• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Highly Efficient Algorithm for Phased-Array mmWave Massive MIMO Beamforming

    2021-12-10 11:55:28AymanAbdulhadiAlthuwaybFazirulhisyamHashimJiunTerngLiewImranKhanJeongWooLeeEmmanuelAmpomaAffumAbdeldjalilOuahabiandbastienJacques
    Computers Materials&Continua 2021年10期

    Ayman Abdulhadi Althuwayb,Fazirulhisyam Hashim,Jiun Terng Liew,Imran Khan Jeong Woo Lee,Emmanuel Ampoma Affum,Abdeldjalil Ouahabiand Sébastien Jacques

    1Department of Electrical Engineering,Jouf University,Sakaka,Aljouf,72388,Kingdom of Saudi Arabia

    2Department of Computer and Communication Systems Engineering,Faculty of Engineering,Universiti Putra Malaysia(UPM),Serdang,43400,Malaysia

    3Department of Electrical Engineering,University of Engineering and Technology Peshawar,Pakistan

    4School of Electrical and Electronics Engineering,Chung-Ang University,Seoul,06974,Korea

    5Electrical and Electronic Department,Kwame Nkrumah University of Science and Technology,Kumasi,Ghana

    6UMR 1253,iBrain,Université de Tours,INSERM,Tours,France

    7LIMPAF Laboratory,Department of Computer Science,University of Bouira,Bouira,10000,Algeria

    8University of Tours(France),GREMAN UMR 7347,CNRS,INSA Centre Val-de-Loire,Tours,37100,France

    Abstract:With the rapid development of the mobile internet and the internet of things(IoT),the fifth generation(5G)mobile communication system is seeing explosive growth in data traffic.In addition,low-frequency spectrum resources are becoming increasingly scarce and there is now an urgent need to switch to higher frequency bands.Millimeter wave(mmWave)technology has several outstanding features—it is one of the most well-known 5G technologies and has the capacity to fulfil many of the requirements of future wireless networks.Importantly,it has an abundant resource spectrum,which can significantly increase the communication rate of a mobile communication system.As such,it is now considered a key technology for future mobile communications.MmWave communication technology also has a more open network architecture;it can deliver varied services and be applied in many scenarios.By contrast,traditional,all-digital precoding systems have the drawbacks of high computational complexity and higher power consumption.This paper examines the implementation of a new hybrid precoding system that significantly reduces both calculational complexity and energy consumption.The primary idea is to generate several sub-channels with equal gain by dividing the channel by the geometric mean decomposition(GMD).In this process,the objective function of the spectral efficiency is derived,then the basic tracking principle and least square(LS)techniques are deployed to design the proposed hybrid precoding.Simulation results show that the proposed algorithm significantly improves system performance and reduces computational complexity by more than 45%compared to traditional algorithms.

    Keywords:5G;mmWave;phased array;algorithm;antenna beamforming

    1 Introduction

    As the number of wireless devices continues to grow and wireless applications continue to expand,user demand for wireless network transmission rates continues to increase.The existing low frequency network(<3 GHz)is struggling to meet this increasing demand for speed.Addition,it is oriented towards greater bandwidth.High frequency resources are currently being studied and implemented[1]and the 60 GHz millimeter wave(mmWave)has aroused the interest of a large number of researchers.Many countries have opened unlicensed 60 GHz mmWave frequency bands for research and testing.For example,China’s open frequency band is 59~64 GHz,in the United States the band is 57~64 GHz,and Japan uses 59~66 GHz.Relevant standards have been established to promote the industrialization of 60 GHz mmWave applications[2–6].Wireless HD(WiHD)is primarily used to achieve high-quality,high-definition,uncompressed video transmission indoors,while the IEEE802.15.3c standard is primarily used for high-quality indoor networks.Wireless personal area network(WPAN)applications and the IEEE802.11.ad standard provide high-quality wireless local area network(WLAN)applications[7].

    The application of the 60 GHz mmWave band presents significant challenges.Oxygen attenuation on the ground reaches 15 dB/km as a result of the oxygen attenuation window.In addition,reflection attenuation and other losses occur as part of the propagation process.As such,the link budget is very limited and if we are in a non-line-of-sight(NLOS)environment,the performance of the link will be severely affected[8].Furthermore,the output power of the power amplifier in the 60 GHz mmWave frequency band is very limited.Therefore,exploitation of the short wavelength region and small antenna arrays in this frequency band,as well as the use of beamforming technology,can help improve link gain.In terms of implementation methods,beamforming technology can be divided into adaptive beamforming and fixed beamforming[9].Although adaptive beamforming technology performs well,the complexity of its implementation is high.The implementation of codebook-based fixed beamforming technology is not very complex,but unfortunately it is not very efficient.In terms of hardware architecture,digital beamforming technology is generally used.Each antenna is configured with a radio frequency link,which sees high costs and power consumption[10].MmWave generally adopts radio frequency beamforming technology and realizes the alignment of the transceiver through the radio frequency phase shifter to directly adjust the signal,reducing the cost[11,12].MmWave beamforming technology has been the subject of numerous studies.The IEEE802.11.ad and IEEE802.15.3c standards both adopt codebook-based beamforming technology as part of the RF phase-shifting architecture and find an optimal beam through hierarchical searching[13–16].

    In recent years,mmWave massive multiple-input multiple-output(massive-MIMO)technology has attracted the attention of the scientific community.This is primarily because mmWave communications present an abundant spectrum and hybrid massive-MIMO precoding technology provides a higher beam gain and compensates for the propagation defect of the high loss of mmWave communications[17].However,at the same time,the scale of the hardware required and the complexity of encoding and decoding are both increasing and a new hybrid precoding scheme is needed to reduce system complexity.

    MIMO multiplexing systems typically use singular value decomposition(SVD)to obtain several independent orthogonal spatial sub-channels for higher throughput.However,due to the large differences in the gain of each sub-channel in this method,it is necessary to use different codecs and modulation/demodulation methods to meet the bit error rate(BER)requirements,making the system very complex[18].For this reason,the authors of[19]propose a scheme based on geometric mean decomposition(GMD).This scheme decomposes the Rayleigh fading channel under orthogonal frequency division multiplexing into several parallel sub-channels with equal channel gains.This helps to avoid complicated bit allocation and power loading processes and reduces the difficulty of system encoding and decoding,reducing overall system complexity[20].In order to obtain a hybrid precoding scheme with the best frequency efficiency,the authors in[21]transformed the frequency efficiency optimization problem into a sparse approximation problem and optimized it using the orthogonal matching pursuit(OMP)algorithm to downlink the frequency efficiency of a single-user MIMO system[22].The authors of[23]studied the frequency efficiency of a single-user MIMO system and designed a hybrid precoding scheme,proposing an algorithm to optimize the frequency efficiency of the system.However,they only considered the optimization of the algorithm and did not proceed in terms of the complexity of the coding and decoding of the system.After studying MIMO channel diagonalization,the authors of[24]used the GMD method to efficiently compensate for gain difference defects in SVD-weighted sub-channels.The authors of[25]examined the impact of the differential GMD precoder on the frequency efficiency of the system based on the assumption of a low feedback rate in single-user MIMOs,but the relationship between the frequency efficiency of the system and the number of BS antennas and the signal-to-noise ratio remains unclear and would be difficult to promote in the current communications environment.

    Based on the current state of research on the spectral efficiency of the millimeter wave MIMO downlink system,the GMD channel processing method was applied to the processing of Saleh-Valenzuela mmWave channels.Compared to the traditional SVD algorithm,the complexity of the system can be effectively reduced and,for the single-user mobile downlink communication scenario,the hybrid GMD-based precoding scheme is proposed and implemented.This scheme can give good results,assuming that the system complexity can be reduced and the spectral efficiency can be improved.

    2 System Modeling

    2.1 Hybrid Precoding Model

    Figure 1:Proposed system model

    2.2 Channel Model

    3 Proposed Algorithm

    3.1 Problem Description

    The limited spatial scattering of the propagating mmWave considerably varies the singular value of the channel matrixH[28].As shown in Fig.2a,this results in a large difference in the signal-to-noise ratio(SNR)of the different sub-channels after power allocation.

    Figure 2:Illustration of sub-channel gain.(a)traditional SVD precoding;(b)GMD precoding

    In the same modulation/demodulation mode,the bit error rate(BER)of all sub-channels is determined by the sub-channel with the lowest fixed SNR.In order to ensure that all subchannels maintain a similar bit error rate,the SVD-based precoding system requires careful bit allocation for each sub-channel,which will greatly increase the complexity of the system encoding/decoding process[29].However,theH-channel adopts the GMD technique to effectively equalize the SNR of each sub-channel[24,25].As shown in Fig.2b,this avoids the complicated process of allocating bits and loading power into the sub-channels,and reduces the complexity of programming and decoding the system.The overall complexity of the system is thus reduced.On this basis,the design relies on the GMD hybrid precoding optimization matrix,to achieve the optimized value of spectral efficiency under the lower complexity of coding,decoding and modulation,and demodulation.

    From(2),the spectral efficiency of the system is defined by(5)[30].

    3.2 Optimization of Spectral Efficiency

    From(5),we can see that for any arbitrary value having a rank ofNsand a singular value ofσ1≥σ2≥...≥σNs.The complex channel matrixHcan be expressed by(6).

    3.3 Conversion Optimization Objective Function

    3.4 Optimize Objective Function Solution

    4 Hybrid Precoding Optimization Algorithm Based on GMD

    4.1 Optimization Algorithm Under Fully Connected Structure

    In the fully connected structure,hybrid precoding only takes into account the base station coding,and the user receiver can perform the corresponding decoding processing based on the received signal.The optimal solution algorithm of Eq.(18)consists of two links.The first one uses theforloop to use the residual matrixQ1obtained by the GMD transformation as the optimal precoding matrix,GH1,substituting the OMP method as a combined matrix to obtainQAandQD.The latter performs the transformation corresponding to Lemma 1 on theQDand normalizes the effective precoding matrix to meet the transmission power constraints.Algorithm 1 provides the pseudocode for the fully connected structure.

    It should be pointed out that due to the calculation using the conversion relation in Lemma 1,it is not necessary to calculateSRin the process,just apply the corresponding permutation and multiplication in each step ofQD.Therefore,the computational complexity of generatingQDisO((Ns+Nt)Ns)in the reference algorithm[31],and the proposed Algorithm 1 has a complexity ofThe Golub-Kahan double-diagonalization scheme[32](usually the first step of calculating SVD)has a computational complexity ofO(NsNtK),which shows that GMDbased hybrid precoding can optimize the algorithm complexity of spectral efficiency.Compared with the traditional SVD-based hybrid precoding,only a small additional algorithm complexity is added,because the pseudo-inverse ofQAneeds to be calculated.In terms of overall system complexity,the GMD precoding scheme using this Algorithm 1 can effectively avoid complex bit allocation problems,reduce the difficulty of encoding/decoding,and the complexity is much lower than SVD precoding schemes.

    Algorithm 1:Proposed Algorithm for Fully Connected Structure Input:The optimal precoding matrix Qres,NRFt ,Nt,Nr,and the array response vector-matrix At Initialization:Calculate[S1V1D1]= SVD(H),[QRP]= GMD(S1V1D1),QA = empty matrix,Qres=P(:,1: Ns);1:for i ≤NRF t 2: At= 1√Nt ej∠S1 3: Φ=AHt Qres; k=argmaxl=1,2,...,Limages/BZ_675_1011_1610_1029_1656.pngΦΦH)4: QA=[QA,At(:,k)]5: QD=images/BZ_675_475_1728_494_1774.pngQHAQA l,l)?1 QHAA1 6: Qres= Qres ?QAQD‖Qres ?QAQD‖F(xiàn) 7:End for 8:Generate SR according to the conversion relationship of realization Lemma 1,and get QD=QDSR 9:Determine normalize QD=√Ns QD‖QAQD‖F(xiàn) Output:Optimized analog and digital precoding matrices QA,QD

    4.2 Optimization Algorithm Under Partially Connected Structure

    Algorithm 2:Proposed Algorithm for Partially Connected Structure Input:Channel matrix H,number of transmitting antennas Nt,number of receiving antennas Nr Output:Analog precoding matrix QA,a digital precoding matrix QD;Initialization:Calculate G0=HH(eye(Nr))?1 H,G=eye(Ns),zeroimages/BZ_676_581_1316_600_1362.pngNs,Nsimages/BZ_676_726_1316_744_1362.pngNRF t ?1))H 1:for i ≤NRF t ?1))G0×eye(Ns),zeroimages/BZ_676_1357_1316_1376_1362.pngNs,Nsimages/BZ_676_1502_1316_1520_1362.pngNRF t 2:[S V D]=SVD(G)3:[QRP]=GMD(SVD)4: v1=P(:,1)5: μ=R(1,1)6: a(:,i)= 1√Nt ej∠V1 7: QA=a(:,1)8: d(i)= norm(v1,1)√Nt 9: p(:,i)= 1Ns norm(v1,1)×ej∠v1images/BZ_676_562_1959_581_2005.pngρ/Nσ2)μ2v1vH1 1+images/BZ_676_654_2029_672_2075.pngρ/Nσ2)μ 11:End for 12: QD=diag(d)13:Generate SR according to the conversion relationship of realization Lemma 1,and get QD=QDSD 14:Normalize QD=√Nt QD‖QAQD‖F(xiàn) 10: G=G ?

    5 Simulation Results

    This section analyses the performance of the GMD-based hybrid precoding scheme and spatial sparse precoding through simulation.The simulation environment is set as follows:the base station adopts ULA transmitting antenna array,the number of antennas is 64 and 256,respectively,the number of user end antennas is 16 and 64,and the antenna intervald=λ/2d.The number of RF chains at the base station and the user end are bothand the carrier frequency is 28 GHz.Using the Saleh Valenzuela channel model,the number of effective paths isL=3,the complex gain of each path obeys the distributionCN(0,1),and the azimuth angles AoA and AoD of the antennas at both ends obey[?π/2,π/2].The signal to noise ratio isFor the optimal unconstrained precoding scheme,the water injection power allocation scheme is adopted.For all sub-channels based on SVD and GMD precoding schemes,the 16QAM modulation method is adopted.

    Fig.3 shows the spectral efficiency performance of the proposed Algorithm 1 under different iterations when the number of transmitting antennas is 256 and the number of receiving end antennas is 64.It can be seen from Fig.3 that as the number of iterations increases,spectral efficiency gradually increases.When the number of iterations reaches 100,Algorithm 1 converges.It shows that the proposed algorithm is feasible for spectral efficiency under the GMD channel processing method.

    Figure 3:Comparison of spectral efficiency under different number of iterations

    Fig.4 shows the comparison of the spectral efficiency with SNR when the number of RF chains at both ends is 8 and the transmission data streamsNs=4,the number of base station antennas is different.From Fig.4,the following conclusions are:

    1)The spectral efficiency obtained by the GMD-based hybrid precoding method when the number of base station antennas is better than the reference scheme[21].

    2)As the number of transmitting antennas increases,the spectral efficiency of the system gradually increases.With the increase of the SNR,the increase of the spectral efficiency becomes progressively more important,which means that the larger the scale of the antenna,the better the spectral efficiency performance,but due to the limitation of the maximum transmit power,the increase of the effect has extreme values.

    3)When the number of base station antennas increases to a certain value,the proposed scheme can approach the optimal precoding performance.

    Fig.5 shows the comparison of the spectral efficiency performance with SNR in the two antenna connection modes when the number of RF chains at both ends is 8,the transmission data streamNs=4,and the number of transmitting antennas is 64.This can be seen from the results:

    (1)Under the partial connection structure,the performance of the GMD-based hybrid precoding scheme is better than the traditional analog precoding;

    (2)The spectral efficiency performance of the proposed precoding scheme is equivalent to the optimal precoding scheme under the partial connection structure,indicating that the proposed scheme has achieved near-optimal performance;

    (3)When the SNR reaches 10 dB,the spectral efficiency of the proposed scheme under the partially connected transmission structure is approximately 80% of the scheme in[21]in the fully connected structure.

    Figure 4:Spectral efficiency performance of fully connected structure system under different SNR

    Figure 5:Spectral efficiency performance under different connection structures

    Overall,the proposed system has good scalability and spectral efficiency,which guarantees the complexity of the system.

    Fig.6 compares the computational complexity of the algorithms under an increasing number of RF chains.As shown in Fig.6,the complexity of all algorithms increases with the increasing number of RF chains.In addition,the complexity of the proposed hybrid precoding system has reduced performance compared to the optimal precoding system,which means that the proposed system is computationally efficient and requires a lower number of iterations and information signal processing time.On the other hand,the reference analog precoding scheme[21]and the traditional analog precoding scheme are very complex.

    Figure 6:Complexity comparison of the algorithms vs.the number of RF chains

    6 Conclusions

    Millimeter wave(30 GHz–300 GHz)is used for high-speed(5G)wireless communications by allocating more bandwidth to deliver faster and higher quality video and multimedia content and services.

    Due to the significant changes in the signal-to-noise ratio of the different sub-channels in the singular value decomposition,which leads to increased system complexity and encoding/decoding difficulties,a hybrid precoding scheme,which is based on geometric mean decomposition(GMD),is proposed.

    Compared to the system proposed by[28],the hybrid precoding system proposed here can effectively equalize the signal-to-noise ratio of the sub-channels and reduce the overall complexity of the system.At the same time,in order to be better applied to real communication scenarios,the code has been extended to some connection transmission structures,and better frequency performance has also been obtained.The simulation results show that the frequency efficiency of the hybrid precoding scheme proposed under different base station antenna numbers is better than that of the orthogonal matching pursuit scheme[28],and that it can be applied to both existing transmission structures with a high applicability.

    In perspective,the algorithms and conclusions proposed in this paper are established under ideal channel conditions.Further research is more than necessary for more complex and universal communication scenarios.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲男人的天堂狠狠| 岛国在线观看网站| 亚洲精品国产一区二区精华液| 国产精品久久视频播放| 男人的好看免费观看在线视频 | 热99国产精品久久久久久7| 精品久久蜜臀av无| 国产精品永久免费网站| 在线观看免费高清a一片| 国产熟女午夜一区二区三区| 成年女人毛片免费观看观看9| 欧洲精品卡2卡3卡4卡5卡区| 午夜久久久在线观看| 成人18禁高潮啪啪吃奶动态图| 欧洲精品卡2卡3卡4卡5卡区| 久久青草综合色| 欧美最黄视频在线播放免费 | 亚洲精品久久午夜乱码| 久久 成人 亚洲| 好看av亚洲va欧美ⅴa在| 757午夜福利合集在线观看| 成人特级黄色片久久久久久久| 免费久久久久久久精品成人欧美视频| 国产精品 欧美亚洲| 老司机午夜福利在线观看视频| 成人影院久久| 黄色怎么调成土黄色| 国产精品1区2区在线观看.| 亚洲精品国产区一区二| av天堂在线播放| 99re在线观看精品视频| 久久久水蜜桃国产精品网| 欧美日韩亚洲综合一区二区三区_| 婷婷六月久久综合丁香| 久久久久久大精品| 桃红色精品国产亚洲av| 女人被狂操c到高潮| 久久久久精品国产欧美久久久| 脱女人内裤的视频| 免费在线观看影片大全网站| 国产高清激情床上av| 亚洲精品粉嫩美女一区| 69av精品久久久久久| 亚洲色图 男人天堂 中文字幕| 亚洲专区国产一区二区| 久久久久亚洲av毛片大全| 欧美+亚洲+日韩+国产| 久久狼人影院| 女性生殖器流出的白浆| 制服诱惑二区| 成人18禁在线播放| 欧美日韩亚洲国产一区二区在线观看| 色综合欧美亚洲国产小说| 亚洲在线自拍视频| 国产精品久久久久成人av| 久久久久国产精品人妻aⅴ院| av电影中文网址| 精品少妇一区二区三区视频日本电影| 亚洲国产毛片av蜜桃av| 亚洲精品粉嫩美女一区| 男人操女人黄网站| 亚洲精品国产色婷婷电影| 国产熟女午夜一区二区三区| 一级毛片高清免费大全| 黑人操中国人逼视频| 国产亚洲欧美98| 国产人伦9x9x在线观看| 欧美激情久久久久久爽电影 | 99久久99久久久精品蜜桃| 欧美 亚洲 国产 日韩一| 热re99久久精品国产66热6| 欧美日本亚洲视频在线播放| 另类亚洲欧美激情| 久久久久久久午夜电影 | 午夜成年电影在线免费观看| 精品久久久久久久久久免费视频 | 操出白浆在线播放| 99香蕉大伊视频| 亚洲国产毛片av蜜桃av| 国产高清激情床上av| 两个人免费观看高清视频| a级片在线免费高清观看视频| 免费在线观看影片大全网站| 精品久久久久久,| 国产野战对白在线观看| 久久久久久大精品| 一边摸一边抽搐一进一小说| 法律面前人人平等表现在哪些方面| 午夜老司机福利片| 黑人猛操日本美女一级片| 亚洲欧美一区二区三区久久| 曰老女人黄片| 精品国产一区二区三区四区第35| 亚洲狠狠婷婷综合久久图片| 日本一区二区免费在线视频| 我的亚洲天堂| 人人澡人人妻人| 欧美国产精品va在线观看不卡| 午夜91福利影院| 国产成+人综合+亚洲专区| 亚洲va日本ⅴa欧美va伊人久久| 国产一区二区三区视频了| 日本五十路高清| 在线永久观看黄色视频| 欧美日本中文国产一区发布| 在线观看免费日韩欧美大片| 级片在线观看| 一二三四在线观看免费中文在| 亚洲 欧美一区二区三区| 精品一区二区三区av网在线观看| 国产精品电影一区二区三区| 色婷婷久久久亚洲欧美| 波多野结衣av一区二区av| 在线天堂中文资源库| 99国产精品一区二区蜜桃av| aaaaa片日本免费| 淫妇啪啪啪对白视频| www日本在线高清视频| 丰满饥渴人妻一区二区三| 亚洲少妇的诱惑av| 久热这里只有精品99| 99国产综合亚洲精品| 男人操女人黄网站| 国产99久久九九免费精品| 女警被强在线播放| 黄色怎么调成土黄色| 久热爱精品视频在线9| 久久久久亚洲av毛片大全| 亚洲久久久国产精品| 亚洲精华国产精华精| 国产成人一区二区三区免费视频网站| 亚洲自偷自拍图片 自拍| 天天躁夜夜躁狠狠躁躁| 亚洲熟妇中文字幕五十中出 | 日韩免费高清中文字幕av| 老司机靠b影院| 人人妻人人爽人人添夜夜欢视频| 一区二区三区精品91| 国产精品 欧美亚洲| 亚洲一区二区三区不卡视频| 伊人久久大香线蕉亚洲五| 亚洲,欧美精品.| 久久亚洲真实| 国产成人啪精品午夜网站| a级毛片黄视频| 欧美日本亚洲视频在线播放| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一区高清亚洲精品| 久久精品亚洲熟妇少妇任你| 一区二区三区激情视频| 国产精品二区激情视频| 成人黄色视频免费在线看| xxx96com| 水蜜桃什么品种好| 亚洲国产精品sss在线观看 | 亚洲人成电影免费在线| 怎么达到女性高潮| 亚洲国产精品999在线| 嫩草影院精品99| 久久99一区二区三区| 精品熟女少妇八av免费久了| 精品第一国产精品| 女同久久另类99精品国产91| 亚洲第一青青草原| 久久久国产成人免费| 可以免费在线观看a视频的电影网站| 两性午夜刺激爽爽歪歪视频在线观看 | 国产有黄有色有爽视频| 免费人成视频x8x8入口观看| av国产精品久久久久影院| 亚洲三区欧美一区| 国产一区二区在线av高清观看| 两性夫妻黄色片| 国产单亲对白刺激| 久久国产精品影院| 男女床上黄色一级片免费看| 后天国语完整版免费观看| 久久久久国产一级毛片高清牌| 成人永久免费在线观看视频| 一进一出抽搐gif免费好疼 | av福利片在线| 亚洲精华国产精华精| 成熟少妇高潮喷水视频| 中文字幕av电影在线播放| 丝袜在线中文字幕| 国产成人精品在线电影| 日本vs欧美在线观看视频| 人妻久久中文字幕网| 国产精品一区二区在线不卡| 国产视频一区二区在线看| 久热这里只有精品99| 1024视频免费在线观看| 丰满人妻熟妇乱又伦精品不卡| 一边摸一边做爽爽视频免费| 19禁男女啪啪无遮挡网站| 国产成人精品在线电影| aaaaa片日本免费| 丁香六月欧美| 亚洲成人精品中文字幕电影 | 激情视频va一区二区三区| 国产成年人精品一区二区 | 精品卡一卡二卡四卡免费| 久热爱精品视频在线9| 亚洲激情在线av| 嫁个100分男人电影在线观看| 黄色a级毛片大全视频| 亚洲自偷自拍图片 自拍| 久久精品aⅴ一区二区三区四区| 黄片大片在线免费观看| bbb黄色大片| 国产成人av激情在线播放| 日韩精品中文字幕看吧| 一进一出好大好爽视频| bbb黄色大片| 搡老熟女国产l中国老女人| 精品国产亚洲在线| 亚洲第一青青草原| 欧美成人性av电影在线观看| 一级片'在线观看视频| 午夜91福利影院| 亚洲va日本ⅴa欧美va伊人久久| 天堂影院成人在线观看| 国产精品亚洲一级av第二区| 亚洲激情在线av| 久久精品91无色码中文字幕| 欧美日韩亚洲国产一区二区在线观看| 人妻丰满熟妇av一区二区三区| 国产亚洲av高清不卡| 国产蜜桃级精品一区二区三区| 淫秽高清视频在线观看| 一进一出抽搐动态| 黄色毛片三级朝国网站| 乱人伦中国视频| 丝袜美腿诱惑在线| 午夜福利在线观看吧| 在线国产一区二区在线| 97碰自拍视频| 免费观看人在逋| 99精品久久久久人妻精品| 午夜免费鲁丝| 国产成人欧美| 99国产综合亚洲精品| 国产精品日韩av在线免费观看 | 日韩精品青青久久久久久| 国产精品九九99| 桃红色精品国产亚洲av| 日日夜夜操网爽| 亚洲少妇的诱惑av| 99久久国产精品久久久| 9热在线视频观看99| avwww免费| 一区二区三区精品91| 黄色怎么调成土黄色| 亚洲精品在线观看二区| 免费看十八禁软件| 欧美激情久久久久久爽电影 | 亚洲色图综合在线观看| 亚洲一区二区三区色噜噜 | 欧美成人性av电影在线观看| 天堂影院成人在线观看| 久久人人97超碰香蕉20202| 午夜免费成人在线视频| 婷婷六月久久综合丁香| 午夜亚洲福利在线播放| 国产极品粉嫩免费观看在线| 精品福利观看| 日韩欧美一区二区三区在线观看| 人妻久久中文字幕网| 妹子高潮喷水视频| 99国产精品免费福利视频| 精品无人区乱码1区二区| 欧美日韩国产mv在线观看视频| av欧美777| 色精品久久人妻99蜜桃| 看免费av毛片| 国产高清视频在线播放一区| cao死你这个sao货| 99精品在免费线老司机午夜| 精品一品国产午夜福利视频| 成人国语在线视频| 91九色精品人成在线观看| 国产高清激情床上av| 成年人黄色毛片网站| 又黄又粗又硬又大视频| 亚洲男人天堂网一区| 制服诱惑二区| www日本在线高清视频| 亚洲片人在线观看| aaaaa片日本免费| 国产精品98久久久久久宅男小说| 欧美黑人欧美精品刺激| 成熟少妇高潮喷水视频| 大型黄色视频在线免费观看| 青草久久国产| www日本在线高清视频| 国产成年人精品一区二区 | 婷婷精品国产亚洲av在线| 99国产精品一区二区蜜桃av| 亚洲一码二码三码区别大吗| 国产成人av激情在线播放| 最好的美女福利视频网| a在线观看视频网站| 欧洲精品卡2卡3卡4卡5卡区| 高清av免费在线| 悠悠久久av| 狠狠狠狠99中文字幕| 久久伊人香网站| 久久欧美精品欧美久久欧美| 90打野战视频偷拍视频| 久久伊人香网站| 成人国产一区最新在线观看| avwww免费| 99香蕉大伊视频| 一区二区三区国产精品乱码| 在线观看免费视频网站a站| 真人一进一出gif抽搐免费| 精品熟女少妇八av免费久了| 国产精品久久久久成人av| 美女高潮喷水抽搐中文字幕| 久久影院123| 精品一区二区三区视频在线观看免费 | 人妻丰满熟妇av一区二区三区| 80岁老熟妇乱子伦牲交| 精品久久蜜臀av无| 女人爽到高潮嗷嗷叫在线视频| 精品久久久久久,| 99精国产麻豆久久婷婷| 亚洲人成电影免费在线| 老熟妇乱子伦视频在线观看| 精品国产乱码久久久久久男人| 9色porny在线观看| 一级毛片女人18水好多| 亚洲欧美日韩无卡精品| 一进一出抽搐动态| 又紧又爽又黄一区二区| 午夜亚洲福利在线播放| 超碰成人久久| 成年人免费黄色播放视频| 美女扒开内裤让男人捅视频| 大型黄色视频在线免费观看| 国产黄色免费在线视频| 老司机亚洲免费影院| 欧美午夜高清在线| 色综合欧美亚洲国产小说| 久久精品91蜜桃| 99精国产麻豆久久婷婷| 精品久久久久久电影网| 少妇粗大呻吟视频| 麻豆av在线久日| 免费在线观看日本一区| 另类亚洲欧美激情| 少妇的丰满在线观看| 日本免费一区二区三区高清不卡 | 国产黄a三级三级三级人| 国产麻豆69| 夜夜看夜夜爽夜夜摸 | 精品国产一区二区久久| 女人爽到高潮嗷嗷叫在线视频| 在线观看免费视频网站a站| 成人手机av| 黑人欧美特级aaaaaa片| 久久久久亚洲av毛片大全| 成年人黄色毛片网站| 亚洲专区字幕在线| 俄罗斯特黄特色一大片| 亚洲欧美日韩高清在线视频| 婷婷六月久久综合丁香| 电影成人av| 欧美日韩国产mv在线观看视频| 长腿黑丝高跟| 久久伊人香网站| 国产av一区二区精品久久| x7x7x7水蜜桃| 亚洲成人免费av在线播放| 久久这里只有精品19| 97人妻天天添夜夜摸| 嫩草影视91久久| 村上凉子中文字幕在线| 日韩欧美三级三区| 亚洲人成77777在线视频| 中国美女看黄片| 丰满迷人的少妇在线观看| 亚洲精品在线美女| 91av网站免费观看| 伦理电影免费视频| 亚洲精品一卡2卡三卡4卡5卡| 淫秽高清视频在线观看| 国产欧美日韩综合在线一区二区| 黄色怎么调成土黄色| 亚洲精品一卡2卡三卡4卡5卡| 欧美激情高清一区二区三区| 国产激情欧美一区二区| 国产高清激情床上av| 在线播放国产精品三级| 在线视频色国产色| 国产欧美日韩综合在线一区二区| 国产熟女xx| 亚洲精品美女久久av网站| 黄色丝袜av网址大全| 一进一出好大好爽视频| 成人18禁在线播放| 国产又爽黄色视频| 午夜精品久久久久久毛片777| 老司机深夜福利视频在线观看| 国产精品九九99| 久9热在线精品视频| 色哟哟哟哟哟哟| 中国美女看黄片| www日本在线高清视频| 午夜免费观看网址| 欧美另类亚洲清纯唯美| 色在线成人网| 如日韩欧美国产精品一区二区三区| 女人被躁到高潮嗷嗷叫费观| 18禁裸乳无遮挡免费网站照片 | 国产日韩一区二区三区精品不卡| 80岁老熟妇乱子伦牲交| e午夜精品久久久久久久| 欧美一区二区精品小视频在线| 超色免费av| 久久久久国产精品人妻aⅴ院| 亚洲专区中文字幕在线| 性少妇av在线| 亚洲av五月六月丁香网| 欧美激情高清一区二区三区| 日韩大尺度精品在线看网址 | 啦啦啦在线免费观看视频4| 久久人人97超碰香蕉20202| 两性夫妻黄色片| 侵犯人妻中文字幕一二三四区| 99精国产麻豆久久婷婷| 久久久久国产精品人妻aⅴ院| 日本免费a在线| 99精品在免费线老司机午夜| 精品一品国产午夜福利视频| 亚洲精品国产一区二区精华液| 伊人久久大香线蕉亚洲五| 亚洲五月婷婷丁香| 国产成人精品久久二区二区免费| 最好的美女福利视频网| 精品一区二区三区四区五区乱码| 成人18禁在线播放| 欧美日韩黄片免| 免费看十八禁软件| 热99国产精品久久久久久7| 最好的美女福利视频网| 嫁个100分男人电影在线观看| 亚洲一区中文字幕在线| avwww免费| 亚洲色图 男人天堂 中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久久精品吃奶| 日本一区二区免费在线视频| 一边摸一边做爽爽视频免费| 在线观看午夜福利视频| 午夜激情av网站| 国产有黄有色有爽视频| 大香蕉久久成人网| 99国产精品一区二区三区| 88av欧美| 最近最新中文字幕大全电影3 | www.熟女人妻精品国产| 日韩精品免费视频一区二区三区| 操美女的视频在线观看| 亚洲美女黄片视频| 久久久国产成人精品二区 | bbb黄色大片| 国产一区二区三区视频了| 亚洲五月婷婷丁香| 正在播放国产对白刺激| 一区二区日韩欧美中文字幕| 在线av久久热| 丁香欧美五月| 热99re8久久精品国产| 日韩精品青青久久久久久| 日本一区二区免费在线视频| 欧美日韩精品网址| 亚洲人成77777在线视频| 欧美性长视频在线观看| 免费搜索国产男女视频| 亚洲一区二区三区不卡视频| 亚洲欧美一区二区三区黑人| 国产熟女xx| 亚洲性夜色夜夜综合| 亚洲午夜精品一区,二区,三区| 18禁裸乳无遮挡免费网站照片 | www.熟女人妻精品国产| 亚洲精品粉嫩美女一区| 免费在线观看视频国产中文字幕亚洲| 亚洲一区二区三区欧美精品| 亚洲精品在线美女| 最新在线观看一区二区三区| 一区二区日韩欧美中文字幕| 男女高潮啪啪啪动态图| 久久精品国产清高在天天线| 精品国内亚洲2022精品成人| 一区二区日韩欧美中文字幕| 日日摸夜夜添夜夜添小说| 亚洲九九香蕉| 精品一区二区三区av网在线观看| 天堂√8在线中文| 亚洲专区字幕在线| 国产亚洲欧美在线一区二区| 黑人猛操日本美女一级片| 在线视频色国产色| 精品熟女少妇八av免费久了| 亚洲av五月六月丁香网| 午夜两性在线视频| 久久久久国内视频| 亚洲专区中文字幕在线| 高清黄色对白视频在线免费看| 亚洲精品中文字幕在线视频| 亚洲av电影在线进入| 黄色a级毛片大全视频| 亚洲精品美女久久久久99蜜臀| 欧美最黄视频在线播放免费 | 成人三级做爰电影| 一级a爱片免费观看的视频| 成人手机av| 亚洲国产欧美日韩在线播放| 久99久视频精品免费| 亚洲精品成人av观看孕妇| 久久久久国内视频| 欧美乱色亚洲激情| 69av精品久久久久久| 黄色成人免费大全| www.www免费av| 日本五十路高清| 亚洲免费av在线视频| 80岁老熟妇乱子伦牲交| 视频区图区小说| 久久欧美精品欧美久久欧美| 免费在线观看亚洲国产| 亚洲第一av免费看| 黑人猛操日本美女一级片| 美女高潮喷水抽搐中文字幕| 午夜免费鲁丝| 精品久久久久久久毛片微露脸| 在线av久久热| 久久国产乱子伦精品免费另类| 国产成人欧美在线观看| 一a级毛片在线观看| 色综合欧美亚洲国产小说| 十八禁网站免费在线| 欧洲精品卡2卡3卡4卡5卡区| 国产成人精品在线电影| 美国免费a级毛片| av网站免费在线观看视频| 免费在线观看视频国产中文字幕亚洲| 免费搜索国产男女视频| 男女高潮啪啪啪动态图| 天天添夜夜摸| 国产亚洲精品一区二区www| 99精国产麻豆久久婷婷| 国产精品 欧美亚洲| 欧美黄色片欧美黄色片| 国产成人免费无遮挡视频| 交换朋友夫妻互换小说| 精品高清国产在线一区| 亚洲久久久国产精品| 国产1区2区3区精品| 露出奶头的视频| 日韩国内少妇激情av| 真人一进一出gif抽搐免费| 91字幕亚洲| 最新在线观看一区二区三区| 国产精品久久久av美女十八| 国产精品永久免费网站| 亚洲少妇的诱惑av| 人人澡人人妻人| 亚洲成av片中文字幕在线观看| 淫妇啪啪啪对白视频| 成人免费观看视频高清| 高清欧美精品videossex| 日本a在线网址| 身体一侧抽搐| 一级片免费观看大全| 日本黄色视频三级网站网址| 免费高清视频大片| 91九色精品人成在线观看| 免费高清在线观看日韩| 亚洲午夜理论影院| 国产精品二区激情视频| 热re99久久国产66热| 91成人精品电影| 免费av中文字幕在线| 80岁老熟妇乱子伦牲交| 日韩大尺度精品在线看网址 | 亚洲精品在线美女| 欧美人与性动交α欧美精品济南到| 亚洲少妇的诱惑av| 最近最新中文字幕大全电影3 | 麻豆av在线久日| 国产精品亚洲一级av第二区| 一夜夜www| 在线观看免费视频日本深夜| 51午夜福利影视在线观看| 无限看片的www在线观看| 久久人妻熟女aⅴ| 国产精品亚洲一级av第二区| 亚洲第一av免费看| 中出人妻视频一区二区| 亚洲视频免费观看视频| 国产成人免费无遮挡视频| 免费av毛片视频| 日韩欧美在线二视频| 日本精品一区二区三区蜜桃| 91在线观看av| 国产精品九九99| 久久久久国产精品人妻aⅴ院| 超色免费av| 在线播放国产精品三级| 51午夜福利影视在线观看| 青草久久国产| 精品一品国产午夜福利视频|