济南到| 欧美乱码精品一区二区三区| 极品少妇高潮喷水抽搐| 免费观看人在逋| 日韩中文字幕视频在线看片| 亚洲国产精品成人久久小说| 一二三四社区在线视频社区8| 99热网站在线观看| 久久人人爽人人片av| 91精品三级在线观看| bbb黄色大片| 欧美性长视频在线观看| 亚洲第一av免费看| 一级片免费观看大全| 黑人欧美特级aaaaaa片| 日本91视频免费播放| 十八禁人妻一区二区| 精品高清国产在线一区| 精品人妻在线不人妻| 国产色视频综合| 精品一区二区三区av网在线观看 | 成人三级做爰电影| 日韩 亚洲 欧美在线| 91精品三级在线观看| 桃花免费在线播放| 性色av一级| 亚洲欧美精品自产自拍| 精品国产乱子伦一区二区三区 | 91国产中文字幕| 黄色怎么调成土黄色| 电影成人av| 成年美女黄网站色视频大全免费| 日本撒尿小便嘘嘘汇集6| 美女国产高潮福利片在线看| 亚洲成人国产一区在线观看| 99热国产这里只有精品6| 夜夜骑夜夜射夜夜干| 日韩欧美一区二区三区在线观看 | 亚洲精品国产一区二区精华液| 婷婷色av中文字幕| 肉色欧美久久久久久久蜜桃| 中文字幕最新亚洲高清| 精品亚洲成a人片在线观看| 久久精品亚洲av国产电影网| 亚洲精品国产av成人精品| 亚洲久久久国产精品| 午夜激情久久久久久久| 自线自在国产av| 人成视频在线观看免费观看| 人人妻人人添人人爽欧美一区卜| 亚洲伊人色综图| 国产黄色免费在线视频| 国产1区2区3区精品| av视频免费观看在线观看| 老司机午夜十八禁免费视频| 久久久久网色| 在线天堂中文资源库| 久久久国产一区二区| 婷婷成人精品国产| 亚洲精品中文字幕一二三四区 | 久久久精品94久久精品| 国产亚洲精品第一综合不卡| 亚洲熟女精品中文字幕| 日韩 亚洲 欧美在线| 国产一区二区三区在线臀色熟女 | 法律面前人人平等表现在哪些方面 | 成年av动漫网址| 69av精品久久久久久 | 一区二区三区四区激情视频| 80岁老熟妇乱子伦牲交| 国产区一区二久久| 亚洲欧美激情在线| 51午夜福利影视在线观看| 久久午夜综合久久蜜桃| 成年av动漫网址| 国产av又大| 五月天丁香电影| 他把我摸到了高潮在线观看 | 99香蕉大伊视频| 久久人人爽人人片av| 中文字幕人妻丝袜制服| 久久综合国产亚洲精品| 天天影视国产精品| 亚洲一卡2卡3卡4卡5卡精品中文| 色婷婷久久久亚洲欧美| 亚洲精品国产精品久久久不卡| 欧美另类亚洲清纯唯美| 久久精品国产a三级三级三级| 欧美成狂野欧美在线观看| 亚洲一区中文字幕在线| 亚洲精品国产精品久久久不卡| 亚洲精品国产一区二区精华液| 成年av动漫网址| 国产黄色免费在线视频| av电影中文网址| 十八禁网站免费在线| 中文精品一卡2卡3卡4更新| 欧美日韩亚洲高清精品| 伊人亚洲综合成人网| 王馨瑶露胸无遮挡在线观看| 国产一卡二卡三卡精品| 国产成人欧美在线观看 | 麻豆av在线久日| 丰满少妇做爰视频| 亚洲成av片中文字幕在线观看| 中文精品一卡2卡3卡4更新| 91字幕亚洲| 免费人妻精品一区二区三区视频| 免费在线观看视频国产中文字幕亚洲 | 狠狠婷婷综合久久久久久88av| 啦啦啦中文免费视频观看日本| 亚洲第一青青草原| www.精华液| 天天影视国产精品| 国产区一区二久久| 国产成人欧美| 日韩人妻精品一区2区三区| 91九色精品人成在线观看| 91精品三级在线观看| av天堂久久9| 午夜免费观看性视频| 777米奇影视久久| 亚洲成人免费av在线播放| 在线观看免费午夜福利视频| 日韩中文字幕欧美一区二区| 中文字幕另类日韩欧美亚洲嫩草| 啦啦啦中文免费视频观看日本| 两个人免费观看高清视频| 日本vs欧美在线观看视频| 国产深夜福利视频在线观看| 亚洲人成电影免费在线| 欧美日韩亚洲高清精品| 国产欧美日韩一区二区精品| 久久久久久免费高清国产稀缺| 嫁个100分男人电影在线观看| 欧美日韩av久久| 精品国产乱码久久久久久男人| 王馨瑶露胸无遮挡在线观看| 国产欧美日韩精品亚洲av| 亚洲av电影在线观看一区二区三区| 青春草视频在线免费观看| 三级毛片av免费| 老司机靠b影院| 免费观看a级毛片全部| 99热全是精品| 一级,二级,三级黄色视频| 色婷婷久久久亚洲欧美| 亚洲国产精品一区二区三区在线| 免费在线观看视频国产中文字幕亚洲 | 欧美xxⅹ黑人| 一区二区三区乱码不卡18| 欧美激情极品国产一区二区三区| 正在播放国产对白刺激| 少妇被粗大的猛进出69影院| 熟女少妇亚洲综合色aaa.| 精品一区二区三区av网在线观看 | 欧美精品一区二区免费开放| 丝袜脚勾引网站| 满18在线观看网站| av不卡在线播放| 欧美日韩亚洲综合一区二区三区_| 久久国产亚洲av麻豆专区| 捣出白浆h1v1| 精品国产乱子伦一区二区三区 | 大片电影免费在线观看免费| 女人高潮潮喷娇喘18禁视频| 日本wwww免费看| 好男人电影高清在线观看| 99香蕉大伊视频| 悠悠久久av| 麻豆国产av国片精品| 热re99久久精品国产66热6| 国产成人影院久久av| av免费在线观看网站| 啪啪无遮挡十八禁网站| 色老头精品视频在线观看| 国产免费福利视频在线观看| 免费在线观看视频国产中文字幕亚洲 | 亚洲一区二区三区欧美精品| 午夜激情av网站| 老鸭窝网址在线观看| 老熟妇乱子伦视频在线观看 | 在线av久久热| 欧美av亚洲av综合av国产av| 亚洲精品乱久久久久久| 丁香六月天网| 亚洲精品乱久久久久久| 少妇精品久久久久久久| 国产成人欧美在线观看 | av片东京热男人的天堂| 亚洲精品一区蜜桃| 黄色片一级片一级黄色片| 亚洲伊人色综图| 狂野欧美激情性xxxx| 欧美97在线视频| 欧美国产精品一级二级三级| 亚洲视频免费观看视频| 欧美少妇被猛烈插入视频| 国产免费av片在线观看野外av| 亚洲欧洲精品一区二区精品久久久| 久久毛片免费看一区二区三区| 久久久久精品国产欧美久久久 | 亚洲一码二码三码区别大吗| 黄色视频在线播放观看不卡| 久久久久国内视频| 不卡一级毛片| 99热国产这里只有精品6| 国产在线一区二区三区精|