• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Efficient CNN-Based Automated Diagnosis Framework from COVID-19 CT Images

    2021-12-10 11:57:50WalidElShafaiNohaElHagGhadaElBanbyAshrafKhalafNaglaaSolimanAbeerAlgarniandFathiAbdElSamie
    Computers Materials&Continua 2021年10期

    Walid El-Shafai,Noha A.El-Hag,Ghada M.El-Banby,Ashraf A.M.Khalaf Naglaa F.Soliman,Abeer D.Algarni and Fathi E.Abd El-Samie,

    1Department Electronics and Electrical Communications,Faculty of Electronic Engineering,Menoufia University,Menouf,32952,Egypt

    2Department of Electronics and Electrical Communications,Faculty of Engineering,Minia University,Egypt

    3Department of Industrial Electronics and Control Engineering,Faculty of Electronic Engineering,Menoufia University,Menouf,32952,Egypt

    4Department of Information Technology,College of Computer and Information Sciences,Princess Nourah Bint Abdulrahman University,Riyadh,84428,Saudi Arabia

    Abstract:Corona Virus Disease-2019(COVID-19)continues to spread rapidly in the world.It has dramatically affected daily lives,public health,and the world economy.This paper presents a segmentation and classification framework of COVID-19 images based on deep learning.Firstly,the classification process is employed to discriminate between COVID-19,non-COVID,and pneumonia by Convolutional Neural Network(CNN).Then,the segmentation process is applied for COVID-19 and pneumonia CT images.Finally,the resulting segmented images are used to identify the infected region,whether COVID-19 or pneumonia.The proposed CNN consists of four Convolutional(Conv)layers,four batch normalization layers,and four Rectified Linear Units(ReLUs).The sizes of Conv layer used filters are 8,16,32,and 64.Four maxpooling layers are employed with a stride of 2 and a 2 × 2 window.The classification layer comprises a Fully-Connected(FC)layer and a soft-max activation function used to take the classification decision.A novel saliencybased region detection algorithm and an active contour segmentation strategy are applied to segment COVID-19 and pneumonia CT images.The acquired findings substantiate the efficacy of the proposed framework for helping the specialists in automated diagnosis applications.

    Keywords:Classification;segmentation;COVID-19;CNN;deep learning;diagnosis applications

    1 Introduction

    Medical imaging includes various imaging modalities to clarify the parts of the human body for diagnostic and therapeutic objectives,and thus it plays a significant role in initiatives to enhance public health for all population groups.Moreover,imaging is often warranted in the follow-up of a disease that has already been diagnosed and treated.Medical images can be acquired with several techniques such as MRI(Magnetic Resonance Imaging),CT(Computed Tomography),X-ray imaging,and PET(Positron Emission Tomography)[1,2].

    The CT is a diagnostic imaging technique performed to build cross-sectional images of the human body by the X-ray.The cross-sections are reconstructed from the attenuation factors evaluation of the X-ray beams into the studied object size.It depends on the basic principle that the tissue density that a beam of the X-ray moves can be evaluated by computing the attenuation factor.Using this principle,CT allows reconstructing the body density through a two-dimensional section perpendicular to the acquisition system axis[3].

    At the end of 2019,COVID-19 began to spread.The classification and the segmentation of COVID-19 images is now a critical task for the researchers.The coronavirus spreads so quickly between people.With increasing infection rates of this virus,researchers directed their work to find effective solutions in detecting and diagnosing COVID-19.The early detection of the virus aids in selecting the proper treatment[4,5].

    COVID-19 is an irresistible disease initiated by a new virus that has not been discovered in humans before.The virus causes a respiratory disease with symptoms like fever and coughing,causing pneumonia in more serious cases.The new coronavirus is spread by contact with an infected person.The rapid and correct diagnosis of this disease plays a significant role in effective treatment planning and patient care.Several imaging techniques have been applied for the diagnosis of coronavirus images.Imaging tests can aid the specialists to discover the disease.The CT scan works as a practical approach to the early screening of COVID-19[6].

    Deep learning networks are the best choice for image classification.They are used to extract the image features automatically.Besides,a CNN is a type of deep learning network that can efficiently work on medical images.It helps to extract and learn valuable features found in images.A CNN is composed of input and output layers and many hidden layers.The hidden layers comprise pooling layers,convolutional layers,and fully-connected layers[7–12].

    Our paper contribution is to present a framework for the classification and segmentation of COVID-19 CT images.The suggested framework succeeds in dealing with the non-homogeneity and high CT image variations in the segmentation process.A novel saliency-based region detection algorithm and an active contour segmentation strategy are applied to segment the COVID-19 and pneumonia CT images.The used segmentation algorithm clarifies the affected region,accurately.The proposed framework achieves high performance in the classification and segmentation processes.The implemented CNN from scratch on CT images classifies normal,pneumonia,and COVID-19 cases.The proposed framework achieves an accuracy of 99.59% in the classification process.

    The remainder of this study is summarized as follows.The related works are discussed in Section 2.The proposed hybrid classification-segmentation framework is presented in Section 3.The utilized dataset description is introduced in Section 4.Extensive experimental analyses to validate the proposed framework are offered in Section 5.Lastly,the concluding remarks are summarized in Section 6.

    2 Related Work

    Sethy et al.[13]introduced a technique of COVID-19 detection depending on deep features.The image features are extracted from a pre-trained CNN such as AlexNet,VGG16,and VGG19.The resulting features are classified by an SVM(Support Vector Machine).This technique is utilized to classify X-ray chest pneumonia.Turkoglu et al.[14]presented a technique for the classification and detection of COVID-19 based on CNN.The effective features are chosen using the relief feature selection algorithm from all layers of the architecture of the AlexNet.Then,the classification process is applied with the SVM.This technique classifies COVID-19,normal,and pneumonia chest X-ray images.

    Ouchicha et al.[15]proposed a model for detecting COVID-19 from chest X-ray images based on deep learning.This model depends on the residual neural network,and it is built with multilevels with various kernel dimensions to determine the local and global features.Residuals are connected to other levels to participate with information.This model achieved an accuracy of 96.69%.Jain et al.[16]introduced a system for pneumonia detection from chest X-ray images using CNNs and transfer learning.This system depends on six different networks for pneumonia detection.The first and the second networks are composed of two and three convolutional layers,correspondingly.The other four networks are pre-trained models such as ResNet50,Inception-v3,VGG16,and VGG19.

    Oulefki et al.[17]presented a technique for the segmentation of COVID-19 chest CT images.The local mean filter is used to improve the image quality.Multi-level thresholding segmentation is applied to segment the images into pneumonia and non-pneumonia regions.This technique achieved a segmentation accuracy of 98%.Amyar et al.[18]presented a technique for segmentation and classification of COVID-19 based on deep learning.This technique depends on a multi-task algorithm to identify COVID-19 patients and segment COVID-19 lesions from chest CT images.A single encoder is used for feature extraction.Two decoders and a multi-layer perceptron are applied for reconstruction,segmentation,and classification,respectively.

    Mahmud et al.[19]presented an attempt for detection of COVID-19 and pneumonia from X-ray images.Different forms of CNN are designed and trained on X-ray images of several resolutions for performance optimization.Gradient-based differential localization was incorporated to distinguish abnormal areas from X-ray images indicating different types of pneumonia.Wang et al.[20]introduced a technique for classification of COVID-19 CT images.This technique is composed of three steps.Firstly,the Region of Interest(RoI)is randomly chosen.Then,the pretrained CNN model is trained to extract features of the images.Finally,a classification network is used to discriminate the COVID-19 cases.

    3 The Proposed Hybrid Classification-Segmentation Framework

    The proposed framework is applied for the classification and segmentation of COVID-19 images.Firstly,the classification process is employed to discriminate between COVID-19,non-COVID,and pneumonia.Then,the segmentation process is applied for COVID-19 and pneumonia CT images.Finally,the resulting segmented images are used to identify the infected region,whether it is COVID-19 or pneumonia.The CNN is used for the classification process.The CNN is composed of an input layer,convolutional layers,pooling layers,and a classification layer.The input layer takes CT images with size 512 × 512.The convolutional layers comprise convolution operation,batch normalization layer,and ReLU function.The classification layer consists of a fully-connected layer and a soft-max activation function to take the classification decision.The proposed CNN consists of four Conv layers,four batch normalization layers,and four ReLU functions.The sizes of the used filters of Conv layers are 8,16,32,and 64.Four max-pooling layers are implemented with stride two and window size 2 × 2.Fig.1 shows the flow diagram of the suggested classification and segmentation framework of COVID-19 CT images.

    Figure 1:Flow diagram of the suggested classification and segmentation framework

    3.1 Convolutional Layer

    The convolution is the essential operation of the CNN that is performed to extract specific characteristics from the input images.A mathematical process is performed by moving a window over the whole image to generate the feature map as the output[21,22].This process decreases the image size,which makes it simpler to manipulate the image.Each point in the generated feature map can be evaluated as:

    wherepirepresents the pixel at positioniandwirepresents the wight of that pixel in the RoIS.

    3.1.1 Activation Function

    Two types of activation functions are employed in the proposed framework:ReLU and softmax.The ReLU is a widely used activation function because it presents a good performance in learning,and it is less expensive.It is applied in the Conv layer to generate the feature maps.On the other hand,soft-max is applied in the classification layer of the CNN.The soft-max function normalizes the inputs into a probability distribution[15,16].

    3.1.2 Batch Normalization Layer

    It is a layer that is used to enhance the convergence during the training process.It is implemented for performance optimization to decrease over-fitting and achieve better test accuracy[15].

    3.2 Pooling Layer

    It is used to decrease the image size.The number of parameters is decreased,and also the computational complexity is reduced to govern the over-fitting.The pooling operations are characterized by a specific window size and a specific size of stride.Polling is classified into average pooling and max pooling[23,24].

    3.3 Classification Layer

    This is the last layer of the CNN that transforms the fully-connected layer output to several classes.It consists of a fully-connected layer and a soft-max activation function.Adam optimizer is implemented to update the weights of the network depending on the training data.The softmax activation function is used to provide the classification output[25–28].

    3.4 Segmentation of COVID-19 CT Images

    Due to intensity inhomogeneity and pixel variations of CT images,the segmentation of COVID-19 images is still challenging.A novel saliency-based region detection algorithm and an active contour segmentation strategy are applied to segment COVID-19 and pneumonia CT images.In image segmentation,saliency refers to a pixel or object appearance in an obvious way among its neighbors and illustrates the unique characteristics of an image[28].The saliency information can be used to segment the image.In this paper,we develop active contour segmentation for the segmentation of COVID-19 and pneumonia CT images.This algorithm successfully deals with the significant variations in size,texture,and position of infection in COVID-19 CT images.

    The saliency-based region detection and image segmentation algorithm is applied to overcome intensity inhomogeneities and significant variations of images.A new level-set evolution protocol of active contour is designed depending on internal and external energy functions.A new energy function is derived to extract the objects obviously[28–33].We haveI:Ω →?2withIas the input image and Ω as the image domain.φis the level-set function with initial contourC:{x∈Ω|φ=0}.Ω0:{Ω|φ=0},Ωin:{Ω|φ<0},Ωex:{Ω|φ>0}.Ω0,ΩinandΩexare the zero-level set domains inside and outsideΩ0.The proposed energy function is defined as:

    The external functionEexis defined by region,gradient,and saliency.On the other hand,the internal energy functionEinis used as a restriction for level set evolution.For non-homogeneous images,the pixels are gathered and pixels with the same intensity and saliency values are grouped together in Ωinand Ωex.Eexincludes the saliency information and the color intensity variance of Ωinand ΩexforI.

    4 Dataset Descriptions

    The used dataset contains CT images for normal,pneumonia,and COVID-19 cases.This dataset has been acquired by China national center of bio-information.The size of the input images is 512 × 512.The images were downloaded from Kaggle repository.Fig.2 shows sample images of normal,pneumonia,and COVID-19 cases.

    Figure 2:Samples of images of COVID-19,pneumonia,and normal cases

    5 Simulation Results and Discussions

    The CNN is trained from scratch on CT images to classify normal,pneumonia,and COVID-19 cases.The proposed framework achieves an accuracy of 99.59%,with 80% of the data for training and 20% for testing.It achieves 99.17% with 70% of the data for training and 30% for testing,and 98.34% with 60% of the data for training and 40% for testing.Training accuracy illustrates the percentage of correct images being classified under the correct label.The computed loss function is a cross-entropy loss function that is plotted versus iterations.After applying the classification process,the COVID-19 and pneumonia images are segmented by saliency-based region detection and image segmentation to detect the infected region,accurately.The resulting segmented images help specialists to diagnose the disease and detect the appropriate treatment.

    Metrics are used to assess the suggested framework performance in terms of accuracy,loss,sensitivity,specificity,F1 score,precision,MCC(Matthews Correlation Coefficient),and NPV(Negative Predictive Value).Accuracy defines the efficiency of the proposed framework.Accuracy and loss are the most important metrics that are used to define performance.The loss and accuracy curves clarify the validation and training data.TP(True Positive),TN(True Negative),FP(False Positive),andTN(False Negative)are used to determine the used metrics[37,38].Prediction ratio per class is illustrated in the confusion matrix of pneumonia,normal,and COVID-19 cases.Prediction ratios for all classes are very encouraging.An important consideration is the balanced distribution of images in the dataset.The balanced distribution enhances prediction results.

    Fig.3 shows training and validation accuracy of the proposed framework for classification with 80% for training and 20% for testing.Fig.4 shows cross-entropy loss of the proposed framework for classification with 80% for training and 20% for testing.Fig.5 shows training and validation accuracy of the proposed framework for classification with 70% for training and 30% for testing.Fig.6 shows cross-entropy loss of the proposed framework for classification with 70% for training and 30% for testing.Fig.7 shows training and validation accuracy of the proposed framework for classification with 60% for training and 40% for testing.Fig.8 shows cross-entropy loss of the proposed framework for classification with 60% for training and 40% for testing.Fig.9 illustrates definitions ofTP,FP,TN,andFNfor infected persons with COVID-19.Fig.10 shows confusion matrix of the proposed framework with a classification CNN.Fig.11 shows evaluation results of the CNN model.Tab.1 demonstrates evaluation metric values of the proposed framework with 80% for training and 20% for testing.Tab.2 illustrates evaluation metric values of the proposed framework 70% for training and 30% for testing.Tab.3 shows the evaluation metric values of the proposed framework with 60% for training and 40% for testing.

    Figure 3:Training and the validation accuracy of the proposed framework with 80% for training and 20% for testing

    Figure 4:Cross-entropy loss of the proposed framework for with 80% for training and 20% for testing

    The proposed CNN model was implemented for different training and testing sets.The proposed framework achieves high accuracy for all sets.Different evaluation metrics are used to assess its performance.It achieves good performance based on these metrics.

    Tab.1 illustrates the classification metrics with 80% for training and 20% for testing.Tab.2 illustrates the classification metrics with 70% for training and 30% for testing.Tab.3 illustrates the classification metrics with 60% for training and 40% for testing.The results in Fig.10 illustrates the confusion matrices of the proposed framework for different sets of training and testing.The confusion matrix depends on false positive rate and true negative rate for evaluating the performance.The results in Fig.11 illustrate different CNN evaluation metrics for all training and testing sets.The proposed framework achieves good results for various training and testing sets.

    Fig.12 shows samples of the resulting segmented COVID-19 CT images.Fig.13 shows samples of the resulting segmented pneumonia CT images.Tab.4 shows evaluation metric values for samples of the resulting segmented COVID-19 CT images.Tab.5 gives evaluation metric values for samples of the resulting segmented pneumonia CT images.Tab.6 shows a comparison of the suggested framework for segmentation with other models.Tab.7 shows a comparison of the suggested framework for classification with other models.

    Figure 5:Training and the validation accuracy of the proposed framework with 70% for training and 30% for testing

    Figure 6:Cross-entropy loss of the proposed framework with 70% for training and 30% for testing

    Figs.12 and 13 illustrate the resulting segmented COVID-19 and pneumonia CT images.The visual images reveal the difference between COVID-19 and pneumonia cases in segmented images.In addition,the evaluation metrics of the resulting segmented images ensure high accuracy and efficiency of segmentation.

    Figure 7:Training and the validation accuracy of the proposed framework with 60% for training and 40% for testing

    Figure 8:Cross-entropy loss of the proposed framework with 60% for training and 40% for testing

    Figure 9:Definition of TP,FP,TN,and FN for COVID-19 infected persons

    Figure 10:Confusion matrix(a)80% for training and 20% for testing,(b)70% for training and 30% for testing,(c)60% for training 40% for testing

    The proposed framework is applied to segment and classify COVID-19,normal,and pneumonia CT images.The classification process is performed with a CNN,and it achieves accuracies of 99.59%,99.17%,and 98.34% for the 80% for training and 20% for testing,70% for training and 20% for testing,and 60% for training and 40% for testing,respectively.The proposed framework for classification and segmentation achieves high performance.Also,visual results reveal a difference between COVID-19 and pneumonia CT images.

    Evaluation m AccuracyetricPercentage(%)99.56 Specificity100 Precision100 Negative predictive value99.21 F1 score0.9960 Sensitivity0.9920 MCC0.9920

    Table 2:Evaluation metric values of the proposed framework with 70% for training and 30% for testing

    Table 3:Evaluation metric values of the proposed framework with 60% for training and 40% for testing

    Figure 12:Samples of resulting segmented COVID-19 images

    Tab.4 illustrates segmentation metrics of segmented COVID-19 CT images.Tab.5 illustrates segmentation metrics of segmented pneumonia CT images.Tab.6 gives a comparison between the proposed framework for COVID-19 and pneumonia image segmentation and other models.The proposed framework is more accurate than other models.Tab.7 illustrates a performance comparison between the proposed framework for classification and other models.The proposed framework is more accurate than the other models.

    Figure 13:Samples of resulting segmented pneumonia images

    Table 4:Evaluation metric values of samples of segmented COVID-19 CT images

    Table 5:Evaluation metric values of samples of the resulting segmented pneumonia CT images

    Table 6:Comparison between the proposed framework for segmentation and other models

    Table 7:Comparison between the proposed framework for classification and other models

    6 Conclusions and Future Work

    This paper presented an efficient framework for the classification and segmentation of COVID-19,normal,and pneumonia CT images.The classification process is based on a CNN composed of four Conv layers,four max-pooling layers,and a classification layer.A novel saliency-based region detection algorithm and an active contour segmentation strategy are applied for the segmentation of COVID-19 and pneumonia CT images.Simulation results proved that the accuracy level achieved on CT images with the CNN reaches 99.59%.The outcomes of the suggested framework are better compared to those of the other conventional models.In the future,we can incorporate advanced deep learning and transfer learning algorithms for the classification and segmentation processes on large datasets of COVID-19,X-ray and CT images for achieving a more efficient automated diagnosis process.

    Acknowledgement:The authors would like to thank the support of the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University.

    Funding Statement:This research was funded by the Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University through the Fast-track Research Funding Program.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    12—13女人毛片做爰片一| 久久婷婷成人综合色麻豆| av国产精品久久久久影院| 久久久国产一区二区| 欧美色视频一区免费| 久久久久精品人妻al黑| 手机成人av网站| 91老司机精品| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩中文字幕国产精品一区二区三区 | 啪啪无遮挡十八禁网站| 国产三级黄色录像| 欧美黑人精品巨大| 老汉色∧v一级毛片| 99久久99久久久精品蜜桃| 91麻豆av在线| 欧美人与性动交α欧美精品济南到| 叶爱在线成人免费视频播放| ponron亚洲| 日本黄色视频三级网站网址 | 精品国产美女av久久久久小说| 99久久人妻综合| 午夜福利影视在线免费观看| 久久青草综合色| 国产精品免费大片| 老司机午夜十八禁免费视频| 操出白浆在线播放| 中文字幕人妻丝袜制服| 精品久久久久久久毛片微露脸| 欧美黑人欧美精品刺激| 亚洲伊人色综图| 在线观看66精品国产| 在线十欧美十亚洲十日本专区| 国产成人av激情在线播放| 女人精品久久久久毛片| 午夜老司机福利片| 亚洲国产精品一区二区三区在线| 国产三级黄色录像| 一进一出好大好爽视频| 国产在线一区二区三区精| 亚洲专区国产一区二区| netflix在线观看网站| 在线播放国产精品三级| 人妻久久中文字幕网| 久久久久视频综合| 十分钟在线观看高清视频www| 国产熟女午夜一区二区三区| 视频在线观看一区二区三区| 色94色欧美一区二区| 亚洲人成77777在线视频| 午夜福利一区二区在线看| 亚洲精品在线观看二区| 亚洲国产欧美日韩在线播放| 欧美国产精品va在线观看不卡| 久久 成人 亚洲| 免费观看精品视频网站| 两个人看的免费小视频| 成熟少妇高潮喷水视频| 国产成人免费观看mmmm| 热99re8久久精品国产| 久久久国产成人免费| 电影成人av| 老汉色av国产亚洲站长工具| 亚洲国产精品sss在线观看 | 欧美日韩亚洲国产一区二区在线观看 | 亚洲av电影在线进入| videos熟女内射| 欧美 日韩 精品 国产| 久久久久久免费高清国产稀缺| 精品卡一卡二卡四卡免费| 我的亚洲天堂| 欧美另类亚洲清纯唯美| 亚洲综合色网址| 中出人妻视频一区二区| 欧美日韩一级在线毛片| 亚洲国产欧美一区二区综合| 日韩欧美一区二区三区在线观看 | 国产免费av片在线观看野外av| 亚洲欧美色中文字幕在线| 亚洲一区中文字幕在线| 精品一区二区三区av网在线观看| 搡老乐熟女国产| 亚洲第一欧美日韩一区二区三区| 黄色片一级片一级黄色片| 欧美日韩成人在线一区二区| 19禁男女啪啪无遮挡网站| 精品亚洲成国产av| 人人妻,人人澡人人爽秒播| 飞空精品影院首页| 丁香六月欧美| 18禁裸乳无遮挡动漫免费视频| 青草久久国产| 成在线人永久免费视频| 高清视频免费观看一区二区| 欧美在线黄色| 久久久久久免费高清国产稀缺| netflix在线观看网站| 欧美最黄视频在线播放免费 | 亚洲av电影在线进入| 欧美老熟妇乱子伦牲交| 亚洲第一av免费看| 精品久久久久久,| 婷婷精品国产亚洲av在线 | 国产av精品麻豆| 久久久水蜜桃国产精品网| 欧美黄色片欧美黄色片| 亚洲国产毛片av蜜桃av| ponron亚洲| 大型黄色视频在线免费观看| 午夜视频精品福利| 亚洲三区欧美一区| 看黄色毛片网站| 久久精品国产综合久久久| 成人18禁在线播放| 国产精品久久电影中文字幕 | 男男h啪啪无遮挡| 少妇猛男粗大的猛烈进出视频| 一级毛片女人18水好多| 国产精品永久免费网站| 欧美丝袜亚洲另类 | xxxhd国产人妻xxx| 日本撒尿小便嘘嘘汇集6| 欧美黄色淫秽网站| 国产精品美女特级片免费视频播放器 | 制服诱惑二区| 天天操日日干夜夜撸| 亚洲av熟女| 亚洲精品自拍成人| 男人的好看免费观看在线视频 | 久久 成人 亚洲| 日日爽夜夜爽网站| 国产精品秋霞免费鲁丝片| 一级a爱片免费观看的视频| 国产精品久久久久久精品古装| 三上悠亚av全集在线观看| 麻豆成人av在线观看| 久久久久久免费高清国产稀缺| 美女视频免费永久观看网站| 欧美 日韩 精品 国产| 久久久久久久国产电影| 99久久人妻综合| 巨乳人妻的诱惑在线观看| 欧美精品高潮呻吟av久久| 成人精品一区二区免费| 久久青草综合色| 看片在线看免费视频| 美国免费a级毛片| 日韩免费高清中文字幕av| 曰老女人黄片| 亚洲专区字幕在线| www日本在线高清视频| 国产人伦9x9x在线观看| 亚洲精品国产一区二区精华液| 精品第一国产精品| 欧美成人免费av一区二区三区 | √禁漫天堂资源中文www| 久久人人爽av亚洲精品天堂| 免费一级毛片在线播放高清视频 | 亚洲成av片中文字幕在线观看| 日韩欧美一区二区三区在线观看 | 波多野结衣一区麻豆| 男人的好看免费观看在线视频 | 精品亚洲成a人片在线观看| 国产精品香港三级国产av潘金莲| 人妻 亚洲 视频| 欧美激情 高清一区二区三区| 少妇被粗大的猛进出69影院| 日韩欧美一区二区三区在线观看 | 最新的欧美精品一区二区| 国产欧美日韩一区二区精品| bbb黄色大片| 亚洲一卡2卡3卡4卡5卡精品中文| 99热国产这里只有精品6| 可以免费在线观看a视频的电影网站| 熟女少妇亚洲综合色aaa.| 黄色丝袜av网址大全| 久久青草综合色| 久久精品亚洲精品国产色婷小说| 又黄又爽又免费观看的视频| 超碰97精品在线观看| 久久国产乱子伦精品免费另类| 在线观看免费视频网站a站| 91精品三级在线观看| 国产精品香港三级国产av潘金莲| 亚洲第一青青草原| 十八禁网站免费在线| 成人免费观看视频高清| 亚洲欧美一区二区三区黑人| 大型av网站在线播放| 波多野结衣一区麻豆| 中文字幕人妻熟女乱码| 精品熟女少妇八av免费久了| 夜夜夜夜夜久久久久| 欧美国产精品一级二级三级| 精品欧美一区二区三区在线| 国产高清国产精品国产三级| 一级毛片精品| 中文字幕av电影在线播放| x7x7x7水蜜桃| 麻豆乱淫一区二区| 国产精品久久久av美女十八| 99精品欧美一区二区三区四区| 国产成人精品久久二区二区免费| 最新美女视频免费是黄的| 一级毛片女人18水好多| 黄色毛片三级朝国网站| 午夜日韩欧美国产| 欧美国产精品va在线观看不卡| 久久国产精品影院| 国产一区二区三区视频了| 色在线成人网| 亚洲视频免费观看视频| 久久香蕉国产精品| 99国产精品一区二区蜜桃av | 变态另类成人亚洲欧美熟女 | 亚洲精华国产精华精| 99久久国产精品久久久| 欧美精品av麻豆av| 黄片播放在线免费| 热re99久久国产66热| 色婷婷久久久亚洲欧美| 丰满饥渴人妻一区二区三| 人人妻,人人澡人人爽秒播| 亚洲精品一二三| 丝袜美腿诱惑在线| 亚洲一区二区三区欧美精品| aaaaa片日本免费| www.精华液| xxx96com| 老司机亚洲免费影院| 999精品在线视频| 自线自在国产av| 1024香蕉在线观看| 亚洲成av片中文字幕在线观看| 久久久久久久午夜电影 | 精品国产一区二区三区久久久樱花| 国产成人影院久久av| 久久久精品国产亚洲av高清涩受| 老司机福利观看| 91精品国产国语对白视频| 老司机在亚洲福利影院| 久久婷婷成人综合色麻豆| 免费少妇av软件| 欧美激情极品国产一区二区三区| 亚洲七黄色美女视频| 又紧又爽又黄一区二区| 欧美日韩精品网址| 少妇粗大呻吟视频| videos熟女内射| 久久中文看片网| 大陆偷拍与自拍| 日韩大码丰满熟妇| 国产欧美日韩一区二区精品| 日韩一卡2卡3卡4卡2021年| 久久久久精品国产欧美久久久| 看片在线看免费视频| 国产亚洲av高清不卡| 99久久人妻综合| 久久天堂一区二区三区四区| 1024香蕉在线观看| 亚洲人成77777在线视频| 成人免费观看视频高清| 1024视频免费在线观看| 99香蕉大伊视频| 亚洲一区高清亚洲精品| 91老司机精品| 亚洲自偷自拍图片 自拍| 国产成+人综合+亚洲专区| 国产99白浆流出| 80岁老熟妇乱子伦牲交| 人人妻人人澡人人爽人人夜夜| 男人的好看免费观看在线视频 | 777久久人妻少妇嫩草av网站| 老司机深夜福利视频在线观看| 国产精品久久久久久精品古装| 久久精品国产亚洲av香蕉五月 | 在线播放国产精品三级| 搡老熟女国产l中国老女人| 老熟女久久久| 精品国产美女av久久久久小说| 亚洲av熟女| 在线av久久热| 黄色毛片三级朝国网站| 成年人午夜在线观看视频| 99国产极品粉嫩在线观看| 欧美激情极品国产一区二区三区| 亚洲av第一区精品v没综合| 美女 人体艺术 gogo| 国产高清国产精品国产三级| 日韩免费高清中文字幕av| 纯流量卡能插随身wifi吗| 亚洲av成人av| 日韩大码丰满熟妇| 日韩有码中文字幕| 精品国产乱子伦一区二区三区| 久久国产精品影院| 亚洲片人在线观看| 最近最新中文字幕大全免费视频| 很黄的视频免费| 国产成人免费无遮挡视频| 欧美日韩亚洲高清精品| 午夜免费观看网址| 亚洲国产欧美一区二区综合| 99热国产这里只有精品6| 国产aⅴ精品一区二区三区波| 亚洲专区国产一区二区| 国产又爽黄色视频| 国产免费现黄频在线看| 亚洲黑人精品在线| 777米奇影视久久| 王馨瑶露胸无遮挡在线观看| 嫩草影视91久久| 在线永久观看黄色视频| 欧美在线一区亚洲| 国产国语露脸激情在线看| 黄色丝袜av网址大全| 香蕉久久夜色| 亚洲伊人色综图| 岛国毛片在线播放| 后天国语完整版免费观看| 国产精品一区二区免费欧美| 一级a爱视频在线免费观看| 精品亚洲成a人片在线观看| 成在线人永久免费视频| 免费在线观看亚洲国产| 窝窝影院91人妻| 天天躁夜夜躁狠狠躁躁| 国产不卡av网站在线观看| а√天堂www在线а√下载 | 咕卡用的链子| 97人妻天天添夜夜摸| 国产精品久久久av美女十八| 国产精品一区二区在线观看99| 日韩有码中文字幕| 久久热在线av| 真人做人爱边吃奶动态| 精品国产超薄肉色丝袜足j| 欧美在线黄色| 久久久水蜜桃国产精品网| 国产精华一区二区三区| 亚洲精品国产一区二区精华液| 男女高潮啪啪啪动态图| 一本综合久久免费| www.自偷自拍.com| www.999成人在线观看| 亚洲人成电影观看| 亚洲精品国产一区二区精华液| av不卡在线播放| 久久人人97超碰香蕉20202| 久久精品熟女亚洲av麻豆精品| 久久亚洲真实| 正在播放国产对白刺激| 亚洲三区欧美一区| 国产又色又爽无遮挡免费看| 男女下面插进去视频免费观看| 一进一出抽搐动态| 男女高潮啪啪啪动态图| 热99国产精品久久久久久7| tube8黄色片| 亚洲国产精品一区二区三区在线| 国产单亲对白刺激| 一本综合久久免费| 久久久精品国产亚洲av高清涩受| 欧美成人免费av一区二区三区 | 12—13女人毛片做爰片一| 国产一区二区激情短视频| 欧美日韩福利视频一区二区| 欧美大码av| 亚洲精品在线美女| 亚洲av美国av| 十八禁人妻一区二区| e午夜精品久久久久久久| 国产1区2区3区精品| 不卡一级毛片| 欧美激情极品国产一区二区三区| 国产精品偷伦视频观看了| 欧美精品av麻豆av| 亚洲五月色婷婷综合| 免费在线观看完整版高清| 视频在线观看一区二区三区| 老司机福利观看| 国产精品98久久久久久宅男小说| 亚洲av美国av| 久久性视频一级片| 亚洲情色 制服丝袜| 18禁观看日本| 99国产精品免费福利视频| 在线观看免费午夜福利视频| 精品一区二区三区av网在线观看| 日韩中文字幕欧美一区二区| 高清视频免费观看一区二区| 青草久久国产| 黄色a级毛片大全视频| 乱人伦中国视频| 中文字幕人妻丝袜制服| 成熟少妇高潮喷水视频| 精品少妇一区二区三区视频日本电影| 热99久久久久精品小说推荐| 男女下面插进去视频免费观看| √禁漫天堂资源中文www| 国产成人欧美| 黑丝袜美女国产一区| 欧美中文综合在线视频| 在线观看66精品国产| 国产欧美亚洲国产| 操美女的视频在线观看| 王馨瑶露胸无遮挡在线观看| 啦啦啦免费观看视频1| 嫁个100分男人电影在线观看| 精品高清国产在线一区| 日本欧美视频一区| 制服诱惑二区| 黄色毛片三级朝国网站| tube8黄色片| 一区二区三区精品91| 日韩免费高清中文字幕av| 国产蜜桃级精品一区二区三区 | 一边摸一边做爽爽视频免费| 久久香蕉国产精品| 精品午夜福利视频在线观看一区| 美女视频免费永久观看网站| 亚洲av第一区精品v没综合| 欧洲精品卡2卡3卡4卡5卡区| 好男人电影高清在线观看| 国产成人精品久久二区二区91| 免费在线观看日本一区| 啦啦啦免费观看视频1| 91国产中文字幕| 久久人妻av系列| 亚洲国产欧美日韩在线播放| 动漫黄色视频在线观看| 俄罗斯特黄特色一大片| 国产成人欧美在线观看 | 又黄又粗又硬又大视频| 免费看a级黄色片| 免费高清在线观看日韩| aaaaa片日本免费| 超碰成人久久| 两个人免费观看高清视频| 精品国产乱码久久久久久男人| 免费在线观看黄色视频的| 久久影院123| 精品一区二区三区视频在线观看免费 | 中文亚洲av片在线观看爽 | 亚洲精品中文字幕一二三四区| 国产精品 国内视频| 久久久久久久久久久久大奶| svipshipincom国产片| 一级毛片高清免费大全| 纯流量卡能插随身wifi吗| 美女高潮到喷水免费观看| 欧美日韩成人在线一区二区| 伦理电影免费视频| 国产亚洲av高清不卡| 久久精品国产清高在天天线| 免费看十八禁软件| 欧美丝袜亚洲另类 | 午夜福利免费观看在线| 久久九九热精品免费| 亚洲精品国产色婷婷电影| 精品一区二区三区视频在线观看免费 | 757午夜福利合集在线观看| 亚洲国产毛片av蜜桃av| 亚洲精品中文字幕一二三四区| 中出人妻视频一区二区| av电影中文网址| 成人特级黄色片久久久久久久| www.自偷自拍.com| 国产主播在线观看一区二区| 国产男女内射视频| 欧美激情久久久久久爽电影 | 亚洲视频免费观看视频| 精品一区二区三卡| 天天操日日干夜夜撸| 色综合欧美亚洲国产小说| 亚洲av片天天在线观看| 欧美精品高潮呻吟av久久| 中国美女看黄片| 中出人妻视频一区二区| 国产精品1区2区在线观看. | 变态另类成人亚洲欧美熟女 | 国产精品1区2区在线观看. | 国产精品国产av在线观看| 国产精品成人在线| 亚洲情色 制服丝袜| 美女视频免费永久观看网站| 90打野战视频偷拍视频| 久久午夜亚洲精品久久| 高潮久久久久久久久久久不卡| 91成人精品电影| 亚洲国产欧美一区二区综合| 很黄的视频免费| 免费在线观看视频国产中文字幕亚洲| 国产真人三级小视频在线观看| 极品教师在线免费播放| 久久久国产成人精品二区 | av网站免费在线观看视频| 黄色a级毛片大全视频| 亚洲少妇的诱惑av| 女性生殖器流出的白浆| 国产成人欧美在线观看 | 99热只有精品国产| 日本wwww免费看| 九色亚洲精品在线播放| 村上凉子中文字幕在线| 夜夜爽天天搞| 黄色丝袜av网址大全| 自线自在国产av| 亚洲精品美女久久av网站| 国产极品粉嫩免费观看在线| 国产精品电影一区二区三区 | 欧美在线黄色| 国产成人精品无人区| 日日夜夜操网爽| 亚洲精品久久成人aⅴ小说| 精品免费久久久久久久清纯 | 亚洲精品在线美女| 欧美激情 高清一区二区三区| 午夜精品在线福利| 超碰成人久久| 18禁国产床啪视频网站| 成人黄色视频免费在线看| 无限看片的www在线观看| 80岁老熟妇乱子伦牲交| 久久久国产成人精品二区 | 亚洲国产中文字幕在线视频| www日本在线高清视频| 一进一出好大好爽视频| 三级毛片av免费| 日日摸夜夜添夜夜添小说| 精品国产一区二区三区四区第35| 最近最新免费中文字幕在线| 国精品久久久久久国模美| 亚洲片人在线观看| 国产国语露脸激情在线看| 亚洲午夜理论影院| 两个人免费观看高清视频| 国产色视频综合| a级毛片黄视频| 久久中文看片网| 欧美黄色淫秽网站| 91在线观看av| 日韩欧美一区二区三区在线观看 | 三上悠亚av全集在线观看| tube8黄色片| 国产淫语在线视频| 美女高潮到喷水免费观看| 狠狠婷婷综合久久久久久88av| 成人手机av| 国产aⅴ精品一区二区三区波| 黄色成人免费大全| 亚洲av日韩精品久久久久久密| 多毛熟女@视频| 一进一出抽搐gif免费好疼 | 黄网站色视频无遮挡免费观看| 宅男免费午夜| 色综合欧美亚洲国产小说| 久久久久久免费高清国产稀缺| 国产欧美亚洲国产| 欧美一级毛片孕妇| 妹子高潮喷水视频| 天天操日日干夜夜撸| 黄色a级毛片大全视频| 在线永久观看黄色视频| 日韩一卡2卡3卡4卡2021年| 久久久久国产精品人妻aⅴ院 | 免费不卡黄色视频| 无限看片的www在线观看| 亚洲成人国产一区在线观看| 成人手机av| 午夜日韩欧美国产| 亚洲熟妇中文字幕五十中出 | 亚洲中文av在线| 国产人伦9x9x在线观看| 国产精品影院久久| 国产成人一区二区三区免费视频网站| 一二三四在线观看免费中文在| 日韩三级视频一区二区三区| 欧美另类亚洲清纯唯美| 极品少妇高潮喷水抽搐| 亚洲人成伊人成综合网2020| 国产亚洲精品久久久久久毛片 | 久久久精品国产亚洲av高清涩受| 国产精品久久久久成人av| 欧美激情极品国产一区二区三区| 国产精品 欧美亚洲| 日韩欧美国产一区二区入口| 大型av网站在线播放| 亚洲精品乱久久久久久| 欧美乱色亚洲激情| 国产成人精品久久二区二区91| 午夜免费鲁丝| 亚洲精品国产精品久久久不卡| 精品久久久久久久久久免费视频 | 精品电影一区二区在线| 亚洲一区高清亚洲精品| 成年人免费黄色播放视频| 人妻丰满熟妇av一区二区三区 | 精品久久久久久电影网| 亚洲精品一二三| 在线观看免费高清a一片| 最新的欧美精品一区二区| 12—13女人毛片做爰片一| 免费av中文字幕在线| 老汉色av国产亚洲站长工具| 欧美国产精品va在线观看不卡| 黄频高清免费视频| 在线国产一区二区在线| 久久精品亚洲av国产电影网| 亚洲专区国产一区二区| 可以免费在线观看a视频的电影网站| 午夜免费观看网址| 国产精品乱码一区二三区的特点 | 亚洲精品国产区一区二| 亚洲免费av在线视频|