• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Optimized Data Fusion Paradigm for WSN Based on Neural Networks

    2021-12-10 11:56:54MoathAlsafasfehZaidAridaOmarSaraerehQaisAlsafasfehandSalemAlemaishat
    Computers Materials&Continua 2021年10期

    Moath Alsafasfeh,Zaid A.Arida,Omar A.Saraereh,Qais Alsafasfeh and Salem Alemaishat

    1Department of Computer Engineering,Al-Hussein Bin Talal University,Ma’an,Jordan

    2School of Computing and Informatics,Al Hussein Technical University,Amman,11831,Jordan

    3Department of Electrical Engineering,Hashemite University,Zarqa,13133,Jordan

    4Department of Electrical Power and Mechatronics,Tafila Technical University,Tafila,Jordan

    5School of Computing and Informatics,Al-Hussein Technical University KHBP,Amman,11855,Jordan

    Abstract:Wireless sensor networks(WSNs)have gotten a lot of attention as useful tools for gathering data.The energy problem has been a fundamental constraint and challenge faced by many WSN applications due to the size and cost constraints of the sensor nodes.This paper proposed a data fusion model based on the back propagation neural network(BPNN)model to address the problem of a large number of invalid or redundant data.Using three layeredbased BPNNs and a TEEN threshold,the proposed model describes the cluster structure and filters out unnecessary details.During the information transmission process,the neural network’s output function is used to deal with a large amount of sensing data,where the feature value of sensing data is extracted and transmitted to the sink node.In terms of life cycle,data traffic,and network use,simulation results show that the proposed data fusion model outperforms the traditional TEEN protocol.As a result,the proposed scheme increases the life cycle of the network thereby lowering energy usage and traffic.

    Keywords:WSN;clustering;data collection;neural networks

    1 Introduction

    Sensing technology,wireless communication technology,and embedded computing technology have all advanced in recent years,resulting in the rapid development of low-power,multi-function sensors that can combine data collection,processing,and wireless communication in a small volume[1].The use of this form of miniature sensor network(Wireless Sensor Network,WSN)has become a crucial part of the Internet of Things(IoT)growth[2].A wireless sensor network is a multi-hop self-organizing network system made up of a large number of inexpensive miniature sensor nodes placed throughout the detection region.Sensor,sensing object,and observer are the three components of a wireless sensor network[3].

    The wireless sensor network(WSN)is a large-scale distributed network of sensor nodes.Its aim is to detect,capture,and process information from sensing objects in the sensor nodes’deployment area[4].WSN nodes are often distributed at random,resulting in an unequal distribution of nodes in the monitoring region.The monitoring areas of multiple nodes will overlap as the deployment density increases,resulting in duplication of the sensing data of neighbouring nodes[5].Sensing data transmission to the sink node alone would waste a lot of communication bandwidth,consume too much energy,and reduce the network’s communication performance,lowering perception data collection efficiency[6].In response to the aforementioned issues,the use of fusion technology in WSNs will effectively save network resources,improve perception data accuracy,and improve perception data collection efficiency[7].With the continued advancement of WSNs,an increasing number of researchers have focused on fusing neural networks into WSNs.The optimization of data collection based on mobile sink nodes is currently one of the most important issues in WSN research.The WSN implemented not only a mobile sink node traffic load-balancing node,but also a node that can manage power consumption,effectively avoiding“hot spots” and extending the network’s survival time.However,using mobile sink nodes to collect data introduces new challenges:first,the sink position update problem,where constant flooding of sink location information consumes too much node energy;second,the network topology changes frequently due to sinking movement,which increases the overhead of network topology construction.As a result,academic and application fields have focused on optimising routing protocols based on mobile sink nodes and algorithms for planning mobile sink trajectories.The authors of[8]suggested a fusion approach focused on the use of a rough set and neural network combination.Rough sets are used to simplify network input,reduce the amount of data that the network processes,and improve the network’s training speed.However,the accuracy of the original decision table is critical to this process,and an incorrect original decision table would result in incorrect fusion results.The LEECH-F clustering algorithm is combined with a neural network by the authors in[9].The cluster structure does not change after the cluster is created,which reduces the energy consumption of each round of sensor network clustering,but it ignores the cluster.The issue of header parameter handover wastes the network’s local resources.The authors of[10]use genetic algorithms to optimise the weights and thresholds of the neural network,which increases the network’s data collection accuracy to some degree,but the algorithm’s limited processing scale and low stability are issues.The authors of[11]use neural networks to interpret the wireless sensor network’s signal changes in order to assess if there is an emergency,but the network’s energy resource limitation is not taken into account when it is built.The authors implemented a self-organizing mapping network in the routing decision of the wireless sensor network in[12],which effectively improved the neural network’s training performance,but this approach has high network hardware requirements and a limited application range.

    To address the aforementioned issues,this paper proposes the Balance Privacy-Preserving Data Aggregation BPDA model,which is a WSN data fusion model focused on TEEN clustering and BP neural networks.The TEEN clustering protocol is used by the BPDA model to build a cluster structure in the wireless sensor network.The cluster head selection now includes TEEN threshold control.In the cluster structure information transmission,the BP neural network is used to fuse the sensing data.via the cluster head,the eigenvalues are sent to the sink node.The related parameters of the BPDA model are moved to the next cluster head when the cluster head is replaced.

    2 Network Clustering Based on TEEN Protocol

    The BPDA model necessitates the use of a specific clustering routing protocol by the wireless sensor network.The TEEN clustering protocol[13]is used in this article.Fig.1 portrays the TEEN network model.The TEEN protocol is based on the LEACH protocol,and its clustering approach is exactly the same as the LEACH protocol[14]:the cluster head is chosen regularly and with equal probability,and the non-cluster head nodes join the corresponding cluster nearby,except that in TEEN,after the protocol re-establishes the cluster region each time,the cluster head must broadcast.The TEEN protocol applies a hard threshold(HT)and a soft threshold(ST)to the data transmission,unlike the standard LEACH protocol[15].The absolute threshold of the controlled data’s characteristic value is referred to as the hard threshold.The node transmitter will send the data to the cluster head when the characteristic value controlled by the node reaches the absolute threshold.The soft threshold refers to the tracked characteristic value’s small-range shift threshold.The node transmitter is activated to report data to the cluster head when the change of the characteristic value is greater than or equal to the change threshold.The parameter value that the user is interested in is the characteristic value,which is manually set by the user.HT &ST processing refers to the method of combining hard and soft threshold processing to produce a characteristic value.The HT &ST protocol is as follows:Next,the sensor node receives sensing data from the outside world on a continuous basis.The node will start the transmitter to send the characteristic value in the next time slot when the characteristic value of the sensing data crosses the hard threshold for the first time.This characteristic value,also known as the sensing value(SV),is saved in the node’s external variable.Following the completion of the first transmission,the next data transmission will begin if and only if two conditions are met simultaneously:the current characteristic value is greater than the hard threshold,and the difference between the characteristic value and the SV is greater than or equal to the soft threshold.Fig.2 illustrates the operation.

    Figure 1:Network model of the TEEN protocol

    Figure 2:Proposed HT &ST algorithm

    The addition of hard thresholds to the network will allow it to filter out unnecessary data based on demand,reducing the amount of data transmitted over the network.Soft thresholds may be used to avoid the transmission of perception data with minimal modification.The network avoids unwanted data transmission,purposefully transmits data that is of interest to users,and with large improvements,thanks to the control of double thresholds.

    2.1 WSN Model

    In this paper,there areSsensor nodes in the wireless sensor networkN,and each node is represented bysn(n=1,2,...,S),Nhas the following characteristics:

    (a)The sink node is a one-of-a-kind device that is placed outside of the sensing field.Both sensor and sink nodes can communicate with one another,and the sink node has an endless supply of energy.

    (b)The sensor nodes are placed in the sensing region at random,and after that,they are set.The sensor nodes’initial energy is the same,and the energy cannot be replenished.The node dies after the energy is absorbed,and all sensor nodes are identical.

    (c)The communication channel between nodes consumes the same amount of energy.

    (d)In the data transmission process,the TDMA method is used.

    2.2 Cluster Establishment

    Each node in the wireless sensor network is assigned a random number when the cluster head is chosen.If the number generated by the node is less than the thresholdT(n),the node sends a message to the surrounding nodes that it is the cluster head.The thresholdT(n)is expressed as

    wherepis the probability of the election cluster head being elected,usually set to 5%[16];rrepresents the current number of rounds in the election cycle;nrepresents a node;Gis a collection of nodes that have not been elected cluster heads before roundr.In each cluster construction process,assuming that there arekcluster heads elected in each round,the expression for calculatingpis

    2.3 Improved Cluster Head Election Algorithm

    After completing a cluster structure calculation,any node can be elected as the cluster head since the TEEN protocol has a high level of randomness in the selection of cluster heads[17].If the wireless sensor network’s node with the least amount of energy is elected,it will hasten the death of nodes due to energy depletion,reducing the network’s service life.This paper proposes a cluster head selection algorithm based on the residual energy influence factor in light of the TEEN algorithm’s unequal distribution of cluster heads(RECH).In the first round of TEEN protocol clustering,since the sensor nodes have the same energy,the default TEEN clustering algorithm will be used.When the TEEN protocol progresses to the second round,because the energy consumption of each sensor node is different,the previous round of energy consumption must be eliminated because a large number of nodes reduces the probability of a successful election.The selection formula of the RECH algorithm thresholdT(n)is as follows

    whereEdenotes the influence factor.

    Nodes send election messages with different influence factors in the same cluster structure,and the influence factors of nodes in the second round are calculated according to the following expression:

    wherepis the probability of TEEN cluster head being elected;eris the remaining energy of the node at the beginning of the current round;enewis the initial node energy value;Mis a constant.The value ofMis set to 10?4in this article according to different application settings[18].The proposed RECH algorithm has a certain enhancement in the clustering speed.The remaining energy in the cluster is introduced into the algorithm,and the selected cluster head is more representative of the cluster members,making the energy consumption of the entire network more balanced.

    3 Data Fusion Model Based on Neural Network

    3.1 Model Structure

    The BPDA model describes a cluster structure in a wireless sensor network using a three-layer BP neural network.Fig.3 illustrates the model’s structure.This clustered structure is assumed to have a cluster node for the sake of discussion.The BP neural network that corresponds hasminput neurons.The cluster head of the cluster structure corresponds to the neural network’s output node.Let the perceptual data source beY,and there arenparallel output neurons according to the RECH algorithm.

    Figure 3:The proposed architecture of the BPDA model

    The three-layer BP neural network has been shown in studies to be capable of simulating any nonlinear mapping under the right conditions of the right number of hidden layer nodes and hidden layer layers[19].There is no relation between nodes in the same layer in the BP neural network.There is an activation mechanism between each layer,and adjacent nodes are linked in pairs.The activation mechanism processes the input of each layer,and the output of each layer is the input of the next layer.In neural networks,there is currently no clear theoretical guidance on the selection of hidden layer nodes.A “trial algorithm” is used in this paper to determine the appropriate number of hidden layer nodes.First,the hidden layer is created using an existing empirical expression for node selection intervals,and then a three-layer BP neural network with variable hidden layers is created,and the influence of the number of hidden layer nodes on network accuracy and network convergence speed is compared using the same experimental sample training to determine the best-hidden layer numeric value.

    In the existing empirical expression[20],Eq.(5)can be used as the best reference expression to determine the number of hidden layer nodes

    wheren1is the number of hidden layer nodes;m,ndenotes the number of output neurons;ais the natural number of(1,10).

    The BPDA model processes information transmission in the cluster structure using a threelayer BP neural network.It filters out unnecessary data using the HT &ST threshold and sends the resulting perception data to the cluster head after the first calculation.The cluster head repeats the second calculation and obtains a set of characteristic values that represent the network data’s characteristics,which it then sends to the sink node.

    3.2 Data Fusion Model Based on BP Neural Network

    The BPDA model must be initialised after the wireless sensor network has completed clustering and cluster head selection.The initialization of the BPDA model is done in the sink node due to the limited energy of cluster member nodes.The neural network decides certain parameters of itself during the initialization process of the BPDA model,which can be obtained by training,learning,and optimising.The initialization of the BPDA model is also the mechanism of neural network training and learning.The BPDA model first forms a cluster structure in the wireless sensor network using the TEEN clustering protocol,then selects cluster heads using the RECH algorithm.The sensor nodes in this clustering structure accumulate a huge number of sensing data,so the BPDA model normalises the perception data in the cluster member nodes to speed up the fitting of the BP neural network.The linear function conversion approach is used in this article.

    whereyis the value after preprocessing,Yis the sensor node’s perception data source,minY,and maxYare the minimum and maximum values in the data source,respectively.The TEEN protocol’s HT &ST threshold processing is triggered when normalised perception data enters the neural network’s input layer.Only perception data that passes the HT &ST threshold processing is allowed to reach the first layer of calculation using the BP algorithm.Neuron functions are used to process perception data in the first layer of computation,which is the classification of neurons.Fig.4 depicts the first layer of measurement logic.

    Figure 4:Determination of the first layer of perception data in a neural network

    In Fig.4,wiis the weight of the input neuron;biis the threshold;Fis the activation function,and the activation function processes the output of the input layer.In the first layer of calculation,tansig is selected as the activation function of the network,which is defined as

    The output of the first layer calculation isxj,which is expressed as

    In the second-layer calculation,the input of the network is the output value of the first-layer calculation.That is,the second-layer calculation and the first-layer calculation ofxjbelong to the processing calculation of neuron functions.The methods are similar,and this article will not explain in detail.The expression for the outputxkof the layer is

    wherewjis the weight of the hidden layer neuron andbjis the threshold.The activation function selected for the second layer calculation is

    whereaandbare constants,and the value is related to specific research applications.

    After the BPDA model processes the perception data,it forwards the characteristic valuexkrepresenting the characteristics of the sample data to the sink node.At this time,the BPDA model pauses the input of the sample and starts to calculate the weight error of the network.The weight error is carried out in two steps.The output errors of the output layer neurons and hidden layer neurons are calculated separately asδkandδjwhich are expressed as

    whereqis the number of hidden layer nodes andckis the expected output of the sample.We use the weight error to update the weight threshold of the BP neural network,and the updated weight threshold of the output layer is

    whereαandβare constants,and the value is related to specific application research.

    After completing the weight threshold update,the sink node inputs the next sample and cyclically trains until all of the database samples have been completed,completing the BPDA model’s initialization operation.The weights and thresholds of each layer of the neural network have been calculated when the BPDA model completes the initialization process,and the sink node sends these parameters to the corresponding cluster member nodes.These parameters can be used by cluster member nodes to monitor and measure the network’s performance in order to achieve the goal of fusion processing.Since the RECH algorithm selects cluster heads on a regular basis to prevent nodes from dying prematurely due to individual cluster heads’excessive energy consumption,and because the BPDA model will continuously record relevant parameters and data in order to minimise network energy consumption in the next iteration.As a result,once the next cluster head election is efficient,the BPDA model must transfer the previous iteration’s parameters.When the cluster head is removed,the BPDA model’s parameters are moved.The parameters of the output layer neuron are moved to the new cluster head when the cluster head is replaced.The output layer neuron function is not changed in this article;only the output layer neuron’s weight and threshold are transferred

    4 Experiment Analysis

    The BPDA model is simulated and evaluated in this paper using the NS-2 network simulation programme[21].Using real-time temperature monitoring in a wireless sensor network as an example,each sensor node continuously collects the surrounding ambient temperature,and the characteristic value representing the perception data is forwarded from the cluster head to the sink node after the BPDA model’s fusion processing.The experimental results are compared to the TEEN protocol to illustrate the efficacy of the BPDA model,and the actual performance of the BPDA model is measured from three perspectives:the network’s data transmission volume,the number of nodes surviving in the network,and the network’s energy consumption.There are 200 nodes in the simulation system,each with 2 J of energy.The monitoring area is a 100×100 m2square area and 200 sensor nodes are randomly deployed in the monitoring area.The convergence node is deployed outside the monitoring area.Each evaluation algorithm deploys five different network topologies at random,runs a BPDA model simulation test in each topology,and then averages the five test results as the final simulation test results to avoid the effect of network topology on the experimental results.Each evaluation algorithm deploys five different network topologies at random,runs a BPDA model simulation test in each topology,and then averages the five test results as the final simulation test results to avoid the effect of network topology on the experimental results.

    The network traffic is compared in Fig.5 using the BPDA model and the TEEN clustering algorithm.The amount of contact in this paper is measured by the number of feature values obtained by the sink node.During the sensing data transmission point,the BPDA model dynamically changes the threshold and uses data preprocessing to discard a large number of invalid data packets,compressing the transmission data of the data packets.Fig.5 shows that the BPDA model can sustain a relatively stable linear growth of contact traffic for approximately 3500 s,while the TEEN protocol can only maintain a relatively stable linear growth for approximately 2500 s.The BPDA model received around 3500 eigenvalues when the experiment hit around 4500s,while the TEEN protocol had received 5000 eigenvalues at about 3800 s,and the BPDA model had less data communication at any time.When the RECH algorithm and the neural network are combined,the BPDA model’s communication volume is greatly increased when compared to the TEEN protocol.As compared to the TEEN protocol,the BPDA model decreases transmission frequency by around 30% when transmitting on the same channel.Next,the BPDA model necessitates less network energy usage,essentially reducing network connectivity and conserving network energy.

    Figure 5:Comparison of data traffic of the proposed and traditional TEEN algorithms

    The wireless sensor network relies heavily on sensor nodes operating normally.When a node runs out of energy and dies,the wireless sensor network’s life cycle comes to an end.Under the two algorithms,Fig.6 depicts the relationship between the number of surviving nodes and time in the network.The death of the first node in the BPDA model is nearly equal to TEEN,both at around 700 s,as seen in Fig.6,but as the experimental period increases,the death of the entire network node in the BPDA model is postponed for a much longer time than TEEN.The network energy is essentially depleted when the TEEN protocol runs to about 3000 s,while the tBPDA model only exhausts the network energy at about 4200 s.By contrast,the wireless sensor network using the BPDA model has a service life that is approximately 40% longer than the TEEN protocol.

    Figure 6:Comparison of the number of survival nodes of the algorithms

    The overall energy comparison of the two algorithms is shown in Fig.7.The network energy increases gradually for a period of time,as shown in Fig.7,but the energy consumption of the wireless sensor network using the BPDA model is slower.The TEEN protocol seems to have used up all of the network energy around 3000 s,while the BPDA model has used up all of the network energy around 4200 s.When the total number of node deaths from the two approaches exceeds a certain level,the entire network’s energy usage will rise in order to retain the same processing capacity.The BPDA model,as shown in the diagram,can extend the network’s service life and boost its efficiency.

    Figure 7:Comparison of the node energy of the algorithms

    5 Conclusion

    Using a rational clustering structure for data fusion processing will effectively solve the data fusion problem in wireless sensor networks.This paper proposes a TEEN clustering and BP neural network-based data fusion model.The energy impact factor is used in the cluster head selection process so that nodes with more residual energy can be successfully elected.The BP neural network is used in the fusion processing of the sensing data in the cluster structure information interaction phase,and the invalid data packets are discarded by compressing the transmission data of the data packets to achieve the goal of reducing network energy consumption.In comparison to the conventional TEEN protocol,the simulation results show that the BPDA model can significantly reduce network data transmission,reduce network energy consumption,and increase data collection performance.The next step will be to consider other significant WSN considerations,enforce the scheme,and conduct assessment and analysis.

    Acknowledgement:The authors would like to thank the editors and reviewers for their review and recommendations.

    Funding Statement:The authors have no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    久久久久精品久久久久真实原创| 国产高清有码在线观看视频| 久99久视频精品免费| 亚洲av不卡在线观看| 十八禁国产超污无遮挡网站| 欧美不卡视频在线免费观看| 日韩欧美 国产精品| 国产精品无大码| 国产成年人精品一区二区| 午夜亚洲福利在线播放| 麻豆精品久久久久久蜜桃| 十八禁国产超污无遮挡网站| 国产av码专区亚洲av| 亚洲国产精品sss在线观看| 精品午夜福利在线看| 日本av手机在线免费观看| 老司机影院成人| 免费黄网站久久成人精品| 赤兔流量卡办理| 精品熟女少妇av免费看| 国产午夜精品久久久久久一区二区三区| 亚洲综合色惰| 国模一区二区三区四区视频| 日本三级黄在线观看| 91狼人影院| 午夜福利网站1000一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 青青草视频在线视频观看| 精品一区二区三区视频在线| 99久久人妻综合| 欧美人与善性xxx| 国产成人精品久久久久久| 国内精品美女久久久久久| 美女xxoo啪啪120秒动态图| 国产精品一及| 日本与韩国留学比较| 夜夜看夜夜爽夜夜摸| 美女脱内裤让男人舔精品视频| 伦理电影大哥的女人| 精品酒店卫生间| 欧美最新免费一区二区三区| 熟女电影av网| 成人亚洲欧美一区二区av| 夫妻性生交免费视频一级片| 亚洲成色77777| 夫妻性生交免费视频一级片| 日本-黄色视频高清免费观看| 22中文网久久字幕| 日韩欧美 国产精品| 寂寞人妻少妇视频99o| 你懂的网址亚洲精品在线观看| 亚洲成色77777| 蜜臀久久99精品久久宅男| 亚洲av福利一区| 久久97久久精品| 一级黄片播放器| 日韩视频在线欧美| 男的添女的下面高潮视频| 国产精品国产三级国产av玫瑰| 免费观看无遮挡的男女| 熟妇人妻不卡中文字幕| 国产老妇女一区| 午夜福利高清视频| 欧美xxⅹ黑人| 欧美成人精品欧美一级黄| 国产精品久久久久久精品电影小说 | 国产精品精品国产色婷婷| 久久久久久久久久黄片| 日韩伦理黄色片| 五月伊人婷婷丁香| 搡女人真爽免费视频火全软件| 亚洲欧洲国产日韩| 日韩大片免费观看网站| 亚洲国产欧美在线一区| 天堂√8在线中文| 欧美另类一区| 青青草视频在线视频观看| 亚洲欧美日韩卡通动漫| 在线观看美女被高潮喷水网站| 欧美xxxx黑人xx丫x性爽| 简卡轻食公司| 亚洲自拍偷在线| 婷婷色综合大香蕉| 丝袜美腿在线中文| 欧美成人午夜免费资源| 大陆偷拍与自拍| 久久国产乱子免费精品| 久久99热这里只频精品6学生| 久久精品国产亚洲网站| 一个人看视频在线观看www免费| 2022亚洲国产成人精品| 一级二级三级毛片免费看| 能在线免费观看的黄片| 亚洲精华国产精华液的使用体验| 亚洲乱码一区二区免费版| 91久久精品国产一区二区三区| 日韩亚洲欧美综合| 日韩一区二区视频免费看| 身体一侧抽搐| 亚洲内射少妇av| 日韩亚洲欧美综合| 精品一区二区三卡| 日韩人妻高清精品专区| 国产精品日韩av在线免费观看| 日韩亚洲欧美综合| 18+在线观看网站| 午夜福利在线在线| 免费看美女性在线毛片视频| 久久久久久久大尺度免费视频| 国产精品99久久久久久久久| 3wmmmm亚洲av在线观看| 色播亚洲综合网| 国产精品蜜桃在线观看| 波野结衣二区三区在线| 亚州av有码| 插阴视频在线观看视频| 亚洲三级黄色毛片| 午夜日本视频在线| 国产黄色小视频在线观看| 国产精品伦人一区二区| 三级经典国产精品| 97超视频在线观看视频| 亚洲四区av| 十八禁国产超污无遮挡网站| 精品人妻偷拍中文字幕| 深爱激情五月婷婷| 亚洲精品国产av蜜桃| 亚洲色图av天堂| 美女主播在线视频| 美女内射精品一级片tv| 最近最新中文字幕大全电影3| 国产伦精品一区二区三区四那| 男女啪啪激烈高潮av片| 最近中文字幕高清免费大全6| 成人鲁丝片一二三区免费| 伊人久久精品亚洲午夜| 免费播放大片免费观看视频在线观看| 亚洲va在线va天堂va国产| 极品少妇高潮喷水抽搐| 精品国产露脸久久av麻豆 | 国产精品一二三区在线看| 亚洲无线观看免费| 黄片无遮挡物在线观看| 一级毛片久久久久久久久女| 99热这里只有精品一区| 在线天堂最新版资源| 亚洲综合色惰| 国产成人aa在线观看| 精品久久久久久久人妻蜜臀av| 男人舔奶头视频| 欧美一区二区亚洲| 久热久热在线精品观看| 人妻制服诱惑在线中文字幕| 亚洲综合色惰| 午夜精品在线福利| 在线播放无遮挡| av播播在线观看一区| 午夜亚洲福利在线播放| 极品少妇高潮喷水抽搐| 男人舔奶头视频| 免费看美女性在线毛片视频| av黄色大香蕉| 午夜福利高清视频| 免费观看无遮挡的男女| 免费观看精品视频网站| 91av网一区二区| 69av精品久久久久久| 九九爱精品视频在线观看| h日本视频在线播放| 久久久久久伊人网av| 最近手机中文字幕大全| 秋霞伦理黄片| 日韩伦理黄色片| 成人无遮挡网站| 国产高清三级在线| 国产午夜精品久久久久久一区二区三区| 一区二区三区四区激情视频| 亚洲av成人精品一区久久| 午夜福利网站1000一区二区三区| 日韩成人av中文字幕在线观看| 午夜福利成人在线免费观看| 亚洲国产高清在线一区二区三| 亚洲18禁久久av| 亚洲欧美中文字幕日韩二区| 人妻制服诱惑在线中文字幕| 欧美精品国产亚洲| 国产精品久久久久久精品电影小说 | 免费观看的影片在线观看| 亚洲在线观看片| 亚洲精品视频女| 综合色丁香网| 亚洲在线自拍视频| 国产永久视频网站| 69av精品久久久久久| 中文在线观看免费www的网站| 亚洲av日韩在线播放| 久久久精品94久久精品| 成年av动漫网址| 高清午夜精品一区二区三区| 欧美一区二区亚洲| 日日啪夜夜爽| 国产永久视频网站| 美女内射精品一级片tv| kizo精华| 久久久久久久久大av| 中文乱码字字幕精品一区二区三区 | 最新中文字幕久久久久| av女优亚洲男人天堂| 亚洲精品一二三| 少妇被粗大猛烈的视频| 免费观看的影片在线观看| 小蜜桃在线观看免费完整版高清| 在线观看一区二区三区| 少妇裸体淫交视频免费看高清| 秋霞在线观看毛片| 国产精品人妻久久久久久| 夜夜看夜夜爽夜夜摸| 精品久久国产蜜桃| 丝瓜视频免费看黄片| 大话2 男鬼变身卡| 久久99热这里只频精品6学生| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美一区二区三区黑人 | 国产白丝娇喘喷水9色精品| 亚州av有码| 人妻系列 视频| h日本视频在线播放| 午夜激情久久久久久久| 久久久久久久国产电影| 边亲边吃奶的免费视频| 日韩av在线大香蕉| av专区在线播放| 精品久久久久久久久亚洲| 插阴视频在线观看视频| 不卡视频在线观看欧美| 午夜激情久久久久久久| 日本三级黄在线观看| 中文天堂在线官网| 欧美成人一区二区免费高清观看| 亚洲av中文字字幕乱码综合| 在线观看一区二区三区| 欧美xxxx性猛交bbbb| 日韩,欧美,国产一区二区三区| 免费av毛片视频| 能在线免费观看的黄片| 大陆偷拍与自拍| 色综合站精品国产| 午夜精品国产一区二区电影 | 亚洲乱码一区二区免费版| 国模一区二区三区四区视频| 欧美+日韩+精品| 国产成人免费观看mmmm| 建设人人有责人人尽责人人享有的 | 男人和女人高潮做爰伦理| 国产伦在线观看视频一区| 久久久成人免费电影| 久99久视频精品免费| 国产成人精品福利久久| 日韩强制内射视频| 99热这里只有是精品50| 黄片wwwwww| 大香蕉97超碰在线| 亚洲国产日韩欧美精品在线观看| 国产精品一及| 亚洲av电影不卡..在线观看| 久久久亚洲精品成人影院| 欧美zozozo另类| 啦啦啦韩国在线观看视频| 日韩中字成人| 午夜爱爱视频在线播放| 国产av码专区亚洲av| 亚洲av电影在线观看一区二区三区 | 日韩欧美国产在线观看| 亚洲精品视频女| videossex国产| 午夜免费男女啪啪视频观看| 最近最新中文字幕免费大全7| 免费在线观看成人毛片| 国产免费一级a男人的天堂| 校园人妻丝袜中文字幕| 日韩视频在线欧美| 精品久久久久久电影网| 亚洲精品456在线播放app| 国产男女超爽视频在线观看| 狂野欧美激情性xxxx在线观看| 亚洲精品乱码久久久v下载方式| 午夜福利高清视频| 高清欧美精品videossex| 熟妇人妻久久中文字幕3abv| 久久久精品94久久精品| 免费少妇av软件| 免费观看a级毛片全部| 禁无遮挡网站| 一个人看的www免费观看视频| 国产精品三级大全| 丝袜喷水一区| av免费观看日本| 国产亚洲精品久久久com| 成人欧美大片| 免费电影在线观看免费观看| 建设人人有责人人尽责人人享有的 | 水蜜桃什么品种好| 成人亚洲精品一区在线观看 | 国产午夜精品久久久久久一区二区三区| 免费观看的影片在线观看| 国产一区二区三区综合在线观看 | 亚洲综合色惰| 狠狠精品人妻久久久久久综合| ponron亚洲| 91精品伊人久久大香线蕉| 欧美变态另类bdsm刘玥| 又粗又硬又长又爽又黄的视频| 亚洲精品国产av蜜桃| 男人舔奶头视频| 亚洲精品国产av成人精品| 国产午夜精品论理片| 高清av免费在线| 国产在线一区二区三区精| 中文欧美无线码| 久久久久精品性色| 亚洲欧美精品自产自拍| 一级毛片我不卡| 欧美人与善性xxx| 久久久国产一区二区| 亚洲国产精品国产精品| 自拍偷自拍亚洲精品老妇| 老司机影院成人| 三级经典国产精品| 成人午夜高清在线视频| 男人和女人高潮做爰伦理| 熟妇人妻久久中文字幕3abv| 最近视频中文字幕2019在线8| 真实男女啪啪啪动态图| 草草在线视频免费看| 啦啦啦啦在线视频资源| 麻豆久久精品国产亚洲av| 亚洲高清免费不卡视频| 久久精品熟女亚洲av麻豆精品 | 3wmmmm亚洲av在线观看| 麻豆成人av视频| 26uuu在线亚洲综合色| 亚洲欧美清纯卡通| 国产成人精品一,二区| av在线观看视频网站免费| 少妇猛男粗大的猛烈进出视频 | 久久久a久久爽久久v久久| 日韩人妻高清精品专区| 日本免费a在线| 精品99又大又爽又粗少妇毛片| 内射极品少妇av片p| 男人舔女人下体高潮全视频| 亚洲一区高清亚洲精品| 亚洲av中文av极速乱| 在现免费观看毛片| 波野结衣二区三区在线| 91久久精品国产一区二区成人| 国产伦理片在线播放av一区| 国产视频首页在线观看| 国产伦精品一区二区三区四那| 国产精品国产三级国产av玫瑰| 亚洲美女搞黄在线观看| av免费观看日本| 日韩一区二区三区影片| freevideosex欧美| 水蜜桃什么品种好| av在线蜜桃| 丰满少妇做爰视频| 白带黄色成豆腐渣| av在线播放精品| 麻豆成人av视频| 国产亚洲最大av| 午夜精品一区二区三区免费看| 日日撸夜夜添| 亚洲天堂国产精品一区在线| 亚洲国产av新网站| 熟妇人妻不卡中文字幕| 日韩精品有码人妻一区| 欧美成人精品欧美一级黄| 久久99精品国语久久久| 少妇人妻精品综合一区二区| 91久久精品电影网| 国产精品嫩草影院av在线观看| av福利片在线观看| 亚洲国产精品成人综合色| 91狼人影院| 国产亚洲最大av| 美女被艹到高潮喷水动态| 国产精品国产三级国产av玫瑰| 亚洲精品一区蜜桃| 亚洲伊人久久精品综合| 亚洲精品乱码久久久v下载方式| 亚洲精品成人久久久久久| 国产69精品久久久久777片| 在线观看av片永久免费下载| 成人av在线播放网站| 免费观看在线日韩| 日本一二三区视频观看| 日本-黄色视频高清免费观看| 日韩欧美精品免费久久| 国产高清不卡午夜福利| 一区二区三区乱码不卡18| av福利片在线观看| 六月丁香七月| 成人亚洲欧美一区二区av| 国产精品久久久久久av不卡| 国产精品一区二区三区四区免费观看| 69av精品久久久久久| 久久久久国产网址| 91在线精品国自产拍蜜月| av在线亚洲专区| 中国国产av一级| 欧美日本视频| 一级毛片电影观看| 小蜜桃在线观看免费完整版高清| 男女边吃奶边做爰视频| 午夜精品一区二区三区免费看| 爱豆传媒免费全集在线观看| 夜夜爽夜夜爽视频| 床上黄色一级片| 久久精品熟女亚洲av麻豆精品 | 丝瓜视频免费看黄片| 久久久久精品久久久久真实原创| 欧美成人午夜免费资源| 国产精品久久久久久精品电影| 亚洲av在线观看美女高潮| 99久久精品热视频| 国产 一区 欧美 日韩| 日韩大片免费观看网站| 黄色欧美视频在线观看| 一级a做视频免费观看| 成年女人在线观看亚洲视频 | 可以在线观看毛片的网站| 国产成人精品婷婷| 天堂网av新在线| 777米奇影视久久| 久久久久久久亚洲中文字幕| 国产精品人妻久久久影院| 欧美一级a爱片免费观看看| 欧美精品国产亚洲| 80岁老熟妇乱子伦牲交| 国产精品精品国产色婷婷| 国产伦理片在线播放av一区| 一个人免费在线观看电影| 伊人久久精品亚洲午夜| 在线观看免费高清a一片| 大香蕉久久网| 成人无遮挡网站| 免费无遮挡裸体视频| 亚洲国产精品成人综合色| 亚洲经典国产精华液单| 成人无遮挡网站| 一级毛片黄色毛片免费观看视频| 五月天丁香电影| 男的添女的下面高潮视频| 51国产日韩欧美| 亚洲精品亚洲一区二区| 亚洲一区高清亚洲精品| 日韩伦理黄色片| 熟妇人妻不卡中文字幕| 一级毛片 在线播放| 久久久久久久亚洲中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美3d第一页| 亚洲电影在线观看av| 久久午夜福利片| 欧美不卡视频在线免费观看| av在线播放精品| 欧美激情国产日韩精品一区| a级毛片免费高清观看在线播放| 观看免费一级毛片| 亚洲欧洲国产日韩| 亚洲国产精品成人久久小说| 内射极品少妇av片p| 国国产精品蜜臀av免费| 精品久久久噜噜| av国产免费在线观看| 亚洲国产色片| 熟女电影av网| 成人av在线播放网站| 亚洲精品日韩在线中文字幕| 一级av片app| 欧美日韩精品成人综合77777| 丝瓜视频免费看黄片| 我的女老师完整版在线观看| 黄色欧美视频在线观看| 日韩强制内射视频| 成人高潮视频无遮挡免费网站| 丝袜美腿在线中文| 亚洲国产高清在线一区二区三| av女优亚洲男人天堂| 婷婷色麻豆天堂久久| 亚洲一区高清亚洲精品| 亚洲美女视频黄频| 亚洲在线观看片| 久久久精品94久久精品| 十八禁网站网址无遮挡 | 在线天堂最新版资源| 成年人午夜在线观看视频 | 精品欧美国产一区二区三| 日韩一本色道免费dvd| 韩国av在线不卡| 精华霜和精华液先用哪个| 99久久人妻综合| 亚洲国产欧美在线一区| 日韩在线高清观看一区二区三区| 啦啦啦中文免费视频观看日本| 国产精品一区二区在线观看99 | 日本熟妇午夜| av国产久精品久网站免费入址| 国内精品美女久久久久久| 少妇人妻精品综合一区二区| 亚洲成人中文字幕在线播放| 极品少妇高潮喷水抽搐| 国产亚洲午夜精品一区二区久久 | 91av网一区二区| 99久久人妻综合| 又粗又硬又长又爽又黄的视频| 免费看不卡的av| 两个人视频免费观看高清| 成人亚洲精品一区在线观看 | 亚洲内射少妇av| 日日摸夜夜添夜夜添av毛片| 91精品伊人久久大香线蕉| 国产午夜福利久久久久久| 少妇人妻精品综合一区二区| 黄片wwwwww| 国产高清三级在线| 91久久精品国产一区二区三区| 成人高潮视频无遮挡免费网站| 亚洲国产最新在线播放| 22中文网久久字幕| 久热久热在线精品观看| 99久久中文字幕三级久久日本| 日韩电影二区| 午夜亚洲福利在线播放| 最近中文字幕2019免费版| 能在线免费观看的黄片| 日本色播在线视频| 国产高清三级在线| 我要看日韩黄色一级片| 少妇高潮的动态图| 日韩亚洲欧美综合| 亚洲成人精品中文字幕电影| 极品少妇高潮喷水抽搐| 成人特级av手机在线观看| 国内精品一区二区在线观看| 亚洲综合精品二区| 日韩人妻高清精品专区| 中文字幕制服av| 免费不卡的大黄色大毛片视频在线观看 | 久久久午夜欧美精品| 久久久久久久大尺度免费视频| 亚州av有码| 亚洲国产日韩欧美精品在线观看| 男女视频在线观看网站免费| 永久免费av网站大全| 色视频www国产| 国产成人91sexporn| 成年女人在线观看亚洲视频 | 18禁动态无遮挡网站| www.色视频.com| 成人一区二区视频在线观看| 免费观看性生交大片5| 熟女电影av网| 三级毛片av免费| 亚洲精品久久久久久婷婷小说| 少妇人妻精品综合一区二区| 亚洲欧美清纯卡通| 成人午夜精彩视频在线观看| 亚洲av成人av| 日韩电影二区| 黑人高潮一二区| 高清在线视频一区二区三区| 久久久成人免费电影| 免费看日本二区| 午夜日本视频在线| 日韩亚洲欧美综合| 日本免费在线观看一区| 国产免费视频播放在线视频 | 精品人妻视频免费看| 国产精品久久久久久精品电影小说 | 精华霜和精华液先用哪个| 非洲黑人性xxxx精品又粗又长| 在线天堂最新版资源| 国产精品久久久久久av不卡| 99re6热这里在线精品视频| 91久久精品国产一区二区三区| 国产成人精品一,二区| 亚洲伊人久久精品综合| 久久久久久久大尺度免费视频| 自拍偷自拍亚洲精品老妇| 国产精品美女特级片免费视频播放器| av福利片在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产成人一区二区在线| 国产视频首页在线观看| 一级毛片aaaaaa免费看小| 精品一区二区免费观看| 久久久久久久国产电影| 美女大奶头视频| 狂野欧美白嫩少妇大欣赏| 日本黄大片高清| 99久久精品国产国产毛片| 人体艺术视频欧美日本| 九九爱精品视频在线观看| 亚洲伊人久久精品综合| 免费黄频网站在线观看国产| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99九九线精品视频在线观看视频| 波多野结衣巨乳人妻| 国产成人精品婷婷| 成人美女网站在线观看视频| 最近最新中文字幕免费大全7| 伊人久久国产一区二区| 草草在线视频免费看|