• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    3D Semantic Deep Learning Networks for Leukemia Detection

    2021-12-10 11:55:50JavariaAminMuhammadSharifMuhammadAlmasAnjumAyeshaSiddiqaSeifedineKadryYunyoungNamandMudassarRaza
    Computers Materials&Continua 2021年10期

    Javaria Amin,Muhammad Sharif,Muhammad Almas Anjum,Ayesha Siddiqa,Seifedine Kadry,Yunyoung Nam and Mudassar Raza

    1University of Wah,Wah Cantt,Pakistan

    2COMSATS University Islamabad,Wah Campus,Pakistan

    3National University of Technology(NUTECH),IJP Road Islamabad,Pakistan

    4Faculty of Applied Computing and Technology,Noroff University College,Kristiansand,Norway

    5Department of Computer Science and Engineering,Soonchunhyang University,Asan,31538,Korea

    Abstract:White blood cells(WBCs)are a vital part of the immune system that protect the body from different types of bacteria and viruses.Abnormal cell growth destroys the body’s immune system,and computerized methods play a vital role in detecting abnormalities at the initial stage.In this research,a deep learning technique is proposed for the detection of leukemia.The proposed methodology consists of three phases.Phase I uses an open neural network exchange(ONNX)and YOLOv2 to localize WBCs.The localized images are passed to Phase II,in which 3D-segmentation is performed using deeplabv3 as a base network of the pre-trained Xception model.The segmented images are used in Phase III,in which features are extracted using the darknet-53 model and optimized using Bhattacharyya separately criteria to classify WBCs.The proposed methodology is validated on three publically available benchmark datasets,namely ALL-IDB1,ALL-IDB2,and LISC,in terms of different metrics,such as precision,accuracy,sensitivity,and dice scores.The results of the proposed method are comparable to those of recent existing methodologies,thus proving its effectiveness.

    Keywords:YOLOv2;darknet53;Bhattacharyya separately criteria;ONNX

    1 Introduction

    Blood is a fluid that transports oxygen,providing energy to body cells that then produce carbon dioxide.It also plays a pivotal role in the immune system;blood circulating in living organisms contains 55% plasma,40% red cells,4% platelets,and 1% white blood cells(WBCs)[1].The five primary types of WBCs are acidophilus,lymphocytes,monocytes,basophils,and neutrophils.These blood cells contain nuclei that differ from those of other cells[2].WBC abnormalities are diagnosed by a blood smear test.Peripheral blood analysis is utilized for detection of diseases,such as malaria,leukemia,and anemia[3,4].Such disorders are revealed by an increase and decrease the number of WBCs in the human body.Variations occur in the morphological structure of blood cells in terms of color,shape,and size,and such variations aid in the diagnosis of abnormalities in the WBCs[5].Thus,segmentation and classification methods are used for the detection of WBCs.The manual evaluation of WBCs is laborious and time consuming[6],and computerized methods are a useful alternative that also minimize the workload of hematologists[7].Segmentation and classification of WBCs are performed using conventional and deep learning methodologies.In conventional approaches,features are extracted manually;however,in deep learning,images features are learned automatically through a pipeline to improve efficiency[8].In this study,an automated approach based on deep learning is proposed to segment and classify WBCs more accurately.The foremost contributions of the proposed work are as follows:

    ?The Open Neural Network Exchange(ONNX)is applied with a YOLOv2 model,which detects the different types of WBCs.The features are extracted using activation-5 of the ONNX model.The extracted features are fed to the YOLOv2 model.The proposed framework accurately detects the region of interest(ROI).

    ?The features are extracted using darknet-53,and the prominent features are selected based on Bhattacharyya separately criteria and fed to the shallow classifiers for the classification of WBCs.

    2 Existing Literature

    In the literature,significant work has been done for the detection of WBCs,and some of the recent works are discussed in this section[9,10].The detection of WBCs comprises four primary steps:pre-processing,localization/segmentation,extracting discriminant features,and classification.Pre-processing is a crucial step that is performed for noise removal and eradicating unwanted distortion to enhance the lesion region used in the subsequent segmentation step[11].Segmentation is another vital step;it is used to group the homogeneous pixels and segment the required region from the input images.WBC cells are difficult to segment because of variations in their appearance[12].Traditionally,WBCs were detected manually by pathologists,which is timeconsuming and can be inaccurate[13].Recently,automated approaches have been used for the detection of WBCs.Unsupervised clustering methods[14],thresholding approaches[15],shapebased approaches[16],and saliency-based models[17]are commonly used to localize WBCs.Watershed and histogram orientation approaches are used for the segmentation of WBCs.A large amount of data is presented into a set of vectors in the feature extraction process[18].Selection of the optimum diagnostic features is an important task for the detection of WBCs[19].Several types of features with different classifiers were used to differentiate the types of WBCs[20].Supervised methods,such as SVM,Bayesian,random forest[21],and Bayesian[22],are used for the classification of WBCs.However,even the best feature extraction and selection methods struggle with accurate classification” or something similar[23].Deep learning(DL)approaches are used widely to extract high-level information automatically[24]for the detection of ROIs,such as in WBC detection and classification[25].Contour aware neural networks are used to segment the WBCs.Pixel by pixel classification is performed using a fully convolutional neural network(FCN)[26].Mask R-CNN exhibits better classification as compared with other DL techniques[27].

    3 Proposed Methodology

    The proposed approach comprises localization,segmentation,high-level feature extraction/selection,and classification steps for the analysis of WBCs.In the proposed approach,WBCs are detected/localized using ONNX as the backbone of YOLOv2.The localized cells are segmented using the proposed 3-D semantic segmentation model.Finally,the WBCs are classified using multi-SVM.An overview of the proposed method is presented in Fig.1.

    Figure 1:Proposed method architecture for WBCs localization and the segmentation

    3.1 Localization of the WBCs

    In this research,WBCs are recognized by the suggested WBC-ONNX-YOLOv2 model,as shown in Fig.2,where features are extricated from activation-5 LeakyReLU of the ONNX model.The extracted features are further fed to the YOLOv2 architecture.The proposed model has 26 layers in the ONNX model,namely 1 input,6 Conv,6 Bn,6 activation,2 elementwise-affine,and 5 max-pooling layers,and 9 YOLOv2 layers,namely 2 ReLU,2 Bn,2 Conv,1 classification,1 transform,and 1 output layer.

    The layer-wise proposed model architecture is presented in Tab.1.

    The proposed model is trained using selected parameters as reported in Tab.2.

    It is trained on 100 epochs,because after 100 epochs,the model performance is almost stable.The number of iterations with the respective loss during training is illustrated graphically in Fig.3.

    3.2 3D-Segmentation of the Leukocytes

    The semantic segmentation model is proposed for the segmentation of WBCs,in which deeplabv3 is used as a bottleneck in the Xception model.The pre-trained Xception model contains 205 layers,comprising 1 input,88 2-D Conv,46 Bn,46 ReLU,3 max-pooling,12 addition,4 crop 2D,2 transpose Conv,2 depth Conv,softmax,and pixel classification layers.The segmentation model was trained from scratch on the blood smear images.The training parameters of the presented model are listed in Tab.3.

    The proposed model learning with convolutional layers is plotted with activation units,as presented in Fig.4.

    When the king saw how very young the prince looked, and that he was still drinking of the fountain of wonder, he said: O youth! leave aside this fancy which my daughter has conceived in the pride of her beauty

    Figure 2:ONNX-YOLOv2 for multi-class detection

    Table 1:The layered architecture of the proposed localization model

    Table 2:Proposed localization model training parameters

    Figure 3:Number of the iteration with respect to training loss

    Table 3:Training parameters of the segmentation model

    Figure 4:Segmentation model with activation units

    3.3 Deep Features Extraction and Classification

    The deep features are extracted using a pre-trained darknet53 model,which contains 184 layers,namely 1 input,53 Conv,1 global pooling,52 Bn,52 LeakyReLU,and 23 addition layers,and softmax with cross-entropy loss.The features are extracted from Conv53 layers with dimensions of 1×1000.The selection of informative features from a pool of features is difficult.Therefore,the Bhattacharyya rank-based feature selection approach is used,in which the optimum 500(50%)best features are selected out of 1000 features to improve the classification accuracy,also providing cost-effective and fast predictors.The best-selected features are further supplied to the multi-kernel SVM classifiers,such as Cubic-SVM,Quadratic SVM,O-SVM,and Gaussian SVM to classify the different types of blood cells,as depicted in Fig.5.

    Figure 5:Feature extraction &selection and classification process

    The SVM classifier with different kernels is trained on the best-selected feature vectors with optimum parameters,as listed in Tab.4.

    Table 4:Parameters of SVM selection

    Table 5:Localization results of different kinds of WBCs

    Figure 6:Localization results on benchmark datasets(a)log average rate(b)average precision of different types of WBCs(c)IoU(d)average precision of blast cells

    4 Experimental Setup

    In this research,three publicly available benchmark datasets are used for the method evaluation.ALL-IDB1 contains 107 blood smear images,of which 33 are blasts and 74 are non-blast cells,and ALL-IDB2 contains 260 blood smear images,comprising 130 blasts and 130 non-blast cells[28–31].The LISC dataset contains blood smear images of WBCs,including eosinophils,neutrophils,monocytes,lymphocytes,and basophils.The numbers of images for each type of WBC are not equal.To balance the different types of imaging data of WBCs,data augmentation is performed by rotating the images at different angles,such as 45°,90°,180°,and 360°.After augmentation,6250 images of five types of WBCs are obtained,with each type having 1250 blood smear images[32].

    4.1 Results&Discussion

    The proposed work performance is validated by performing three experiments.The first experiment is performed to validate the presented localization technique by different metrics such as mean precision(mAP)and intersection over the union(IoU).The second experiment is validated to compute the segmentation model performance,while the third experiment is performed to compute the classification model performance.All experiments in this research are performed on the MATLAB 2020 Ra toolbox with 1050 K Nvidia Graphic Card.

    4.2 Experiment#1:Localization of Leukocytes

    Experiment 1 was performed to validate the performance of the localization approach on three benchmark datasets,LISC,ALL-IDB1,and ALL-IDB2,using IoU and mAP as metrics,as shown in Tab.5.In this experiment,six types of WBCs were localized,and the localization results are graphically depicted in Fig.6.

    Figure 7:Localization results and corresponding confidence score of the proposed method on LISC dataset.Column(a)and(d)represent input images;(b)and(e)localization results;(c)and(f)confidence score

    The localization outcomes in Tab.5 indicate that the method achieved the highest 0.97 IoU on blast cells.

    The proposed method localizes the WBCs with confidence scores,as shown in Figs.7 and 8.

    Figure 8:Localized region on LISC and ALL-IDB datasets(a)blast images(b)localization(c)confidence scores

    4.3 Experiment 2:Segmentation of Leukocytes

    In this experiment,the 3D segmented region is validated using different types of performance metrics,namely IoU,mean,weighted,and global accuracy,and F1-scores,as mentioned in Tab.6.The results of the proposed segmented WBCs are mapped pixel-by-pixel with ground annotated images,as illustrated in Fig.9.

    Table 6:Segmentation results of the WBCs

    Figure 9:3D-segmentation outcomes(a)WBCs(b)3D segmentation(c)ground annotated masks

    The segmentation results in Tab.6 indicate that the proposed method achieved the highest segmentation accuracy,obtained by the pixel-by-pixel comparison of the segmented images with ground annotated images.

    4.4 Experiment#3:Classification Based on the Extracted Feature

    In this experiment,an optimized feature vector is fed to a multi-kernel SVM for WBC classification,and the outcomes are computed in terms of accuracy,precision,recall,and F1 scores from the LISC dataset,as displayed in Tabs.7–9.The discrimination outcomes on the LISC and ALL-IDB1&2 datasets with class labels are presented in Fig.10.

    Table 7:WBCs classification results

    Table 8:WBCs classification results

    Table 9:WBCs classification results

    A quantitative analysis is performed using an SVM with three different types of kernels,namely cubic,quadratic,and optimized.The SVM with the optimized kernel achieved a maximum overall accuracy of 98.4%.The classification results are also compared with the latest published work,as shown in Tab.10.

    Tab.10 compares the classification results with the latest published existing work.The existing work achieved accuracies of 0.995,0.984,0.984,0.961,and 0.950 for lymphocytes,monocytes,basophils,eosinophils,and neutrophils,respectively.In contrast,the proposed method exhibited improved classification accuracy,with 0.996,1.00,0.987,1.00,and 0.988 for lymphocytes,monocytes,basophils,eosinophils,and neutrophils,respectively.

    The classification results on the ALL-IDB1&2 datasets are presented in Tabs.11 and 12.

    The classification results of blast/non-blast cells are presented in Tabs.11 and 12.An accuracy of 99.57% was achieved on the ALL-IDB1 dataset and 98.25% on the ALL-IDB2 dataset,and the results are compared with a recently published work,as provided in Tab.13.

    Tab.13 presents a comparison of the numerical results,wherein the competitive results obtained from the proposed method are compared to those of the latest published work.

    Figure 10:Confusion matrix(a)LISC dataset(b)ALL-IDB1 dataset

    Table 10:Proposed work comparison with latest published work on LISC dataset

    Table 11:WBCs classification results

    Table 12:WBCs classification results

    Table 13:Results comparison

    5 Conclusion

    In this study,deep learning approaches are proposed for the detection of WBCs.Detecting WBCs is challenging because blood smear images contain different color distributions in the cytoplasm and nucleus regions,making it difficult to segment these regions accurately.A 3-D semantic segmentation model is proposed,in which deeplabv3 is used as a bottleneck and the Xception model is used as a classification head to accurately segment the WBCs.Feature extraction/selection is another challenge for the classification of WBCs.The features are extracted from the pretrained darknet-53 model,and informative features are selected using Bhattacharyya separability criteria and passed to the SVM with different types of kernels,namely cubic,quadratic,and optimized.The proposed classification method achieved an accuracy of 99.57% on the ALL-IDB1 dataset,98.25% for the ALL-IDB2 dataset,and 98.4% for LISC datasets using the optimizable SVM kernel.The overall experimental outcomes demonstrate that the proposed technique achieved competitive outcomes by optimizing the SVM kernel.The proposed new framework based on a CNN can be used for the detection of different types of cancer,such as lung and bone cancer.It detects and classifies leukocytes at an early stage,thereby increasing the survival rate of patients.

    Acknowledgement:This research was supported by Korea Institute for Advancement of Technology(KIAT).

    Funding Statement:This research was supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0012724,The Competency Development Program for Industry Specialist)and the Soonchunhyang University Research Fund.

    Conflicts of Interest:All authors declare that they have no conflicts of interest to report regarding the present study.

    大型黄色视频在线免费观看| 精品免费久久久久久久清纯| 日韩av在线大香蕉| 欧美极品一区二区三区四区| 人妻制服诱惑在线中文字幕| 久久精品国产自在天天线| 久久久久久国产a免费观看| 插阴视频在线观看视频| 国产综合懂色| 中文亚洲av片在线观看爽| 亚洲欧美成人综合另类久久久 | 青春草亚洲视频在线观看| 精品一区二区三区视频在线| 亚洲美女搞黄在线观看| 九草在线视频观看| 亚洲欧美成人综合另类久久久 | 晚上一个人看的免费电影| 欧美日本视频| 美女大奶头视频| 欧美性感艳星| 日本撒尿小便嘘嘘汇集6| 亚洲av中文字字幕乱码综合| 在线观看av片永久免费下载| 日韩强制内射视频| 精品无人区乱码1区二区| 亚洲丝袜综合中文字幕| 男人舔奶头视频| 有码 亚洲区| 国产精华一区二区三区| 国产久久久一区二区三区| 黄色一级大片看看| 国产精品av视频在线免费观看| 69人妻影院| 干丝袜人妻中文字幕| 国产精品不卡视频一区二区| 欧美+亚洲+日韩+国产| 久久久久久久久久黄片| 日本免费a在线| 毛片一级片免费看久久久久| 麻豆成人午夜福利视频| 日韩一区二区视频免费看| 1000部很黄的大片| 国产视频首页在线观看| 国产黄色视频一区二区在线观看 | 变态另类成人亚洲欧美熟女| 欧美精品一区二区大全| 麻豆久久精品国产亚洲av| 久久久久久九九精品二区国产| 免费不卡的大黄色大毛片视频在线观看 | 亚洲丝袜综合中文字幕| 国产精品人妻久久久久久| 国产精品乱码一区二三区的特点| 深夜a级毛片| 一级二级三级毛片免费看| 51国产日韩欧美| 成人午夜精彩视频在线观看| 91久久精品电影网| 黄色视频,在线免费观看| 久久精品国产亚洲网站| 看免费成人av毛片| 91麻豆精品激情在线观看国产| 中国美女看黄片| 国产av一区在线观看免费| 亚洲经典国产精华液单| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产探花极品一区二区| 久久精品国产自在天天线| 欧美激情在线99| 蜜桃久久精品国产亚洲av| 少妇高潮的动态图| 国产精品免费一区二区三区在线| 久99久视频精品免费| 日韩一区二区视频免费看| 天天躁夜夜躁狠狠久久av| 国国产精品蜜臀av免费| 蜜桃亚洲精品一区二区三区| 少妇熟女aⅴ在线视频| eeuss影院久久| 女人十人毛片免费观看3o分钟| 精品99又大又爽又粗少妇毛片| 国语自产精品视频在线第100页| 久久精品夜夜夜夜夜久久蜜豆| 99久久无色码亚洲精品果冻| 又黄又爽又刺激的免费视频.| 久久精品91蜜桃| av又黄又爽大尺度在线免费看 | 国产69精品久久久久777片| 国产成人一区二区在线| 草草在线视频免费看| 欧美xxxx黑人xx丫x性爽| 天堂影院成人在线观看| 又粗又爽又猛毛片免费看| 91久久精品国产一区二区三区| 午夜激情欧美在线| 欧美不卡视频在线免费观看| av免费在线看不卡| 狠狠狠狠99中文字幕| 桃色一区二区三区在线观看| 成人美女网站在线观看视频| www.av在线官网国产| 久久这里只有精品中国| 国内精品宾馆在线| 在线国产一区二区在线| 久久人人精品亚洲av| 国产高清有码在线观看视频| 国产亚洲av片在线观看秒播厂 | 免费观看精品视频网站| 黄片无遮挡物在线观看| 国产成人影院久久av| 99热这里只有是精品50| 国产三级在线视频| 亚洲精品久久国产高清桃花| 欧美一级a爱片免费观看看| 精品人妻偷拍中文字幕| 成人午夜高清在线视频| 日韩视频在线欧美| 久久国产乱子免费精品| 男插女下体视频免费在线播放| 99热精品在线国产| 哪个播放器可以免费观看大片| 女人十人毛片免费观看3o分钟| 99久久成人亚洲精品观看| 日本黄色视频三级网站网址| 我要看日韩黄色一级片| 国产av一区在线观看免费| 欧美三级亚洲精品| 亚洲五月天丁香| 色尼玛亚洲综合影院| 亚洲第一区二区三区不卡| 国产一区二区在线av高清观看| 美女 人体艺术 gogo| 两性午夜刺激爽爽歪歪视频在线观看| 免费电影在线观看免费观看| 亚洲国产色片| 久久鲁丝午夜福利片| www.色视频.com| 久久久久网色| 九草在线视频观看| 有码 亚洲区| 美女高潮的动态| 久久久久久久久久久免费av| 男女边吃奶边做爰视频| 欧美高清性xxxxhd video| 在线观看免费视频日本深夜| 欧美一区二区国产精品久久精品| 蜜桃久久精品国产亚洲av| 亚洲第一区二区三区不卡| 成人特级av手机在线观看| 成人二区视频| 亚洲成人久久性| 99九九线精品视频在线观看视频| 国产av一区在线观看免费| 12—13女人毛片做爰片一| av在线天堂中文字幕| 校园春色视频在线观看| 天天躁夜夜躁狠狠久久av| 天美传媒精品一区二区| 国产探花在线观看一区二区| 五月伊人婷婷丁香| 国产精品一区www在线观看| 国产午夜精品论理片| 日韩制服骚丝袜av| 久久人人爽人人片av| 老熟妇乱子伦视频在线观看| 国国产精品蜜臀av免费| 级片在线观看| 深夜a级毛片| 一本久久精品| 成人永久免费在线观看视频| 国产精品人妻久久久影院| 久久精品国产亚洲网站| 天堂中文最新版在线下载 | 欧美一区二区国产精品久久精品| 中国美女看黄片| 免费观看精品视频网站| 久久精品久久久久久噜噜老黄 | 亚洲在线观看片| 蜜臀久久99精品久久宅男| 嫩草影院入口| 成人午夜精彩视频在线观看| 亚洲成人久久性| 九色成人免费人妻av| 成人性生交大片免费视频hd| 亚洲不卡免费看| av天堂中文字幕网| 亚洲综合色惰| 亚洲av熟女| av黄色大香蕉| 身体一侧抽搐| 色哟哟·www| 久久九九热精品免费| av黄色大香蕉| 三级经典国产精品| 国产精品福利在线免费观看| 国产一区二区亚洲精品在线观看| 亚洲国产色片| 亚洲三级黄色毛片| 寂寞人妻少妇视频99o| 国产一区亚洲一区在线观看| 日韩高清综合在线| 尤物成人国产欧美一区二区三区| 黄色配什么色好看| www日本黄色视频网| 日日干狠狠操夜夜爽| 国产单亲对白刺激| 国产成人freesex在线| 欧美+亚洲+日韩+国产| 成人午夜高清在线视频| 欧美潮喷喷水| 亚洲av.av天堂| 青春草国产在线视频 | 欧美性猛交╳xxx乱大交人| 直男gayav资源| 亚洲精品亚洲一区二区| 毛片女人毛片| 成年版毛片免费区| 在线观看美女被高潮喷水网站| 在线播放国产精品三级| 国产 一区精品| 亚洲最大成人手机在线| 特级一级黄色大片| 99在线人妻在线中文字幕| 女的被弄到高潮叫床怎么办| 亚洲精品久久久久久婷婷小说 | 美女 人体艺术 gogo| .国产精品久久| 综合色av麻豆| 99热精品在线国产| 亚洲一级一片aⅴ在线观看| 国产69精品久久久久777片| 亚洲欧美精品自产自拍| 69av精品久久久久久| av专区在线播放| 久久这里只有精品中国| 99久国产av精品| 边亲边吃奶的免费视频| 国产成人影院久久av| 91精品一卡2卡3卡4卡| 日韩欧美三级三区| 中文字幕制服av| 国产高潮美女av| 欧美成人a在线观看| 亚洲成av人片在线播放无| 在线免费观看的www视频| 久久久国产成人精品二区| 国产免费一级a男人的天堂| 欧美激情在线99| 小蜜桃在线观看免费完整版高清| 国产精品人妻久久久影院| 亚洲av电影不卡..在线观看| 99国产极品粉嫩在线观看| 春色校园在线视频观看| 在线a可以看的网站| 少妇裸体淫交视频免费看高清| 免费观看精品视频网站| 丰满人妻一区二区三区视频av| 性欧美人与动物交配| 两个人的视频大全免费| 国产黄片视频在线免费观看| 男人狂女人下面高潮的视频| 午夜精品国产一区二区电影 | 亚洲av中文av极速乱| 久久久久久国产a免费观看| 青春草国产在线视频 | 26uuu在线亚洲综合色| 一边摸一边抽搐一进一小说| 国产在线精品亚洲第一网站| 日本免费一区二区三区高清不卡| 婷婷六月久久综合丁香| 观看美女的网站| 午夜福利成人在线免费观看| 国产白丝娇喘喷水9色精品| 丰满人妻一区二区三区视频av| 熟女人妻精品中文字幕| 欧美高清成人免费视频www| 村上凉子中文字幕在线| а√天堂www在线а√下载| 成年av动漫网址| 欧美三级亚洲精品| 国产成人影院久久av| 久久鲁丝午夜福利片| 狂野欧美激情性xxxx在线观看| 99热这里只有是精品50| 99热只有精品国产| 亚洲不卡免费看| 亚洲欧美日韩无卡精品| 欧美3d第一页| 自拍偷自拍亚洲精品老妇| av女优亚洲男人天堂| 人体艺术视频欧美日本| 亚洲五月天丁香| 免费看光身美女| 成人特级av手机在线观看| 国产成人精品一,二区 | 美女被艹到高潮喷水动态| 色吧在线观看| 色尼玛亚洲综合影院| 亚洲成人中文字幕在线播放| 久久草成人影院| 国产精品久久久久久亚洲av鲁大| 一进一出抽搐动态| 一区二区三区高清视频在线| 1024手机看黄色片| 不卡一级毛片| 在现免费观看毛片| 不卡一级毛片| 国产老妇伦熟女老妇高清| 人体艺术视频欧美日本| 亚洲精品久久国产高清桃花| 欧美日韩综合久久久久久| 两个人视频免费观看高清| 91狼人影院| 国产视频首页在线观看| 99久久精品一区二区三区| 亚洲18禁久久av| 级片在线观看| 99久久中文字幕三级久久日本| 欧美高清性xxxxhd video| av国产免费在线观看| 国产视频内射| 国产三级在线视频| 久久精品久久久久久久性| 亚洲av中文av极速乱| 成人av在线播放网站| 亚洲第一区二区三区不卡| 国模一区二区三区四区视频| 亚洲人成网站在线播放欧美日韩| 99riav亚洲国产免费| 国产精品1区2区在线观看.| 69av精品久久久久久| 不卡视频在线观看欧美| 日本av手机在线免费观看| 国产精品不卡视频一区二区| 99九九线精品视频在线观看视频| 国产伦一二天堂av在线观看| 久久综合国产亚洲精品| 国产免费男女视频| 精品免费久久久久久久清纯| www.av在线官网国产| 一夜夜www| 尾随美女入室| 日本av手机在线免费观看| 国产伦在线观看视频一区| 久久久精品94久久精品| 人人妻人人看人人澡| 男女边吃奶边做爰视频| 久久久久久久久中文| 国产精品三级大全| 亚洲av中文字字幕乱码综合| or卡值多少钱| 日韩成人伦理影院| 日本av手机在线免费观看| 特级一级黄色大片| 99国产精品一区二区蜜桃av| 婷婷精品国产亚洲av| 夜夜爽天天搞| 人人妻人人澡人人爽人人夜夜 | 亚洲欧美成人综合另类久久久 | 国产高清不卡午夜福利| 亚洲va在线va天堂va国产| 波野结衣二区三区在线| 日韩高清综合在线| 不卡一级毛片| 一进一出抽搐动态| 国产av在哪里看| a级毛色黄片| 99国产极品粉嫩在线观看| 免费在线观看成人毛片| 国产真实伦视频高清在线观看| 夜夜夜夜夜久久久久| 久久99蜜桃精品久久| 桃色一区二区三区在线观看| 精华霜和精华液先用哪个| 亚洲欧美精品综合久久99| 少妇人妻一区二区三区视频| 欧美极品一区二区三区四区| 日韩制服骚丝袜av| 99热这里只有是精品50| 色哟哟·www| 赤兔流量卡办理| 一级毛片电影观看 | 国产白丝娇喘喷水9色精品| 天天躁日日操中文字幕| 亚洲人成网站在线播放欧美日韩| 1024手机看黄色片| 亚洲精品日韩在线中文字幕 | 男女做爰动态图高潮gif福利片| 成年av动漫网址| 亚洲美女视频黄频| 久久久久久久久久久丰满| 亚洲综合色惰| 免费观看精品视频网站| 日韩强制内射视频| 国产成人freesex在线| 欧美激情在线99| h日本视频在线播放| 欧美成人一区二区免费高清观看| 亚洲一区二区三区色噜噜| 亚洲国产色片| 99国产极品粉嫩在线观看| 麻豆av噜噜一区二区三区| 国产真实伦视频高清在线观看| 国产v大片淫在线免费观看| 黄片wwwwww| 亚洲不卡免费看| 久久精品国产清高在天天线| 青春草视频在线免费观看| 精品久久国产蜜桃| 精品久久久久久久久久免费视频| 久久精品人妻少妇| 在线观看美女被高潮喷水网站| 国产av一区在线观看免费| 亚洲欧美日韩无卡精品| 欧美成人a在线观看| 国产成人一区二区在线| 岛国在线免费视频观看| 人人妻人人澡人人爽人人夜夜 | 免费av毛片视频| av黄色大香蕉| 亚洲内射少妇av| 在线国产一区二区在线| 日本爱情动作片www.在线观看| 少妇高潮的动态图| 久久国内精品自在自线图片| 日韩一本色道免费dvd| 日韩一区二区三区影片| 国产一区二区在线观看日韩| 最近最新中文字幕大全电影3| 国产男人的电影天堂91| 国产精品人妻久久久久久| 综合色丁香网| 搞女人的毛片| 国产一区二区激情短视频| 精品久久久久久成人av| 边亲边吃奶的免费视频| 一个人观看的视频www高清免费观看| 免费一级毛片在线播放高清视频| 少妇被粗大猛烈的视频| 国产真实乱freesex| 一级黄色大片毛片| 最近中文字幕高清免费大全6| 波多野结衣巨乳人妻| 国产精品一区二区三区四区久久| 久久久久久久久久久丰满| 亚洲成人中文字幕在线播放| 国产中年淑女户外野战色| 寂寞人妻少妇视频99o| 97热精品久久久久久| 欧美不卡视频在线免费观看| 亚洲熟妇中文字幕五十中出| 国产色爽女视频免费观看| 精品久久久久久久久av| 国产精品99久久久久久久久| 欧美xxxx黑人xx丫x性爽| 色哟哟哟哟哟哟| 一进一出抽搐动态| 深夜a级毛片| 99久久人妻综合| 欧美精品国产亚洲| 麻豆成人av视频| 欧美成人a在线观看| 永久网站在线| 国产精品一二三区在线看| 五月伊人婷婷丁香| 亚洲av成人精品一区久久| 国产精品日韩av在线免费观看| 麻豆成人av视频| 亚洲婷婷狠狠爱综合网| 国产高潮美女av| 国产69精品久久久久777片| 国产高清激情床上av| 国产成人a区在线观看| 九九热线精品视视频播放| 成人高潮视频无遮挡免费网站| 一边摸一边抽搐一进一小说| 日本免费一区二区三区高清不卡| 如何舔出高潮| 爱豆传媒免费全集在线观看| 午夜免费男女啪啪视频观看| 日韩av在线大香蕉| 亚洲中文字幕一区二区三区有码在线看| 中文字幕精品亚洲无线码一区| 婷婷色综合大香蕉| 久久久久久久亚洲中文字幕| 欧美一区二区亚洲| 精品不卡国产一区二区三区| 久99久视频精品免费| 97人妻精品一区二区三区麻豆| 精品久久久久久久久久久久久| 国产av不卡久久| 伦精品一区二区三区| 久久午夜福利片| 悠悠久久av| 国产单亲对白刺激| 亚洲av免费在线观看| 看黄色毛片网站| 欧美激情在线99| 三级国产精品欧美在线观看| 欧美丝袜亚洲另类| 久久99热这里只有精品18| 亚洲三级黄色毛片| 最近中文字幕高清免费大全6| 欧美日韩一区二区视频在线观看视频在线 | 高清在线视频一区二区三区 | 丝袜美腿在线中文| 色哟哟哟哟哟哟| 性欧美人与动物交配| 国产精品,欧美在线| 亚洲精华国产精华液的使用体验 | 日韩欧美 国产精品| 婷婷色av中文字幕| 深夜精品福利| 搞女人的毛片| 久久久色成人| 97人妻精品一区二区三区麻豆| 真实男女啪啪啪动态图| 中文字幕熟女人妻在线| 日本成人三级电影网站| 国产日本99.免费观看| 国产伦精品一区二区三区视频9| 日韩一区二区视频免费看| 久久6这里有精品| 悠悠久久av| 麻豆av噜噜一区二区三区| 日韩中字成人| 久久精品国产亚洲av天美| 丰满人妻一区二区三区视频av| 成人美女网站在线观看视频| 久久中文看片网| 观看免费一级毛片| 亚洲精品色激情综合| 国内精品久久久久精免费| 亚洲精品粉嫩美女一区| 日韩欧美在线乱码| 乱人视频在线观看| 欧美日韩国产亚洲二区| 免费大片18禁| 色综合色国产| 亚洲精品久久国产高清桃花| 亚洲第一区二区三区不卡| 国产精品久久久久久精品电影小说 | 久久精品夜色国产| 2021天堂中文幕一二区在线观| 欧美丝袜亚洲另类| 亚洲成人中文字幕在线播放| 欧美高清性xxxxhd video| 亚洲综合色惰| 午夜精品一区二区三区免费看| АⅤ资源中文在线天堂| 小蜜桃在线观看免费完整版高清| 久久久精品欧美日韩精品| 国产精品99久久久久久久久| 午夜福利在线观看吧| 国产av在哪里看| 丝袜喷水一区| 搡老妇女老女人老熟妇| 1000部很黄的大片| 亚洲久久久久久中文字幕| 成人特级av手机在线观看| 变态另类成人亚洲欧美熟女| 夜夜夜夜夜久久久久| 国产成年人精品一区二区| 日本熟妇午夜| 麻豆成人午夜福利视频| 国产高清激情床上av| 欧美高清成人免费视频www| 亚洲国产精品成人综合色| 全区人妻精品视频| 国产人妻一区二区三区在| 国产免费一级a男人的天堂| 久久亚洲精品不卡| 99久久成人亚洲精品观看| 又粗又硬又长又爽又黄的视频 | 岛国毛片在线播放| 国产高清有码在线观看视频| av.在线天堂| 99在线视频只有这里精品首页| 久久精品人妻少妇| 成人二区视频| 男人舔女人下体高潮全视频| 内地一区二区视频在线| 亚洲精品色激情综合| 欧美变态另类bdsm刘玥| 综合色丁香网| 免费观看在线日韩| 啦啦啦啦在线视频资源| 高清日韩中文字幕在线| 国产精品野战在线观看| 美女xxoo啪啪120秒动态图| 亚洲欧美日韩东京热| 午夜免费激情av| 寂寞人妻少妇视频99o| 美女 人体艺术 gogo| 国产一区二区在线观看日韩| 国产在视频线在精品| 又粗又硬又长又爽又黄的视频 | 久久99蜜桃精品久久| 免费黄网站久久成人精品| 国产一区亚洲一区在线观看| 久久久欧美国产精品| 两个人视频免费观看高清| 中文亚洲av片在线观看爽| 在线免费十八禁| 国产精品无大码| 亚洲国产精品国产精品| 国产成年人精品一区二区| 国产精品不卡视频一区二区| 免费人成视频x8x8入口观看| 变态另类成人亚洲欧美熟女| 国产成人a∨麻豆精品| 色综合色国产| 亚洲欧美日韩高清专用| 欧美+亚洲+日韩+国产| 狂野欧美白嫩少妇大欣赏| 国内少妇人妻偷人精品xxx网站|