• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New BEM Modeling Algorithm for Size-Dependent Thermopiezoelectric Problems in Smart Nanostructures

    2021-12-10 11:56:20MohamedAbdelsabourFahmy
    Computers Materials&Continua 2021年10期

    Mohamed Abdelsabour Fahmy

    1Department of Mathematics,Jamoum University College,Umm Al-Qura University,Alshohdaa,25371,Jamoum,Makkah,Saudi Arabia

    2Department of Basic Sciences,Faculty of Computers and Informatics,Suez Canal University,New Campus,Ismailia,41522,Egypt

    Abstract:The main objective of this paper is to introduce a new theory called size-dependent thermopiezoelectricity for smart nanostructures.The proposed theory includes the combination of thermoelastic and piezoelectric influences which enable us to describe the deformation and mechanical behaviors of smart nanostructures subjected to thermal,and piezoelectric loadings.Because of difficulty of experimental research problems associated with the proposed theory.Therefore,we propose a new boundary element method(BEM)formulation and algorithm for the solution of such problems,which involve temperatures,normal heat fluxes,displacements,couple-tractions,rotations,force-tractions,electric displacement,and normal electric displacement as primary variables within the BEM formulation.The computational performance of the proposed methodology has been demonstrated by using the generalized modified shift-splitting(GMSS)iteration method to solve the linear systems resulting from the BEM discretization.GMSS advantages are investigated and compared with other iterative methods.The numerical results are depicted graphically to show the size-dependent effects of thermopiezoelectricity,thermoelasticity,piezoelectricity,and elasticity theories of nanostructures.The numerical results also show the effects of the sizedependent and piezoelectric on the displacement components.The validity,efficiency and accuracy of the proposed BEM formulation and algorithm have been demonstrated.The findings of the current study contribute to the further development of technological and industrial applications of smart nanostructures.

    Keywords:Boundary element method;size-dependent thermopiezoelectricity;smart nanostructures

    1 Introduction

    Nanoscience is that science through which atoms can be moved and manipulated in order to obtain the properties we need in a specific field of life,as for nanotechnology,it is concerned with manufacturing devices that can be used to study the properties of nanomaterials[1,2].Nanostructures are one of the main products of nanotechnology.A nanostructure is a structure that has at least one dimension equal or less than 100 nanometers.Understanding the mechanical behaviour of deformed nanostructures is of great importance due to their applications in all fields such as industry,medicine,renewable energy,military and civil and architecture Engineering.In the field of industry,certain nanoparticles can be used in the manufacture of filters to purify and desalinate water more efficiently than other types of filters,and they are also used as a heat insulator with high efficiency.Some nanomaterials such as tungsten carbide and silicon carbide are distinguished by their high strength compared to ordinary materials,so they are used in the manufacture of some tools Cutting and drilling.Dust and water-repellent paints,clothing,and glass can also be made[3].Recent developments in nanoscale electronics and photonics might lead to new applications such as high-density memory,high-speed transistors and high-resolution lithography[4–6].In the medical field,certain nanoparticles can be used as drug-carrying materials,as these materials have a special sensitivity to the place to which the drug is intended to be sent,so when they reach it inside the human body,they release the drug accurately,in addition to promising research confirming the possibility of using nanomaterials as a treatment for cancer.Gold nanoparticles are also used in home testing devices to detect pregnancy.Nanowires are used as nanoscale biosensors to detect a large number of diseases in their early stages[7,8].In the field of renewable energy,nanomaterials are involved in the manufacture of solar cells that are used in the production of electrical energy,where materials such as cobalt oxide or semi-conductive materials in general such as silicon and germanium are deposited on glass sheets or silica plates and because these materials have a nanoscale size,the surface area that is exposed to sunlight is greater,and thus we ensure that we absorb the largest amount of sunlight in a single cell.The panel usually consists of hundreds of solar cells that are connected through an electrical circuit that converts solar energy into electrical energy.In the military field,nanomaterials enter into the manufacture of nanoscale cylinders that are characterized by strength and rigidity,in addition to a storage capacity a million times greater than regular computers,the manufacture of military clothing that has the ability to absorb radar waves in order to stealth and infiltrate,and the manufacture of nanosatellites[9–11].In the field of building and construction,some nanomaterials such as titanium dioxide TiO2,carbon nanotubes CNTs and silica nanoparticles are added to concrete to increase the durability and hardness of the concrete in addition to increasing its resistance to water penetration.Size-dependent porothermoelastic[12–15]interactions play a significant role in many areas of nanotechnology applications.Because of computational complexity in solving sizedependent thermopiezoelectric problems not having any general analytical solution[16],therefore,numerical methods should be developed to solve such problems.Among these numerical methods is the boundary element method(BEM)that has been used for engineering models[17],bioheat transfer models[18],and nanostructures[19].The main feature of BEM[20]over the domain type methods[21]is that only boundary of the considered domain needs to be discretized.This feature is of great importance for solving complex nanoscience and nanotechnology problems with fewer elements,and requires less computational cost,less preparation of input data,and therefore easier to use.

    In the present paper,we introduce a new theory called size-dependent thermopiezoelectricity for smart nanostructures to describe the mechanical behaviors of deformed nanostructures subjected to various types of mechanical,thermal,and piezoelectric loadings.Also,we develop a new boundary element formulation for solving the deformation problems associated with the proposed theory.The numerical results illustrate the size-dependent effects on the thermo-piezoelectric,thermoelastic,piezoelectric,and elastic smart nanostructures.The numerical results also show the effects of the length scale parameter and piezoelectric coefficient on the displacement components,and confirm the validity,efficiency and accuracy of the proposed BEM formulation and algorithm.

    2 Formulation of the Problem

    Consider a size-dependent thermopiezoelectric nanostructure occupies the cylindrical regionV(cross section of the nanostructure in thex1x2-plane)that bounded byS,such that x3-axis parallel to the cylinder axis,as shown in Fig.1.We takenαto be the outward unit vector that is perpendicular to the boundary surfaceSas follows

    whereεαβ(ε12=?ε21=1,ε11=ε22=0)is the two-dimensional permutation symbol.

    Figure 1:Size-dependent thermopiezoelectric nanostructure definition

    3 Boundary Conditions

    4 Boundary Element Implementation

    whereTandUare dense matrices related with the left and right hand sides of Eq.(44),respectively,andurepresents the nodal boundary temperature,displacement,rotation and electric potential,respectively,while,trepresents the nodal boundary normal flux,force-tractions,couple-tractions and normal electric displacement,respectively.

    which can be written as

    whereAis the non-symmetric dense matrix,Bis the known boundary values vector andXis the unknown boundary vector of unknown boundary values vector.

    5 Numerical Results and Discussion

    To illustrate the numerical calculations computed by the proposed methodology,we consider the thermopiezoelectric nanoplate with free boundary conditions on the sides,as shown in Fig.2.A variable temperature field in thex2-direction is generated by applyingTbandTtto the bottom and top surfaces,respectively.Also,a uniform electric field in thex2-direction is generated by applying constant electric potentialsφbandφtto the bottom and top surfaces,respectively.Under thermal and piezoelectric loadings,the plate deforms and becomes electrically polarized.As a result,the thermal effect is specified by the thermal expansion coefficientα,the size dependent effect is specified by one characteristic length scale parameterl,and the piezoelectric effect is specified by one piezoelectric coefficientf.

    Figure 2:Geometry of the free piezo-thermo-elastic nanoplate

    The solid line represents the Case A that corresponds to the size-dependent thermopiezoelectric plates(α=1,f=?1).The dashed line represents the Case B which corresponds to size-dependent thermoelastic plates(α=1,f=0).The dash-dot line represents the Case C that corresponds to size-dependent piezoelectric plates(α=0,f=?1).The dash-two dot line represents the Case D which corresponds to size-dependent elastic plates(α=0,f=0).

    Figs.3 and 4 show the variation of the displacementsu1andu2alongx-axis for different size-dependent theories.It can be seen from these figures that the differences between sizedependent thermopiezoelectricity,size-dependent thermoelasticity,size-dependent piezoelectricity,and size-dependent elasticity theories are very pronounced.

    Figs.5 and 6 show the variation of the displacementsu1andu2alongx-axis for different values of length scale parameterl.It can be seen from these figures that the displacementu1decreases with the increase of the length scale parameterl,while,the displacementu2increases with the increase of the length scale parameterl.

    Figure 3:Variation of the displacement u1 along x-axis for different size-dependent theories

    Figure 4:Variation of the displacement u2 along x-axis for different size-dependent theories

    Figs.7 and 8 show the variation of the displacementsu1andu2alongx-axis for different values of piezoelectric coefficientf.It can be seen from these figures that the displacementsu1andu2increase with the increase of piezoelectric coefficientf.

    The efficiency of our proposed methodology has been demonstrated through the use of the GMSS iteration method[25],which reduces the memory requirements and Processing time[26,27].During our treatment of the considered problem,we implemented symmetric successive over relaxation(SSOR)[28],and preconditioned generalized shift-splitting(PGSS)iteration methods[29]to solve the linear systems resulting from the BEM discretization.Tab.1 illustrates the iterations number(Iter.),processor time(CPU time),relative residual(Rr),and error(Err.)of the considered methods computed for various length scale parameter values(l=0.01,0.1 and 1.0).It is shown from Tab.1 that the GMSS needs the lowest IT and CPU times,which implies that GMSS method has better performance than SSOR and PGSS.

    Figure 5:Variation of the displacement u1 along x-axis for different values of length scale parameter l

    Figure 6:Variation of the displacement u2 along x-axis for different values of length scale parameter l

    Tab.2 summarizes the resulting numerical solutions for horizontal displacementsu1at pointsAandBfor different values of length scale parameterl(l=0.01,0.1 and 1.0).This table also includes the finite element method(FEM)results of Sladek et al.[30],as well as the analytical solution of Yu et al.[31],it can be shown from Tab.2 that the BEM results are in very good agreement with the FDM and analytical results.Thus,the validity and accuracy of the proposed BEM have been demonstrated.

    Figure 7:Variation of the displacement u1 along x-axis for different values of piezoelectric coefficient f

    Figure 8:Variation of the displacement u2 along x-axis for different values of piezoelectric coefficient f

    Table 1:Numerical results for the tested iteration methods

    Table 2:Numerical values for horizontal displacement at points A and B

    6 Conclusion

    —A new theory called size-dependent thermopiezoelectricity for smart nanostructures is introduced.

    —Because of the benefits of the BEM such as dealing with more complicated shapes of nanostructures and not requiring the discretization of the internal domain,also,it has low CPU time and memory.Therefore,it is versatile and efficient method for modeling of size-dependent thermopiezoelectric problems in smart nanostructures.

    —A new BEM formulation is developed for solving the problems associated with the proposed theory,which involves temperatures,normal heat fluxes,displacements,couple-tractions,rotations,force-tractions,electric displacement,and normal electric displacement as primary variables within the BEM formulation.

    —The BEM is accelerated by using the GMSS,which reduces the total CPU time and number of iterations.

    —The proposed theory includes the combination of thermoelastic and piezoelectric influences which enable us to explain the differences between size-dependent thermopiezoelectricity,sizedependent thermoelasticity,size-dependent piezoelectricity and size-dependent elasticity theories of nanostructures.

    —Numerical findings are presented graphically to show the effects of the size-dependent and piezoelectric on the displacement components.

    —The computational performance of the proposed methodology has been demonstrated.

    —The validity and accuracy of the proposed BEM technique have been demonstrated.

    —From the proposed model that has been carried out using BEM formulation,it is possible to conclude that our proposed technique is more convenient,cost-effective,highly accurate,and has superiority over FDM or FEM.

    —The proposed technique can be applied to study a wide variety of size-dependent problems in smart nanostructures subjected to mechanical,thermal and piezoelectric loadings.

    —It can be concluded that our study has a wide variety of applications in numerous fields,such as electronics,chemistry,physics,biology,material science,optics,photonics,industry,military,and even medicine.

    —Current numerical results for the proposed theory and its related problems,may provide interesting information for nanophysicists,nanochemists,nanobiologists,nanotechnology engineers,and nanoscience mathematicians as well as for computer scientists specializing in nanotechnology.

    Funding Statement:The author received no specific funding for this study.

    Conflicts of Interest:The author declares that he has no conflicts of interest to report regarding the present study.

    国产不卡一卡二| 国产精品伦人一区二区| 啪啪无遮挡十八禁网站| 简卡轻食公司| 观看免费一级毛片| 天天一区二区日本电影三级| 欧美日本亚洲视频在线播放| 狂野欧美激情性xxxx在线观看| 久久午夜亚洲精品久久| 啦啦啦观看免费观看视频高清| 白带黄色成豆腐渣| 精品久久久久久久久亚洲 | 亚洲av中文字字幕乱码综合| 免费观看在线日韩| 十八禁网站免费在线| 18禁裸乳无遮挡免费网站照片| 一级av片app| 免费av观看视频| 亚洲国产高清在线一区二区三| 亚洲成人中文字幕在线播放| 欧美日韩乱码在线| 两人在一起打扑克的视频| 欧美一级a爱片免费观看看| 国产视频一区二区在线看| 久久精品久久久久久噜噜老黄 | 日韩精品中文字幕看吧| 国产午夜精品久久久久久一区二区三区 | 日韩欧美精品v在线| 亚洲18禁久久av| 亚洲aⅴ乱码一区二区在线播放| 又爽又黄无遮挡网站| 亚洲在线自拍视频| av在线蜜桃| 欧美日本亚洲视频在线播放| 亚洲自拍偷在线| 色哟哟哟哟哟哟| 小说图片视频综合网站| 国产亚洲精品久久久久久毛片| 亚洲成av人片在线播放无| 校园春色视频在线观看| 国产亚洲欧美98| 性欧美人与动物交配| 色视频www国产| 在线播放国产精品三级| 精品国内亚洲2022精品成人| 人人妻人人看人人澡| 国产免费男女视频| 国产乱人伦免费视频| 成人av一区二区三区在线看| 午夜免费成人在线视频| 国产蜜桃级精品一区二区三区| 男人舔女人下体高潮全视频| 亚洲av.av天堂| 国产精品久久久久久精品电影| 成人国产一区最新在线观看| 国产老妇女一区| 亚洲最大成人中文| 国产伦在线观看视频一区| h日本视频在线播放| 亚洲中文字幕日韩| 精品人妻偷拍中文字幕| 午夜免费成人在线视频| 色噜噜av男人的天堂激情| 日韩精品有码人妻一区| 免费不卡的大黄色大毛片视频在线观看 | 国产精品99久久久久久久久| 国产精品无大码| 天堂√8在线中文| 国产一区二区激情短视频| 欧美一区二区国产精品久久精品| 日韩欧美免费精品| 国产精品爽爽va在线观看网站| 色吧在线观看| 97超视频在线观看视频| 狂野欧美激情性xxxx在线观看| bbb黄色大片| 亚洲中文日韩欧美视频| 亚洲成人中文字幕在线播放| 亚洲欧美日韩卡通动漫| 又爽又黄a免费视频| 女同久久另类99精品国产91| 九色成人免费人妻av| 美女cb高潮喷水在线观看| 亚洲av成人精品一区久久| 一级黄色大片毛片| 色吧在线观看| 亚洲欧美日韩高清专用| 国产av麻豆久久久久久久| av在线蜜桃| 国产精品三级大全| 一级黄片播放器| netflix在线观看网站| 人人妻人人澡欧美一区二区| 欧美性感艳星| 又爽又黄无遮挡网站| 成人永久免费在线观看视频| 国产蜜桃级精品一区二区三区| 亚洲精品影视一区二区三区av| 久久精品国产鲁丝片午夜精品 | 国产精华一区二区三区| 国产伦精品一区二区三区四那| 成人国产一区最新在线观看| 俄罗斯特黄特色一大片| 欧美3d第一页| 欧美人与善性xxx| 97人妻精品一区二区三区麻豆| 欧美一区二区亚洲| 蜜桃久久精品国产亚洲av| 黄色配什么色好看| 亚洲综合色惰| 一本一本综合久久| 欧美高清成人免费视频www| 久久精品人妻少妇| 精品免费久久久久久久清纯| 美女 人体艺术 gogo| 黄色欧美视频在线观看| 亚洲 国产 在线| 免费大片18禁| 校园春色视频在线观看| 国产高清视频在线播放一区| 91在线精品国自产拍蜜月| 久久精品国产亚洲av天美| 久久香蕉精品热| 亚洲自偷自拍三级| 国产成人av教育| 伦精品一区二区三区| eeuss影院久久| 性插视频无遮挡在线免费观看| 十八禁国产超污无遮挡网站| 2021天堂中文幕一二区在线观| 欧美一区二区亚洲| 九色国产91popny在线| 欧美最新免费一区二区三区| 欧美一区二区国产精品久久精品| 亚洲男人的天堂狠狠| 欧美最新免费一区二区三区| 丰满乱子伦码专区| 色尼玛亚洲综合影院| 日韩中文字幕欧美一区二区| 少妇裸体淫交视频免费看高清| 午夜福利成人在线免费观看| 国产精品98久久久久久宅男小说| 亚洲一级一片aⅴ在线观看| 久久久国产成人免费| 午夜免费男女啪啪视频观看 | 一个人免费在线观看电影| 亚洲人成网站在线播| 在线天堂最新版资源| 国国产精品蜜臀av免费| 日韩欧美在线二视频| 国产精品亚洲一级av第二区| 日韩强制内射视频| 中文字幕免费在线视频6| 久久精品91蜜桃| 日韩欧美三级三区| 国产成人影院久久av| 两人在一起打扑克的视频| 久久久久久久亚洲中文字幕| 免费av不卡在线播放| 午夜免费成人在线视频| 88av欧美| 亚洲黑人精品在线| 简卡轻食公司| 亚洲人成网站在线播| 国产在线男女| 久久香蕉精品热| 男女做爰动态图高潮gif福利片| 国产高清激情床上av| 国国产精品蜜臀av免费| 99riav亚洲国产免费| 国产av一区在线观看免费| 特级一级黄色大片| 国产高潮美女av| 免费不卡的大黄色大毛片视频在线观看 | 亚洲欧美日韩卡通动漫| 夜夜爽天天搞| 精品无人区乱码1区二区| 联通29元200g的流量卡| 国产极品精品免费视频能看的| 久久久成人免费电影| 欧美一区二区亚洲| x7x7x7水蜜桃| 欧美高清成人免费视频www| 精品人妻1区二区| 久久亚洲真实| 欧美最黄视频在线播放免费| 人人妻,人人澡人人爽秒播| 亚洲国产精品成人综合色| 中文字幕人妻熟人妻熟丝袜美| 又粗又爽又猛毛片免费看| 欧美一区二区亚洲| 欧美潮喷喷水| 久久精品夜夜夜夜夜久久蜜豆| 精品欧美国产一区二区三| 国产精品不卡视频一区二区| 亚洲自偷自拍三级| 欧美中文日本在线观看视频| 身体一侧抽搐| 男女之事视频高清在线观看| 成人一区二区视频在线观看| 日本 av在线| 亚洲最大成人手机在线| 老熟妇乱子伦视频在线观看| 噜噜噜噜噜久久久久久91| 别揉我奶头 嗯啊视频| 国产精品综合久久久久久久免费| 两个人视频免费观看高清| 久久人妻av系列| 日韩欧美国产一区二区入口| 久久国内精品自在自线图片| 老熟妇乱子伦视频在线观看| 深爱激情五月婷婷| 国产伦精品一区二区三区四那| 男人舔女人下体高潮全视频| 热99re8久久精品国产| 国产乱人伦免费视频| 久久精品综合一区二区三区| 日本在线视频免费播放| 亚洲精品一区av在线观看| 精品久久久久久久末码| 国产激情偷乱视频一区二区| 搡老岳熟女国产| 1024手机看黄色片| 国产精品一区二区三区四区免费观看 | 九色成人免费人妻av| 久久久国产成人精品二区| 欧美区成人在线视频| av在线天堂中文字幕| 亚洲精品乱码久久久v下载方式| 欧美一区二区精品小视频在线| 两个人视频免费观看高清| 亚洲在线观看片| 日本色播在线视频| 非洲黑人性xxxx精品又粗又长| 国产白丝娇喘喷水9色精品| 男女边吃奶边做爰视频| 欧洲精品卡2卡3卡4卡5卡区| 村上凉子中文字幕在线| 人妻少妇偷人精品九色| av.在线天堂| 制服丝袜大香蕉在线| 男女那种视频在线观看| 午夜福利18| 日韩欧美精品免费久久| 看免费成人av毛片| 欧美性猛交╳xxx乱大交人| 精品人妻一区二区三区麻豆 | 香蕉av资源在线| 51国产日韩欧美| 国产精品亚洲一级av第二区| 99久久无色码亚洲精品果冻| 午夜免费男女啪啪视频观看 | 久久午夜亚洲精品久久| 国产老妇女一区| 久久6这里有精品| 亚洲av成人精品一区久久| 村上凉子中文字幕在线| 国产中年淑女户外野战色| 九九在线视频观看精品| 日本免费a在线| 国产成人a区在线观看| www日本黄色视频网| 亚洲欧美日韩高清专用| 变态另类成人亚洲欧美熟女| 免费观看人在逋| 国内精品久久久久精免费| 美女大奶头视频| 亚洲av免费高清在线观看| 色综合色国产| 国产精品精品国产色婷婷| 又爽又黄a免费视频| 少妇人妻一区二区三区视频| 热99re8久久精品国产| 全区人妻精品视频| 欧美激情在线99| 午夜日韩欧美国产| 久久精品影院6| 欧美极品一区二区三区四区| 22中文网久久字幕| 精品欧美国产一区二区三| 成人高潮视频无遮挡免费网站| 亚洲一级一片aⅴ在线观看| 亚洲欧美精品综合久久99| 12—13女人毛片做爰片一| 久久天躁狠狠躁夜夜2o2o| 国产免费男女视频| 超碰av人人做人人爽久久| 日日摸夜夜添夜夜添小说| 91麻豆精品激情在线观看国产| 久久久久性生活片| 悠悠久久av| 一边摸一边抽搐一进一小说| 国产精品国产高清国产av| 欧美日韩中文字幕国产精品一区二区三区| 尤物成人国产欧美一区二区三区| 久久这里只有精品中国| xxxwww97欧美| 国产一区二区三区视频了| 99久久无色码亚洲精品果冻| 一个人看视频在线观看www免费| 色哟哟·www| 麻豆av噜噜一区二区三区| 小说图片视频综合网站| 国产不卡一卡二| 麻豆久久精品国产亚洲av| av在线观看视频网站免费| 制服丝袜大香蕉在线| 久久国产精品人妻蜜桃| 老熟妇仑乱视频hdxx| 国产精品女同一区二区软件 | 成年版毛片免费区| 亚洲国产日韩欧美精品在线观看| 欧美+亚洲+日韩+国产| videossex国产| 中国美白少妇内射xxxbb| 久久精品久久久久久噜噜老黄 | 国产欧美日韩精品亚洲av| 男人和女人高潮做爰伦理| 成人欧美大片| 欧美人与善性xxx| 精品国产三级普通话版| 亚洲人与动物交配视频| 黄色一级大片看看| 午夜a级毛片| 春色校园在线视频观看| 中国美白少妇内射xxxbb| 欧美日本亚洲视频在线播放| 免费观看人在逋| 日本一本二区三区精品| 亚洲精品在线观看二区| 一边摸一边抽搐一进一小说| 亚洲精品乱码久久久v下载方式| ponron亚洲| 亚洲欧美日韩卡通动漫| 少妇的逼水好多| 国产 一区精品| 1024手机看黄色片| 联通29元200g的流量卡| 少妇丰满av| 午夜激情欧美在线| 日本黄色视频三级网站网址| 免费高清视频大片| 成年女人毛片免费观看观看9| 国产黄片美女视频| 少妇的逼好多水| 亚洲人成网站在线播| 国产极品精品免费视频能看的| 欧美一区二区亚洲| 真实男女啪啪啪动态图| 亚洲成人精品中文字幕电影| 午夜福利在线观看吧| 中文字幕av在线有码专区| 午夜福利欧美成人| 亚洲成人久久爱视频| 国产精品国产高清国产av| 十八禁网站免费在线| 又爽又黄无遮挡网站| 一区二区三区激情视频| 亚洲最大成人av| 欧美成人免费av一区二区三区| 国语自产精品视频在线第100页| 国产高清视频在线播放一区| 嫩草影视91久久| 国国产精品蜜臀av免费| 成年女人毛片免费观看观看9| 中文字幕久久专区| 日本黄大片高清| 日本免费a在线| 嫩草影院精品99| 亚洲久久久久久中文字幕| 97碰自拍视频| 欧美成人性av电影在线观看| 亚洲av免费在线观看| 观看美女的网站| 国产成人av教育| 在线国产一区二区在线| 日韩欧美精品v在线| 亚洲黑人精品在线| 91狼人影院| 国产精品人妻久久久影院| 最近在线观看免费完整版| 欧美潮喷喷水| 午夜免费男女啪啪视频观看 | 啦啦啦韩国在线观看视频| 欧美+亚洲+日韩+国产| 淫秽高清视频在线观看| 国产私拍福利视频在线观看| 久久午夜亚洲精品久久| 亚洲最大成人中文| 狂野欧美激情性xxxx在线观看| 91麻豆av在线| 成人特级黄色片久久久久久久| 欧美性猛交╳xxx乱大交人| 极品教师在线视频| 成人特级黄色片久久久久久久| 欧美性感艳星| 狂野欧美白嫩少妇大欣赏| 可以在线观看毛片的网站| 超碰av人人做人人爽久久| 久久精品国产鲁丝片午夜精品 | av在线天堂中文字幕| 亚洲天堂国产精品一区在线| 97碰自拍视频| 亚洲欧美日韩卡通动漫| 色综合婷婷激情| 国产精品免费一区二区三区在线| 麻豆国产av国片精品| 一级黄色大片毛片| 久久久久久国产a免费观看| 美女高潮的动态| 人妻夜夜爽99麻豆av| 欧美性猛交╳xxx乱大交人| 久久久精品大字幕| 少妇被粗大猛烈的视频| 精品无人区乱码1区二区| 国语自产精品视频在线第100页| 国国产精品蜜臀av免费| 色综合亚洲欧美另类图片| 狂野欧美激情性xxxx在线观看| 国产av一区在线观看免费| 成人欧美大片| 乱码一卡2卡4卡精品| avwww免费| 18禁黄网站禁片午夜丰满| 亚洲人成网站在线播放欧美日韩| 国产精品日韩av在线免费观看| 天堂影院成人在线观看| 亚洲乱码一区二区免费版| 美女cb高潮喷水在线观看| 亚洲国产精品合色在线| 黄色视频,在线免费观看| 午夜精品一区二区三区免费看| 自拍偷自拍亚洲精品老妇| 国产精品一区www在线观看 | 国产精品爽爽va在线观看网站| 亚洲美女搞黄在线观看 | 美女黄网站色视频| 99精品久久久久人妻精品| 免费av不卡在线播放| 国产黄色小视频在线观看| 十八禁国产超污无遮挡网站| 男人舔女人下体高潮全视频| bbb黄色大片| 国内精品美女久久久久久| 日本 欧美在线| 一本精品99久久精品77| av天堂在线播放| 一区二区三区免费毛片| 国产亚洲精品av在线| 精品一区二区免费观看| 国产单亲对白刺激| 亚洲成人久久性| 欧美黑人巨大hd| 免费大片18禁| 亚洲人成网站高清观看| 18禁黄网站禁片免费观看直播| 在线免费观看不下载黄p国产 | 91在线精品国自产拍蜜月| 91狼人影院| 舔av片在线| 国产精品一区二区免费欧美| 免费电影在线观看免费观看| 国产v大片淫在线免费观看| 精品人妻1区二区| 三级毛片av免费| 悠悠久久av| 国产精品嫩草影院av在线观看 | 国内少妇人妻偷人精品xxx网站| 天堂动漫精品| 欧美一级a爱片免费观看看| 国产男人的电影天堂91| 久久草成人影院| 亚洲美女黄片视频| 国产欧美日韩一区二区精品| 九九在线视频观看精品| 午夜福利在线观看吧| 伦理电影大哥的女人| 亚洲av第一区精品v没综合| 亚洲精华国产精华液的使用体验 | 日本一本二区三区精品| 91av网一区二区| xxxwww97欧美| 亚洲成人精品中文字幕电影| 日韩欧美在线二视频| 99热只有精品国产| 韩国av一区二区三区四区| 观看美女的网站| 伦精品一区二区三区| 午夜福利欧美成人| 亚洲av日韩精品久久久久久密| 精品久久久久久久久久免费视频| 搡女人真爽免费视频火全软件 | 简卡轻食公司| 亚洲精品在线观看二区| 久久草成人影院| 亚洲美女视频黄频| 国产av一区在线观看免费| 亚洲av.av天堂| 中文字幕久久专区| 男女边吃奶边做爰视频| 搡老熟女国产l中国老女人| 日本a在线网址| 网址你懂的国产日韩在线| a在线观看视频网站| 成人av一区二区三区在线看| 无人区码免费观看不卡| 色在线成人网| 中文字幕免费在线视频6| 国产91精品成人一区二区三区| 天堂网av新在线| 九九热线精品视视频播放| 日日摸夜夜添夜夜添av毛片 | 天天一区二区日本电影三级| 十八禁网站免费在线| 国产又黄又爽又无遮挡在线| 婷婷色综合大香蕉| 国产精品伦人一区二区| 国产真实伦视频高清在线观看 | 身体一侧抽搐| 欧美在线一区亚洲| 国产精品一区二区三区四区免费观看 | 精品人妻视频免费看| 干丝袜人妻中文字幕| 亚洲成人精品中文字幕电影| 给我免费播放毛片高清在线观看| 在线观看66精品国产| 欧美xxxx黑人xx丫x性爽| 国产爱豆传媒在线观看| 亚洲久久久久久中文字幕| 国产一区二区在线av高清观看| 久久久久久久久久成人| 国产精华一区二区三区| 国产精品无大码| 亚洲av成人精品一区久久| 最近视频中文字幕2019在线8| 伦理电影大哥的女人| 人妻少妇偷人精品九色| 精品国产三级普通话版| 中文字幕高清在线视频| 亚洲精华国产精华精| 日韩精品青青久久久久久| 女人被狂操c到高潮| 亚州av有码| 久久久久久久久久成人| 日韩亚洲欧美综合| 色噜噜av男人的天堂激情| 黄色欧美视频在线观看| 狠狠狠狠99中文字幕| 99久久久亚洲精品蜜臀av| 一级av片app| 欧美精品国产亚洲| 天天一区二区日本电影三级| 日本欧美国产在线视频| 深夜a级毛片| 中文字幕久久专区| 精品免费久久久久久久清纯| 91久久精品电影网| 校园春色视频在线观看| 丰满乱子伦码专区| 在线观看免费视频日本深夜| 麻豆精品久久久久久蜜桃| 国产私拍福利视频在线观看| netflix在线观看网站| 男插女下体视频免费在线播放| av天堂在线播放| av在线老鸭窝| av视频在线观看入口| av在线蜜桃| 精品久久久久久成人av| 99在线人妻在线中文字幕| 亚洲欧美日韩东京热| 男人和女人高潮做爰伦理| 欧美日韩精品成人综合77777| 免费在线观看日本一区| 性插视频无遮挡在线免费观看| 久久久午夜欧美精品| 国产大屁股一区二区在线视频| 一个人免费在线观看电影| 国产女主播在线喷水免费视频网站 | 国产精品伦人一区二区| 亚洲内射少妇av| av福利片在线观看| 亚洲人成伊人成综合网2020| 亚洲av美国av| 国产精品一区二区三区四区免费观看 | 成人二区视频| 亚洲内射少妇av| 亚洲专区国产一区二区| 久久99热6这里只有精品| 亚洲国产欧洲综合997久久,| 日韩,欧美,国产一区二区三区 | 午夜福利欧美成人| 人人妻人人看人人澡| 中国美女看黄片| 亚洲国产精品sss在线观看| 人妻丰满熟妇av一区二区三区| 国产高清有码在线观看视频| 欧美+亚洲+日韩+国产| 国产综合懂色| 亚洲av熟女| 日日啪夜夜撸| 亚洲在线自拍视频| 毛片一级片免费看久久久久 | 最近在线观看免费完整版| 此物有八面人人有两片| 色视频www国产| 亚洲美女视频黄频| 蜜桃亚洲精品一区二区三区| 国产真实伦视频高清在线观看 | 久久欧美精品欧美久久欧美| 亚洲一区高清亚洲精品| 少妇丰满av| 99久久成人亚洲精品观看| 99在线人妻在线中文字幕| 波多野结衣巨乳人妻|