• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PAPR Reduction in NOMA by Using Hybrid Algorithms

    2021-12-10 11:58:00MohitKumarSharmaandArunKumar
    Computers Materials&Continua 2021年10期

    Mohit Kumar Sharma and Arun Kumar

    Department of Electronics and Communication Engineering,JECRC University,Jaipur,303905,India

    Abstract:Non-orthogonal multiple access(NOMA)is gaining considerable attention due to its features,such as low out-of-band radiation,signal detection capability,high spectrum gain,fast data rate,and massive D2D connectivity.It may be considered for 5G networks.However,the high peak-to-average power ratio(PAPR)is viewed as a significant disadvantage of a NOMA waveform,and it weakens the quality of signals and the throughput of the scheme.In this article,we introduce a modified NOMA system by employing a block of wavelet transform,an alternative to FFT(Fast Fourier transform).The modified system combines the details of fractional frequency and time analysis of NOMA signals.In this correspondence,we utilize an advanced partial transmission scheme(PTS),and selective mapping(SLM),and present a genetic algorithm(GA)for SLM to investigate the peak power performance of a WT-based NOMA system.The performance of WT-SLM,WT-PTS,and WT-SLM-GA methods is compared with that of the traditional NOMAbased SLM and PTS methods.The simulation results demonstrate that the proposed system effectively reduces PAPR in comparison with the traditional schemes.

    Keywords:PAPR;wavelet transform;NOMA;PTS;SLM;5G

    1 Introduction

    With the increase in the numbers of devices,subscribers,demands,and services,data traffic is assumed to increase by a thousand times[1].Presently,no techniques can satisfy all requirements.Nevertheless,the forthcoming 5G radio is expected to fill all demands and services.An orthogonal frequency division multiplexing(OFDM)waveform is used in 4G radio,but it is not considered for 5G due to several disadvantages,as investigated in[2].Therefore,a 5G radio waveform must be explored.Transmission techniques will play a major role in the development of a highperformance and advanced radio system.Over the last few years,several advanced waveform schemes[3]have been proposed for 5G networks[3].Among them,non-orthogonal multiple access(NOMA)has gained extensive attention due to its efficient spectral efficiency,as discussed in[4].NOMA is an advanced transmission scheme based on a multicarrier scheme and regarded as one of the strong contenders for 5G cellular communication.It is designed through the superposition coding(SC)and successive interference cancellation(SIC).The function of SC is to transmit NOMA signals to several users andSICis used to de-multiplex the signals at the receiver.The use of SC will decrease the delay and complexity of the NOMA waveform because no error occurs when transmitting NOMA signals[5].Nonetheless,the high peak-to-average power ratio(PAPR)is considered a great obstacle in the standardization of the NOMA waveform in 5G systems.Several reduction techniques have been implemented in the OFDM system.However,these reduction techniques cannot be used in NOMA given their different construction and systems[6].The disadvantage of the NOMA-based OFDM is the degradation of system flow due to excessive peak power.In[7],the authors presented a DST precoding method to enhance the PAPR performance of the NOMA-based OFDM system.The proposed method was compared with the conventional NOMA Walsh–Hadamard transform NOMA.The simulation results showed that the proposed DST performed better than the conventional techniques.The authors also presented a finite impulse filter grounded on the Hadamard technique to overcome the peak power effect.The proposed method was compared with the non-precoded and HT precoded methods.It was effective in reducing the peak power of the waveform[8].In[9],a modified precoded technique was used to minimize the peak power of the NOMA-based OFDM waveform.Prior knowledge of side information was not needed in the projected method.The simulation results demonstrated that the PAPR and BER of the proposed method were better than those of conventional designs.The authors introduced a PTSCT scheme to minimize the peak power of the NOMA waveform.In this algorithm,partial transmission scheme(PTS)was initially applied to advanced waveforms,which minimized the amplitude power,Circular Transformation(CT)was then applied to decrease the complexity of the organization.The simulation results indicated that PTSCT was better than the conventional PTS[10].A hybrid method based on a combination of swarm optimization for PTS was proposed for the OFDM waveform.In this method,the best phase variation elements were chosen to reduce the peak power of the signal.The experimental result showed enhanced PAPR performance[11].The authors also introduced a wavelet transform(WT)block within the MIMO-OFDM structure to overcome the effect of high PAPR.The simulation results showed that the wavelet MIMO-OFDM efficiently reduced PAPR as compared with the traditional OFDM structure[12].In[13],PTS was used to decrease the amplitude power of the UFMC system.The study indicated a considerable reduction in PAPR,and the complexity of the arrangement was mitigated by the proposed framework.In[14],the P-PTS method was enforced to scale down the amplitude power of a filter bank multicarrier system.An efficient result could be obtained by changing the number of sub-blocks and subcarriers.The experimental outcomes showed that the amplitude power was significantly reduced by the proposed P-PTS compared with other techniques.Nevertheless,the complexity of P-PTS was not discussed in the study.The authors presented a genetic algorithm(GA)-centric PTS technique to minimize the peak power of the OFDM structure.The technique achieved gains of 0.11 and 0.46 dB compared with the traditional PTS[15].In[16],PTS was proposed to minimize the PAPR and complexity of the OFDM structure.Peak power was reduced by multiplying the PTS sub-blocks by an ideal phase vector,for which a minimal PAPR was obtained.The simulation results showed that a PAPR was reduced to 5.98 dB at the CCDF of 10?3.The selective mapping(SLM)method was presented to reduce the amplitude and average power of the OFDM signal[17].The conventional SLM increased the system complexity due to the use of large numbers of IFFTs.By contrast,the presented method minimized the complexity by separating the OFDM signal into odd and even signals.The experimental outcomes demonstrated that the proposed SLM achieved optimal performance compared with the other schemes.In[18],the SLM method was introduced to overcome the effect of PAPR in a multicarrier OFDM structure.The proposed method optimized the PAPR performance,with a low power requirement and no loss of side information.A joint optimization method centered on SLM and CT was suggested to reduce the amplitude power of NOMA and FBMC signals.The optimal outcome was achieved in two phases.At the primary stage,OFDM and NOMA signal sub-blocks were generated by applying the SLM scheme.IFFTs were applied to the number of sub-blocks.SLM increased the computational complexity of the structure.CT was then applied to reduce the complexity,and a low PAPR signal was selected for transmitting[19].From the existing literature,SLM-WT,PTS-WT,and SLM-GA-WT techniques had not been investigated for the NOMA system.In this study,the objective of the proposed method is to replace the IFFT with IDWT of the NOMA structure.Advanced SLM,PTS and SLM-GA methods are also applied to a WT-based NOMA system to evaluate the performance in PAPR.

    2 System Model

    2.1 Wavelet Transform(WT)

    This study investigates the performance of dynamic NOMA signals in time and frequency domains.WT is identical to Fourier transform(FT).In FT,the function is restrained in the Fourier space.By contrast,WT utilizes the function restricted in the Fourier and real-time span.The abilities to calculate fast and to study sub-details of signals are considered significant benefits of WT.It is utilized to split signals into the elements of a wavelet.Hence,it is feasible to acquire an excellent estimation of the function by utilizing a small number of coefficients,compared with FT.However,high-cost implementation,utilization of massive numbers of WT,distortion in signals,and lengthy compacting time are few of the drawbacks of WT.Mathematically,WT can be expressed as[20]:

    where h[k]and g[k]are the characteristics of high and low-pass filters,representing the wavelet and scalar functions;ψn,mis themthwavelet function on thenthlevel.The IDWT of the transmitted signal can be represented as:

    wherey(l)is the transmitted signal,m indicates the position oflsignal index,represents the wavelet function of m-channel,and N is the number of subcarriers.

    2.2 Estimation of the PAPR of the NOMA Waveform

    The schematic of the wavelet-based NOMA waveform is indicated in Fig.1.In this proposed model,IDWT and DWT blocks are introduced in place of FFT and IFFT.The proposed system allows the access of each subcarrier by all users.

    Figure 1:Schematic of NOMA

    The NOMA signal is given as:

    2.3 Wavelet Transform Based SLM(SLM-WT)

    The SLM technique was presented in 1996[21].SLM is regarded as one of the most efficient PAPR minimization methods,as shown in Fig.2.The purpose of the conventional SLM,is to generate an optimal phase vector for the sub-blocks of the NOMA symbol and IFFT are applied to it.A low-PAPR signal is then chosen and transmitted.However,SLM introduces a high computational complication due to the use of IFFTs.In the projected system,the optimal phase factor is multiplied with NOMA symbols,and the IDWT block is used instead of IFFT.The NOMA signal is applied to IDWT,which converts the NOMA signal into a time-domain one.Lastly,a low-peak-power signal is selected and transmitted with low computational complexity.

    Figure 2:DWT-SLM

    2.4 Wavelet Transform Based PTS(PTS-WT)

    The PTS method was first implemented in 1997[22].In this method,the NOMA symbols are divided into several data blocks applied to IDWT.The data blocks are weighted using a phase element(W)to produce a low-value PAPR signal.The proposed model is shown in Fig.3.

    The NOMA symbols are given asZ=[Z0,Z1,...,ZN?1],divided into several numbers of sub-blocks(v),expressed as:

    Figure 3:WT-PTS

    2.5 Wavelet Transform Based SLM-GA(SLM-GA-WT)

    We present a hybrid PAPR method grounded in artificial intelligence centered genetic algorithm sustained,SLM sequence denoted as SLM-GA,to reduce the peak power of NOMA.In the hybrid method,peak power minimization is accomplished and complexity is significantly reduced.NOMA signals are divided into different sub-blocks and applied to IDFT converting frequencydomain NOMA sub-blocks in time-domain NOMA sub-blocks.GA is introduced to generate the best phase rotation factor and added to NOMA data blocks.Further,the GA also reduces the complexity of the NOMA waveform.The WT-GA-SLM system is depicted in Fig.4.The NOMA signal is denoted as:

    Figure 4:WT-GA-SLM

    3 Simulation Results

    In this work,we employ MATLAB-2014 to assess the performance of the projected and oldstyle approaches[23,24].The parameters of the proposed simulation are indicated in Tab.1.

    Table 1:Simulation parameters

    Fig.5 represents the peak power performance of the NOMA waveform for N number of subcarriers used in the simulation(N = 64,256,and 512).N = 64,256,512 sub-carriers minimize the amplitude power to 8.5,9.2,and 14 dB respectively,at the CCDF of 10?3.Hence,we can obtain optimal PAPR performance by utilizing N = 64.

    Figure 5:PAPR for different sub-carriers(N)

    In Fig.6,we analyze the peak power reduction capability of the proposed WT-NOMA and FFT-NOMA systems.The simulation results demonstrate that the proposed WT-NOMA significantly reduces the PAPR to 9.8 dB compared with the traditional NOMA(12 dB).

    Figure 6:PAPR performance of WT-NOMA vs.FFT-NOMA

    The peak power analysis of the proposed WT-SLM and FFT-SLM for the NOMA system is presented in Fig.7.The original PAPR of NOMA at the CCDF of 10?3is 11 dB.From the simulation results,the proposed method reduces the peak power to 8.7 dB whereas the conventional SLM shows peak power of 9.8 dB.Accordingly,the proposed method achieves a gain of 1.26 dB compared with to the FFT-SLM.

    Figure 7:PAPR characteristics

    The PAPR analysis of DT-SLM for different sub-blocks(v)is shown in Fig.8.In the present simulation,v is restricted to 4,8,and 16 data blocks.The original PAPR of NOMA at the CCDF of 10?3is 11 dB.The results indicate that the proposed WT-SLM reduces the peak power to 9,8.2,and 7.4 dB for v = 4,8,16 respectively.As projected,the amplitude power of the NOMA signal can be minimized by varying the value of v.From the results,ideal PAPR can be realized using v = 16 in WT-SLM.

    Figure 8:PAPR of WT-SLM with v

    In Fig.9,we investigate the PAPR performance of the proposed WT-PTS and FFT-PTS at CCDF of 10?3.The results show that the proposed method efficiently reduces the amplitude power to 7 dB,whereas the traditional PTS has peak power of 9.4 dB.Hence,WT-SLM has better performance than the traditional PTS.

    The PAPR curve of the recommended WT-PTS for the NOMA wave is indicated in Fig.10.We confine our simulation outcomes to repetition values v and w equivalent to 2.As estimated,enhanced peak power reduction is realized by changing the values of u and w.At the CCDF of 10?3,WT-PTS minimizes the peak power to 4.2,5,6.8,and 8.6 dB for v = 4 w = 4,v = 4 w =2,v = 2 w = 4,and v = 2 w = 2,respectively,compared with the original PAPR(11 dB).From the curve,optimal PAPR performance can be achieved using v = 4 w = 4 in WT-PTS.

    Figure 9:PAPR for WT-PTS and FFT-PTS

    Figure 10:PAPR of WT-PTS with v and w

    In the NOMA waveform,the PAPR curve of the proposed SLM-GA is achieved with varying‘u’,and ‘v’numbers,as indicated in Fig.11.The original peak power of the NOMA signal without the reduction method is 11 dB.At the CCDF of 10?3,the peak power is reduced to 4.1 and 5.8 dB for WT-SLM-GA w = 4 and w = 2,respectively.Thus,efficient PAPR performance is obtained using w=4 in WT-SLM-GA.

    In Fig.12,we compare the performance of the BER curve when the signal is applied to FFT-NOMA and WT-NOMA.From the simulation results,the BER of FFT-NOMA is 10?3at 7.8 dB SNR.When the signal is passed through WT-NOMA,the BER of 10?3is obtained at the SNR of 5.3 dB.Hence,WT-NOMA provides better results than FFT-NOMA.

    To analyze the PAPR performance in NOMA,the SNR verses BER characteristic curves are plotted for the proposed and conventional reduction schemes,in Fig.13.BER of 10?3is obtained at SNRs of 4.2 dB for WT-SLM-GA w = 4,6.8 dB for WT-PTS v = 4,w = 4,6.2 dB for WT-SLM v = 16,8.4 dB for FFT-SLM,and 10.2 dB for FFT-PTS.Therefore,WT-SLM-GA outperforms other reduction schemes.

    Figure 11:PAPR of WT-GA-SLM with w

    Figure 12:BER of FFT-NOMA and WT-NOMA

    Figure 13:BER curve

    Tabs.2 and 3 indicate the gain and power saving obtained by the reduction methods,respectively.

    Table 2:Gain

    Table 3:Power saving of reduction approaches

    4 Conclusion

    We propose a novel peak power reduction method for the NOMA waveform.For the first time,WT blocks are introduced into the NOMA structure.Time-domain NOMA signals are generated and processed by applying inverse WT to acquire a fair amount of sub-blocks with a minimal number of IFFTs.Hence,NOMA-based WT(WT-NOMA)gains better PAPR and BER than the conventional NOMA(FFT-NOMA).The peak power of the transmitted WT-NOMA signals is studied by modifying the PTS and SLM techniques and SLM and PTS techniques increases the complexity of the WT-NOMA system.Therefore,we introduce a GA-based SLM method for the WT-NOMA waveform.Moreover,the proposed WT-centered reduction methods are compared with conventional SLM,PTS,and NOMA(FFT-NOMA).From the simulation analysis,WT-SLM v = 16,WT-PTS v = 4 w = 4,and WT-GA-SLM w = 4,obtain the best performance.The amplitude power is reduced to 7.4,4.2,and 4.1 dB compared with that of the original PAPR(11 dB).The conventional SLM,PTS and FFT-NOMA systems are outperformed.We also plot the BER curve to investigate the performance of the best proposed methods and traditional methods.The outcomes demonstrate that the BER performance of WT-GA-SLM better than that of SLM v = 16,PTS w = 4 v = 4,FFT-SLM,and FFT-NOMA.

    Acknowledgement:The authors would like to thank the editors of CMC and the anonymous reviewers for their time in reviewing this manuscript.The authors also acknowledge JECRC University for providing a lab facility.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲精品久久久久久婷婷小说| 最新的欧美精品一区二区| 免费人妻精品一区二区三区视频| 最新在线观看一区二区三区 | 秋霞在线观看毛片| 欧美在线黄色| 99国产精品一区二区蜜桃av | 国产精品香港三级国产av潘金莲 | 亚洲一区中文字幕在线| 国产精品久久久av美女十八| 国产av精品麻豆| 又大又黄又爽视频免费| 精品卡一卡二卡四卡免费| 亚洲国产成人一精品久久久| 久久精品国产亚洲av涩爱| 一级片免费观看大全| av片东京热男人的天堂| 美国免费a级毛片| 女人被躁到高潮嗷嗷叫费观| 精品人妻熟女毛片av久久网站| 亚洲精品久久久久久婷婷小说| 欧美国产精品一级二级三级| 亚洲午夜精品一区,二区,三区| 一个人免费看片子| 国产福利在线免费观看视频| 中文精品一卡2卡3卡4更新| 一区二区三区乱码不卡18| 自线自在国产av| 九草在线视频观看| 精品国产一区二区久久| 丰满少妇做爰视频| 女人高潮潮喷娇喘18禁视频| 国产亚洲精品久久久久5区| 色婷婷av一区二区三区视频| 亚洲国产欧美网| 狠狠精品人妻久久久久久综合| 精品人妻熟女毛片av久久网站| 香蕉国产在线看| 久久ye,这里只有精品| 777久久人妻少妇嫩草av网站| 巨乳人妻的诱惑在线观看| 香蕉丝袜av| 操美女的视频在线观看| av不卡在线播放| 亚洲成人免费av在线播放| 国产男女超爽视频在线观看| 在线av久久热| 亚洲精品日本国产第一区| 亚洲欧美色中文字幕在线| 人体艺术视频欧美日本| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕精品免费在线观看视频| 美女中出高潮动态图| 性色av乱码一区二区三区2| 免费不卡黄色视频| 在现免费观看毛片| 精品一品国产午夜福利视频| 高清黄色对白视频在线免费看| 国产成人欧美在线观看 | 日韩大码丰满熟妇| 91老司机精品| 亚洲图色成人| 男女之事视频高清在线观看 | 亚洲专区中文字幕在线| 美女脱内裤让男人舔精品视频| 国产成人91sexporn| av国产久精品久网站免费入址| 99久久人妻综合| 国产精品一区二区在线观看99| 一区二区av电影网| 老司机深夜福利视频在线观看 | 如日韩欧美国产精品一区二区三区| 青春草亚洲视频在线观看| 欧美成人午夜精品| 在线天堂中文资源库| 69精品国产乱码久久久| 一区二区三区乱码不卡18| 天天躁狠狠躁夜夜躁狠狠躁| 一级片免费观看大全| 精品一区在线观看国产| 欧美日韩亚洲高清精品| videosex国产| 成人三级做爰电影| 国产无遮挡羞羞视频在线观看| 欧美黑人欧美精品刺激| 久久这里只有精品19| 99久久99久久久精品蜜桃| 男女午夜视频在线观看| 天天操日日干夜夜撸| 久久久精品94久久精品| 啦啦啦啦在线视频资源| 女性生殖器流出的白浆| 各种免费的搞黄视频| 色婷婷久久久亚洲欧美| 亚洲第一青青草原| 麻豆国产av国片精品| 看免费av毛片| 丁香六月天网| 亚洲激情五月婷婷啪啪| 久久国产亚洲av麻豆专区| 韩国精品一区二区三区| 久久中文字幕一级| 男女高潮啪啪啪动态图| 国产一级毛片在线| 国产熟女欧美一区二区| 久久久久精品国产欧美久久久 | 涩涩av久久男人的天堂| 性色av乱码一区二区三区2| 欧美日韩亚洲国产一区二区在线观看 | 国产成人av激情在线播放| 国产成人欧美| 天堂中文最新版在线下载| √禁漫天堂资源中文www| 精品少妇一区二区三区视频日本电影| 国产在线免费精品| 18禁裸乳无遮挡动漫免费视频| 老司机亚洲免费影院| 日韩精品免费视频一区二区三区| 亚洲美女黄色视频免费看| 亚洲精品av麻豆狂野| 99久久人妻综合| 性色av乱码一区二区三区2| √禁漫天堂资源中文www| 天堂俺去俺来也www色官网| 九草在线视频观看| 美女扒开内裤让男人捅视频| 国产成人欧美| 满18在线观看网站| 久久久久精品国产欧美久久久 | 免费黄频网站在线观看国产| 亚洲人成电影观看| 日日爽夜夜爽网站| 日韩电影二区| 美女主播在线视频| 在线 av 中文字幕| 91精品三级在线观看| 亚洲欧洲国产日韩| 777久久人妻少妇嫩草av网站| 亚洲,欧美精品.| 99香蕉大伊视频| 丰满少妇做爰视频| 精品人妻在线不人妻| 亚洲五月婷婷丁香| 中文字幕av电影在线播放| 女人高潮潮喷娇喘18禁视频| 久久99精品国语久久久| 久久精品国产综合久久久| 日本欧美视频一区| 中文字幕人妻熟女乱码| 色婷婷久久久亚洲欧美| 大香蕉久久网| 夫妻午夜视频| 韩国精品一区二区三区| 18在线观看网站| 亚洲 欧美一区二区三区| 亚洲少妇的诱惑av| 亚洲五月婷婷丁香| 老司机亚洲免费影院| 亚洲,欧美精品.| 国产精品秋霞免费鲁丝片| 一本大道久久a久久精品| 在线观看免费视频网站a站| 国产精品偷伦视频观看了| 精品少妇内射三级| 另类亚洲欧美激情| 国产成人免费观看mmmm| 亚洲精品国产区一区二| 在线看a的网站| 国产精品一区二区免费欧美 | 欧美日韩综合久久久久久| 久久久国产一区二区| 久久精品久久久久久久性| 国产高清不卡午夜福利| 青春草亚洲视频在线观看| 国产深夜福利视频在线观看| 这个男人来自地球电影免费观看| 欧美乱码精品一区二区三区| 久久精品国产亚洲av涩爱| 在线av久久热| 午夜视频精品福利| 久久久亚洲精品成人影院| 久久青草综合色| 亚洲成人免费av在线播放| 汤姆久久久久久久影院中文字幕| 午夜福利影视在线免费观看| 国产在线视频一区二区| 国产精品 欧美亚洲| 欧美 日韩 精品 国产| 狠狠婷婷综合久久久久久88av| 国产精品三级大全| 97在线人人人人妻| 中国美女看黄片| 亚洲成人手机| 日韩精品免费视频一区二区三区| 精品久久久久久电影网| 欧美日韩黄片免| 国产精品av久久久久免费| 男女国产视频网站| 午夜福利视频在线观看免费| 亚洲人成电影观看| 国产精品久久久久久精品电影小说| 男女床上黄色一级片免费看| 最新在线观看一区二区三区 | 亚洲av欧美aⅴ国产| 啦啦啦视频在线资源免费观看| 在线观看一区二区三区激情| 两性夫妻黄色片| 亚洲自偷自拍图片 自拍| 欧美人与善性xxx| 久久久久久亚洲精品国产蜜桃av| 亚洲国产成人一精品久久久| 超色免费av| 午夜福利影视在线免费观看| av有码第一页| 精品一区二区三区av网在线观看 | 少妇的丰满在线观看| 少妇 在线观看| 国产在线视频一区二区| 亚洲精品国产一区二区精华液| 午夜精品国产一区二区电影| 免费高清在线观看视频在线观看| 亚洲国产精品成人久久小说| 精品国产乱码久久久久久男人| 久久影院123| 97在线人人人人妻| 国产黄频视频在线观看| 国产精品久久久久久精品电影小说| 成年人免费黄色播放视频| 国产激情久久老熟女| 午夜视频精品福利| 久久性视频一级片| 久热爱精品视频在线9| 亚洲国产日韩一区二区| 久久久久视频综合| 老司机靠b影院| 男女下面插进去视频免费观看| 日日爽夜夜爽网站| 亚洲久久久国产精品| av又黄又爽大尺度在线免费看| 老司机靠b影院| 久久久久久久久久久久大奶| 最近手机中文字幕大全| 人人妻人人澡人人爽人人夜夜| 亚洲欧洲精品一区二区精品久久久| av在线app专区| 国产精品成人在线| 九色亚洲精品在线播放| 久久精品国产亚洲av高清一级| 国精品久久久久久国模美| 两个人免费观看高清视频| 国产麻豆69| 在线观看www视频免费| 性色av乱码一区二区三区2| 亚洲,一卡二卡三卡| 欧美黑人精品巨大| 日韩一卡2卡3卡4卡2021年| 亚洲熟女毛片儿| 夫妻性生交免费视频一级片| 亚洲色图综合在线观看| 亚洲,欧美,日韩| 国产男人的电影天堂91| 精品亚洲成a人片在线观看| 后天国语完整版免费观看| 男人爽女人下面视频在线观看| videosex国产| 啦啦啦视频在线资源免费观看| 久久久欧美国产精品| 国产成人欧美在线观看 | 亚洲综合色网址| 国产精品久久久久久精品古装| 欧美精品一区二区大全| 欧美人与性动交α欧美软件| 精品久久久久久久毛片微露脸 | 无限看片的www在线观看| 在线天堂中文资源库| av一本久久久久| 国产成人系列免费观看| 菩萨蛮人人尽说江南好唐韦庄| 性色av一级| 国产女主播在线喷水免费视频网站| 精品国产国语对白av| kizo精华| 中文字幕最新亚洲高清| 国产精品国产av在线观看| 国产精品人妻久久久影院| 18禁观看日本| 婷婷色综合大香蕉| 悠悠久久av| 中国美女看黄片| 女性被躁到高潮视频| 90打野战视频偷拍视频| 免费一级毛片在线播放高清视频 | 男女无遮挡免费网站观看| 美女主播在线视频| 精品国产超薄肉色丝袜足j| 纵有疾风起免费观看全集完整版| 欧美 亚洲 国产 日韩一| 五月开心婷婷网| 久久国产精品人妻蜜桃| 国产不卡av网站在线观看| 成人三级做爰电影| 精品国产一区二区三区四区第35| 免费不卡黄色视频| 91字幕亚洲| 国产精品偷伦视频观看了| 水蜜桃什么品种好| 一级片免费观看大全| 欧美精品啪啪一区二区三区 | 欧美在线一区亚洲| a级毛片黄视频| 中文字幕人妻丝袜制服| 欧美人与性动交α欧美软件| 国产亚洲精品久久久久5区| 99久久综合免费| 国产欧美亚洲国产| 亚洲精品久久午夜乱码| 亚洲久久久国产精品| 国产高清国产精品国产三级| 91麻豆精品激情在线观看国产 | 啦啦啦在线免费观看视频4| 亚洲精品第二区| 国产亚洲欧美精品永久| 啦啦啦在线免费观看视频4| videos熟女内射| 叶爱在线成人免费视频播放| 色综合欧美亚洲国产小说| 性色av一级| 99re6热这里在线精品视频| 男女床上黄色一级片免费看| 婷婷色综合大香蕉| 国产1区2区3区精品| 国产深夜福利视频在线观看| 国产一区二区激情短视频 | 国产成人av教育| 曰老女人黄片| 成年人免费黄色播放视频| e午夜精品久久久久久久| 777久久人妻少妇嫩草av网站| 国产精品国产av在线观看| 国产极品粉嫩免费观看在线| 免费在线观看视频国产中文字幕亚洲 | 国产黄色视频一区二区在线观看| 久久亚洲国产成人精品v| 人人妻人人澡人人看| 国产老妇伦熟女老妇高清| 久久天堂一区二区三区四区| 男女高潮啪啪啪动态图| 91麻豆精品激情在线观看国产 | 国产亚洲一区二区精品| 久久精品亚洲av国产电影网| 欧美亚洲日本最大视频资源| 亚洲一卡2卡3卡4卡5卡精品中文| 飞空精品影院首页| 欧美日韩一级在线毛片| 999久久久国产精品视频| 亚洲熟女精品中文字幕| 免费在线观看影片大全网站 | 日韩一区二区三区影片| 两性夫妻黄色片| 韩国高清视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 精品国产超薄肉色丝袜足j| 国产黄频视频在线观看| 欧美 日韩 精品 国产| 亚洲一卡2卡3卡4卡5卡精品中文| 99久久精品国产亚洲精品| 久久久久久久国产电影| 亚洲欧洲国产日韩| 涩涩av久久男人的天堂| 自拍欧美九色日韩亚洲蝌蚪91| av天堂在线播放| 免费不卡黄色视频| 亚洲第一av免费看| 免费av中文字幕在线| 欧美黑人精品巨大| 中国国产av一级| 亚洲国产精品999| 亚洲av电影在线观看一区二区三区| 欧美激情 高清一区二区三区| 夫妻午夜视频| 另类亚洲欧美激情| 色视频在线一区二区三区| 一二三四社区在线视频社区8| 免费在线观看日本一区| 国产91精品成人一区二区三区 | 国产男女内射视频| 考比视频在线观看| 9色porny在线观看| 日韩,欧美,国产一区二区三区| 日日夜夜操网爽| 国产精品.久久久| 色播在线永久视频| 少妇裸体淫交视频免费看高清 | 狠狠精品人妻久久久久久综合| bbb黄色大片| 精品亚洲乱码少妇综合久久| 久久久久国产一级毛片高清牌| 国产又爽黄色视频| 久久久久精品国产欧美久久久 | 香蕉丝袜av| 日本欧美国产在线视频| 天天躁夜夜躁狠狠久久av| 亚洲欧美一区二区三区国产| 在线观看免费日韩欧美大片| 悠悠久久av| 少妇人妻 视频| 国产亚洲精品第一综合不卡| 美女扒开内裤让男人捅视频| a级片在线免费高清观看视频| 成人18禁高潮啪啪吃奶动态图| 午夜福利,免费看| 啦啦啦中文免费视频观看日本| 亚洲,欧美,日韩| 久久热在线av| 国产免费又黄又爽又色| 午夜老司机福利片| 天堂俺去俺来也www色官网| 亚洲av欧美aⅴ国产| 一区二区三区乱码不卡18| 岛国毛片在线播放| 国产视频首页在线观看| 欧美97在线视频| 亚洲av成人精品一二三区| 另类精品久久| 交换朋友夫妻互换小说| 人妻人人澡人人爽人人| 女人久久www免费人成看片| 亚洲欧洲精品一区二区精品久久久| 精品人妻一区二区三区麻豆| 亚洲色图 男人天堂 中文字幕| 中文乱码字字幕精品一区二区三区| 成在线人永久免费视频| 精品少妇久久久久久888优播| 国产日韩欧美在线精品| 亚洲欧美成人综合另类久久久| 欧美亚洲日本最大视频资源| 日本wwww免费看| 国产在线一区二区三区精| 成人国产av品久久久| 麻豆乱淫一区二区| 国产一区二区三区av在线| 狠狠精品人妻久久久久久综合| 两人在一起打扑克的视频| 午夜影院在线不卡| 久久午夜综合久久蜜桃| 成人免费观看视频高清| 欧美黑人精品巨大| 久久ye,这里只有精品| 亚洲久久久国产精品| 中文字幕高清在线视频| 成年美女黄网站色视频大全免费| 亚洲欧美精品综合一区二区三区| 日本av免费视频播放| 亚洲专区中文字幕在线| 自拍欧美九色日韩亚洲蝌蚪91| 热99久久久久精品小说推荐| 日日夜夜操网爽| 叶爱在线成人免费视频播放| 国产精品免费视频内射| 麻豆国产av国片精品| 极品少妇高潮喷水抽搐| 亚洲精品国产一区二区精华液| 久久亚洲国产成人精品v| 日日摸夜夜添夜夜爱| 肉色欧美久久久久久久蜜桃| 侵犯人妻中文字幕一二三四区| 国产一区二区三区av在线| av线在线观看网站| 国产亚洲欧美精品永久| www.999成人在线观看| 亚洲欧美一区二区三区久久| av网站免费在线观看视频| 国产精品一二三区在线看| 黄色片一级片一级黄色片| 国产日韩欧美在线精品| 久久国产精品人妻蜜桃| 黑丝袜美女国产一区| 欧美日韩av久久| 后天国语完整版免费观看| 亚洲精品一区蜜桃| 欧美另类一区| 国产精品.久久久| 在现免费观看毛片| 制服诱惑二区| 亚洲国产毛片av蜜桃av| 亚洲情色 制服丝袜| 波野结衣二区三区在线| 亚洲欧美精品综合一区二区三区| 欧美日韩福利视频一区二区| 国产成人系列免费观看| 亚洲情色 制服丝袜| 黑丝袜美女国产一区| 亚洲欧美一区二区三区国产| 国产极品粉嫩免费观看在线| 久久精品熟女亚洲av麻豆精品| 我的亚洲天堂| 少妇裸体淫交视频免费看高清 | 国产深夜福利视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| av线在线观看网站| 90打野战视频偷拍视频| 中文字幕色久视频| 国产xxxxx性猛交| av一本久久久久| 国产不卡av网站在线观看| 我的亚洲天堂| 国产亚洲欧美在线一区二区| 午夜福利视频精品| 熟女av电影| 精品一区在线观看国产| 熟女av电影| 亚洲,一卡二卡三卡| 看十八女毛片水多多多| 制服人妻中文乱码| 一区二区日韩欧美中文字幕| 熟女少妇亚洲综合色aaa.| 人妻 亚洲 视频| av片东京热男人的天堂| 欧美精品高潮呻吟av久久| 99久久精品国产亚洲精品| 亚洲图色成人| 国产精品亚洲av一区麻豆| 国产xxxxx性猛交| 久久久久精品国产欧美久久久 | 精品福利观看| 免费观看av网站的网址| 亚洲国产精品成人久久小说| 看免费成人av毛片| 久久99热这里只频精品6学生| 国产成人一区二区在线| 中文字幕av电影在线播放| 国产淫语在线视频| 七月丁香在线播放| 国产深夜福利视频在线观看| 国产成人一区二区三区免费视频网站 | 日韩 欧美 亚洲 中文字幕| 青草久久国产| 欧美成人午夜精品| 久久精品亚洲av国产电影网| 婷婷色av中文字幕| 汤姆久久久久久久影院中文字幕| 天天躁日日躁夜夜躁夜夜| 国产亚洲精品久久久久5区| 九色亚洲精品在线播放| 成人手机av| 美女视频免费永久观看网站| 国产国语露脸激情在线看| 十八禁高潮呻吟视频| 操美女的视频在线观看| 波多野结衣av一区二区av| 高清av免费在线| 欧美97在线视频| 国产精品三级大全| 亚洲成人国产一区在线观看 | 99国产精品免费福利视频| 黄色毛片三级朝国网站| 国产高清不卡午夜福利| 2021少妇久久久久久久久久久| 国产成人精品久久久久久| 精品福利观看| 久久99精品国语久久久| 亚洲国产成人一精品久久久| 性少妇av在线| 精品国产一区二区三区四区第35| 欧美日韩亚洲国产一区二区在线观看 | 国产精品99久久99久久久不卡| 日韩大码丰满熟妇| 黄色 视频免费看| 国产成人91sexporn| 久久av网站| www日本在线高清视频| 日本一区二区免费在线视频| 久久天堂一区二区三区四区| 又黄又粗又硬又大视频| 中文字幕人妻熟女乱码| 国产精品久久久人人做人人爽| 一级毛片我不卡| 日本色播在线视频| 成人午夜精彩视频在线观看| av电影中文网址| 后天国语完整版免费观看| h视频一区二区三区| netflix在线观看网站| 成年人黄色毛片网站| 日韩 欧美 亚洲 中文字幕| 热re99久久国产66热| 国产黄频视频在线观看| 青春草视频在线免费观看| 99久久综合免费| 成年人黄色毛片网站| 久久精品熟女亚洲av麻豆精品| 99久久99久久久精品蜜桃| 欧美成狂野欧美在线观看| 在线观看免费视频网站a站| 欧美日韩国产mv在线观看视频| 午夜av观看不卡| avwww免费| 久久精品国产综合久久久| 亚洲熟女精品中文字幕| 午夜福利一区二区在线看| av电影中文网址| 99精品久久久久人妻精品| 久久天堂一区二区三区四区| 99国产精品一区二区三区| 少妇人妻 视频| 深夜精品福利| 国产精品99久久99久久久不卡| 十分钟在线观看高清视频www| 九草在线视频观看| 麻豆乱淫一区二区| 国产亚洲欧美精品永久| 成人亚洲欧美一区二区av| 每晚都被弄得嗷嗷叫到高潮| 久久久久精品国产欧美久久久 | 亚洲色图 男人天堂 中文字幕|