• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-Phase Bidirectional Dual-Relay Selection Strategy for Wireless Relay Networks

    2021-12-10 11:54:54SamerAlabedIssamMaazandMohammadAlRabayah
    Computers Materials&Continua 2021年10期

    Samer Alabed,Issam Maaz and Mohammad Al-Rabayah

    College of Engineering and Technology,American University of the Middle East,Kuwait

    Abstract:In this article,we introduce a new bi-directional dual-relay selection strategy with its bit error rate(BER)performance analysis.During the first step of the proposed strategy,two relays out of a set of N relay-nodes are selected in a way to optimize the system performance in terms of BER,based on the suggested algorithm which checks if the selected relays using the maxmin criterion are the best ones.In the second step,the chosen relay-nodes perform an orthogonal space-time coding scheme using the two-phase relaying protocol to establish a bi-directional communication between the communicating terminals,leading to a significant improvement in the achievable coding and diversity gain.To further improve the overall system performance,the selected relay-nodes apply also a digital network coding scheme.Furthermore,this paper discusses the analytical approximation of the BER performance of the proposed strategy,where we prove that the analytical results match almost perfectly the simulated ones.Finally,our simulation results show that the proposed strategy outperforms the current state-of-the-art ones.

    Keywords:Two-way wireless relay networks;cooperative diversity techniques;distributed space-time coding;relay selection strategies;network coding schemes

    1 Introduction

    The new wireless communication systems such as 5G and beyond seek to increase the data rate,decrease the latency,reduce the complexity,and extend the coverage area.However,the performance of these wireless systems are badly affected by the multiuser interference,channel impairments,multipath propagation,and time-varying fading,leading to decrease the achievable data rate and increase the bit error rate[1–8].Therefore,many multi-antenna techniques have been proposed in order to mitigate these challenges such as the use of relay selection techniques[9–14],distributed space-time-coding(STC)techniques[15,16],and distributed beamforming techniques[16–18].Relay selection techniques have been applied on wireless communication systems in order to increase the achievable data rate,extend their coverage,as well as,to decrease the impact of channel impairments.As a result,the BER and data rate can be greatly enhanced using relaying techniques,which allow the user to receive different versions,i.e.,different phases and amplitudes,of the same transmitted signal.These different versions are combined together in an efficient way in order to achieve a better performance.

    A relay node is an intermediate entity between the transmitter and the receiver.It receives the signal from a source-node and then processes the data by employing advanced techniques to improve the received signal to noise ratio(SNR)and achievable data rate,and to minimize the overall BER.Increasing the number of relay nodes available between the transmitter and the receiver leads to a significant enhancement in the spatial diversity using one of the relaying schemes,i.e.,one-way or two-way relaying schemes[1–5].Many diversity techniques have been recently proposed assuming that the availability of the channel state information(CSI)is crucial at all nodes of the network with slow fading channels,whereas other techniques consider that CSI must be available only at the receiver side[2].In addition,many techniques have been proposed in order to increase the diversity gain without needing CSI at any transmitting or receiving nodes such as non-coherent and differential diversity techniques[2–5].Even though the latter techniques do not require any CSI at both the receiver and the transmitter sides,they suffer from high BER,high latency,and low spectral efficiency as compared to other techniques.

    Other techniques such as bi-directional communication is proposed as a solution to improve the performance in terms of BER and spectral efficiency.Those systems consist of two terminals that communicate with each other through some in-between relay nodes that are randomly distributed between them[2–5].Bi-directional schemes can be classified based on the number of phases needed to exchange the transmitted information between the communicating terminals into two-phase[2,3,6],three-phase[2,3],and four-phase[4,5]protocols.The number of phases can greatly affect the performance of the communication systems.More precisely,the spectral efficiency can be significantly improved by decreasing the number of needed time slots to exchange the messages between the transceivers from four-phase to three-phase or even to two-phase.As a result,the two-phase relaying systems offer a much better performance compared to the three phase and four phase relaying systems[2–4,11].Furthermore,the relay nodes can process and encode the received signals using orthogonal or non-orthogonal coding techniques.

    Some orthogonal techniques,such as STC,offer a full diversity gain with a low decoding complexity[2].On the other hand,non-orthogonal coding techniques improve the overall system performance in terms of BER and achievable data rate and enjoy a full diversity with high coding gain.However,these techniques suffer from extremely high decoding complexity.Therefore,in order to achieve a full diversity gain and decrease the system complexity of the nonorthogonal relay selection techniques[6–12],many cooperative diversity techniques have recently been investigated with single and dual relay selection strategies[7–14].

    In recent years,many relay selection techniques have adopted to select the best one or more relay nodes out of a group of intermediate relay-nodes.In[10–12],the authors proposed the max-min selection criterion that chooses the optimal relay out of a set of relay-nodes in a way to maximize either the SNR or the overall achievable data rate.The authors of[11]used the max-min method in order to choose the best two relay nodes offering a significant improvement in the system performance.The authors of[13,14]proposed a method based on dual-relay selection scheme.In their work,they have proved that dual-relay selection techniques offer higher coding gain than single relay selection ones.The authors of[19–21]introduced various downlink scheduling algorithms for 4G and 5G wireless communication systems that aim to address different traffic classes and balance the quality of service delivery with improvements to the overall system performance under channel and bandwidth constraints.

    The motivation of this paper is that the current state-of-the-art articles are only considering the weakest or strongest channels to choose the best one or two relay-nodes,e.g.,they select the relay-node among all available relay-nodes that owns the strongest forward or backward channel or they select two relays where one of them has the strongest forward channel and the other owns the strongest backward channel,while ignoring the differences among the close-value channels of the available relay-nodes.For instance,authors of[11–13]are selecting two relaynodes using a certain criterion like the max-min criterion,considered as the optimal one for selecting only one relay.In this paper,the proposed algorithm,explained in Section 2,checks if the selected relays using the max-min criterion are the best ones before using them.Therefore,in this paper,we introduce a new two-relay selection strategy based on STC using the two-phase relaying protocol.In the suggested strategy,two relays out of N relay-nodes are chosen in a way to optimize the system performance in terms of BER.Additional improvement is achieved by performing a digital network coding scheme at the selected relay-nodes which reduces the power consumption via merging the symbols of the communicating terminals in a single symbol with the same constellation.

    From our simulation results,we prove that our suggested strategy offers a better performance as compared to the existing relay selection strategies.This paper is summarized as follows:Section 2 discusses the system model.Section 3 explains the BER analysis.Section 4 and Section 5 demonstrate the performance analysis.The conclusion is drawn in Section 5.

    2 System Model

    Fig.1 shows our system model where two terminal-nodes(T1and T2)need to communicate with each other,but they cannot communicate directly because the distance between them is exceeding their transmission range.A group of N relay-nodes located randomly between T1and T2is used to facilitate this bi-directional communication.More specifically,two relay-nodes will be chosen based on a certain criterion to accomplish the required communication.We assume here that all the relay- and terminal-nodes have limited average transmit powers denoted asPTj,j=1,2 for terminal nodes andPRi,i=1,2,...,Nfor relay-nodes.Furthermore,all intermediate communication channels between terminal and relay-nodes are assumed to be reciprocal for transmissions,and are denoted ashifrom T1to relay-nodeiandgifrom T2to relay-nodei.Finally,we use the following notations |.|,?.」,‖.‖,(.)*,[a]i,andE(.)to denote the absolute value,the floor function which rounds toward zero,the Frobenius norm,the complex conjugate,theith element of the vector a,and the statistical expectation,respectively.In addition,the following abbreviations are used in this paper,BER:Bit error rate;bpcu:Bit per channel use;BPSK:Binary phase shift key;CSI:Channel state information;DF:Decode and forward;MGF:Moment generation function;ML:Maximum likelihood,SNR:Signal to noise ratio;STC:Space time coding;and QAM:Quadrature amplitude modulation.

    In our proposed strategy all participating relay-nodes will be performing the decode-andforward(DF)protocol[2,3].During the first time slot,both terminal nodesT1andT2will transmit their data message vectors zT1andzT2simultaneously such that the rth relay-nodeRrreceives:

    Figure 1:Bi-directional relay-nodes network

    Figure 2:Flowchart of the proposed relay selection strategy

    3 BER Performance Analysis

    4 Results and Discussion

    In this section,we discuss the obtained results from both Monte Carlo simulations,as well as,analytical models discussed in Section 4.In the simulations,we have assumed a wireless relay network with two single-antenna relay nodes and independent flat Rayleigh fading channels where the power is distributed among the two terminals and relays similarly as in[11–13],the number of Monte Carlo runs is 1010,the number of relays available in the network varies between two to six,and the applied modulation technique is either BPSK or 4-QAM.For fair comparison of the BER performance of all techniques,the same total transmitted power and bit rate are used.Fig.3 shows the BER performance with respect to the SNR of both the simulated proposed relay-selection strategy and the analytical results obtained from(22)in the presence of N = {2,4,6} relay-nodes using BPSK modulation without direct links between the two communicating terminal-nodesT1andT2.This figure shows a very close consistency between our simulations and the derived mathematical expression,i.e.,(22).

    Figure 3:Theoretical and simulated BER performance vs.SNR

    In Fig.4,we show a comparison in terms of the BER performance with respect to the SNR between the proposed dual-relay selection strategy,the double-max technique available in[11],the max-min technique available in[12],and the dual-relay selection technique suggested in[13],in the presence of N = {2,4} relay-nodes using 4-QAM modulation and without direct links between the two terminal-nodesT1andT2.We can clearly observe from Fig.4 that the performance of our suggested relay selection strategy using the two-phase relaying protocol exceeds that of the current state-of-the-art strategies that perform the same relaying protocol and under the same assumptions explained in Section 2.In addition,Fig.4 shows the BER performance of our proposed dual-relay selection strategy in the presence of four relay-nodes(N = 4)using 4-QAM modulation under different threshold values,i.e.,threshold increases gradually from zero to five.It can be noticed that our suggested strategy with threshold value set to zero is equivalent to the selection strategy available in[14].We can clearly notice from Fig.4 that the best performance is achieved when the threshold value is three.To prove this finding,we have investigated in Fig.5 the BER performance of our suggested relay selection strategy in the presence of four relay-nodes using 4-QAM modulation with SNR set to 20 dB under different threshold values.The results obtained in Fig.5 clearly sustain with our findings in Fig.4.

    Figure 4:BER vs.SNR for several single and dual-relay selection techniques using the two-phase relaying protocol with N = {2,4} and 4-QAM modulation

    Figure 5:BER vs.Threshold for two-relay selection techniques using the two-phase protocol with 4-QAM modulation,N = 4,and SNR = 20 dB

    Correspondingly,Fig.6 shows the BER performance with respect to the SNR of our suggested dual-relay selection strategy in the presence of six relay-nodes(N = 6)using 4-QAM modulation under different threshold values,i.e.,threshold increases gradually from zero to five.Again,this figure clearly shows that the best BER performance is obtained when the threshold value is between two and three.

    Figure 6:BER vs.SNR for two-relay selection techniques using the two-phase relaying protocol with 4-QAM modulation and N = 6

    Figure 7:BER vs.Threshold for two relay selection techniques using the two-phase protocol with 4-QAM modulation,N = 6,and SNR = 15 dB

    Figure 8:BER vs.SNR for two-relay selection techniques using the two-phase relaying protocol with 4-QAM modulation and N = 8

    In Fig.7,we show the BER results of our suggested relay selection strategy in the presence of six relay-nodes using 4-QAM modulation with SNR set to 15 dB under different threshold values.This figure clearly sustains our findings in Fig.6 before.

    In Fig.8 we present the BER performance of our suggested relay selection strategy in the presence of eight relay-nodes(N = 8)using 4-QAM modulation under different threshold values,i.e.,threshold increases gradually from zero to five.Again,the results obtained from this figure obviously concludes that the best performance is obtained when the threshold value is between two and three.

    Fig.9 shows the BER performance results of our suggested relay selection strategy using eight relay nodes with 4-QAM modulation and SNR set to 15 dB under different threshold values.This figure clearly sustains our findings in Fig.8.

    Figure 9:BER vs.Threshold for two-relay selection techniques using the two-phase protocol with 4-QAM modulation,N = 8,and SNR = 15 dB

    In Fig.10,we consider a wireless cooperative communication network with four,N = 4,relay nodes and no direct links between the two terminals.In Fig.10,the performance in terms of BER at the first terminal is shown with respect to the SNR and with a bit rate of one bit per channel use(bpcu)where the introduced strategy that utilizes the two-phase relaying protocol using symbols drawn from 4-QAM modulation has been compared with the dual-relay selection strategy that utilizes the two- and the three-phase relaying protocol available in[11]using 4-QAM and 8-QAM constellation,respectively and the optimal single-relay selection strategy that utilizes the two- and the three-phase relaying protocol available in[12]using 4-QAM and 8-QAM constellation,respectively,and the dual-relay selection strategy that utilizes the two- and the threephase relaying protocol available in[13]using 4-QAM and 8-QAM constellation.From Fig.10,we can clearly see that the strategy that utilizes the two-phase relaying protocol outperforms those which utilize the three-phase relaying protocol due to the increase of the symbol rate[14].We can also notice that the introduced strategy outperforms the current state-of-the-art two- and threephase,single and dual-relay selection strategies by at least 2 dB compared to the work presented in[13],3 dB compared to results provided in[12],and 8 dB compared to method proposed in[11].The simulation results show that the proposed strategy outperforms the recent strategies as explained latter.At the same time,we have proved that the simulation results are very close to the theoretical analysis regarding to the proposed strategy as shown in Fig.3 and given by the mathematical expression in(22).Therefore,we have proved using analytical and simulated results that the performance of the proposed strategy outperforms the recent strategies.Hence,we can observe the advantage of using the proposed strategy against the state-of-the-art strategies according to both analytical and simulated results.

    Figure 10:BER vs.SNR for several single and dual-relay selection strategies using the two and three-phase relaying protocol with a rate of 1 bpcu and N = 4

    5 Conclusion

    In this article,we introduced a new two-relay selection strategy using the two-phase protocol based on STC.Furthermore,this strategy is employing a digital network coding scheme at the selected relay-nodes in order to merge the symbols into one symbol with the same constellation to reduce the power consumption of sending redundant information.By doing this,additional coding gain is achieved.In addition to that,we have proposed the analytical BER of this novel strategy and compared it with our simulation results in order to validate the proposed BER expressions.We have further proved that the performance of our new strategy outperforms the most recent strategies.

    Funding Statement:This work was supported by College of Engineering and Technology,the American University of the Middle East,Kuwait.Homepage:https://www.aum.edu.kw.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    99热6这里只有精品| 在线 av 中文字幕| 夫妻性生交免费视频一级片| 欧美成人a在线观看| 熟女av电影| 亚洲av一区综合| 亚洲av二区三区四区| 99久久精品国产国产毛片| 亚洲成人中文字幕在线播放| 亚洲精品国产av蜜桃| 99久久中文字幕三级久久日本| 国产久久久一区二区三区| 激情 狠狠 欧美| 日韩,欧美,国产一区二区三区| 免费观看性生交大片5| 一级毛片aaaaaa免费看小| 亚洲精品,欧美精品| 久久久久网色| 99久久九九国产精品国产免费| 高清欧美精品videossex| 国产精品一区二区在线观看99| 又黄又爽又刺激的免费视频.| 韩国av在线不卡| 国产一区二区在线观看日韩| 国产成人一区二区在线| 欧美成人精品欧美一级黄| 国产国拍精品亚洲av在线观看| 成人亚洲欧美一区二区av| 国产精品麻豆人妻色哟哟久久| 国内精品宾馆在线| 免费观看a级毛片全部| 可以在线观看毛片的网站| 亚洲国产色片| 又大又黄又爽视频免费| 男女无遮挡免费网站观看| 狂野欧美白嫩少妇大欣赏| 国产黄a三级三级三级人| 免费观看a级毛片全部| 国产精品99久久久久久久久| av线在线观看网站| 男人和女人高潮做爰伦理| 欧美少妇被猛烈插入视频| 久久国产乱子免费精品| 亚洲国产高清在线一区二区三| 男女国产视频网站| 亚洲精品自拍成人| 秋霞伦理黄片| 欧美日韩亚洲高清精品| 国产成人a∨麻豆精品| 国产真实伦视频高清在线观看| 岛国毛片在线播放| 晚上一个人看的免费电影| 国产精品爽爽va在线观看网站| 日日摸夜夜添夜夜添av毛片| 国产亚洲av嫩草精品影院| 久久热精品热| 99re6热这里在线精品视频| 国语对白做爰xxxⅹ性视频网站| 神马国产精品三级电影在线观看| 赤兔流量卡办理| 水蜜桃什么品种好| 舔av片在线| 国产伦精品一区二区三区视频9| av在线亚洲专区| 天堂俺去俺来也www色官网| 亚洲av一区综合| 亚洲欧美一区二区三区黑人 | 亚洲自拍偷在线| 天堂网av新在线| a级毛色黄片| 久久久色成人| 九色成人免费人妻av| 91aial.com中文字幕在线观看| 乱码一卡2卡4卡精品| 一本一本综合久久| 舔av片在线| 草草在线视频免费看| 国产男女超爽视频在线观看| 久久久欧美国产精品| 免费看av在线观看网站| 日本一二三区视频观看| 在线观看三级黄色| 亚洲成人中文字幕在线播放| 欧美精品一区二区大全| 欧美日本视频| 别揉我奶头 嗯啊视频| 久久久久精品性色| 毛片女人毛片| 久久精品久久精品一区二区三区| 久久久国产一区二区| 国产一区二区在线观看日韩| 国产极品天堂在线| 两个人的视频大全免费| 精品国产露脸久久av麻豆| 亚洲av二区三区四区| 国产探花极品一区二区| 精品人妻熟女av久视频| 在线观看国产h片| 少妇被粗大猛烈的视频| 高清午夜精品一区二区三区| 小蜜桃在线观看免费完整版高清| 成人欧美大片| 欧美丝袜亚洲另类| 听说在线观看完整版免费高清| 日韩三级伦理在线观看| 亚洲精品久久久久久婷婷小说| 精品国产露脸久久av麻豆| 欧美一级a爱片免费观看看| 干丝袜人妻中文字幕| 色播亚洲综合网| 日本爱情动作片www.在线观看| 一本色道久久久久久精品综合| 男人舔奶头视频| 在线a可以看的网站| 晚上一个人看的免费电影| 国产高清有码在线观看视频| 两个人的视频大全免费| 白带黄色成豆腐渣| 国产日韩欧美亚洲二区| 少妇熟女欧美另类| 大片免费播放器 马上看| 日韩av在线免费看完整版不卡| 亚洲无线观看免费| 精品久久久久久久人妻蜜臀av| 深爱激情五月婷婷| 亚洲欧美一区二区三区黑人 | 激情 狠狠 欧美| 欧美亚洲 丝袜 人妻 在线| 伦理电影大哥的女人| 国产在线一区二区三区精| 免费观看性生交大片5| 少妇丰满av| 欧美+日韩+精品| 午夜精品国产一区二区电影 | 人妻少妇偷人精品九色| 听说在线观看完整版免费高清| 国产精品久久久久久精品电影| 国产老妇女一区| 国产欧美日韩精品一区二区| 97热精品久久久久久| 成人漫画全彩无遮挡| 亚洲自偷自拍三级| 纵有疾风起免费观看全集完整版| 一个人看的www免费观看视频| 国产 一区 欧美 日韩| 建设人人有责人人尽责人人享有的 | 97超视频在线观看视频| 五月伊人婷婷丁香| 国产精品国产三级专区第一集| 边亲边吃奶的免费视频| 国产老妇女一区| 成人亚洲欧美一区二区av| 久久久久久久久久人人人人人人| 五月开心婷婷网| 另类亚洲欧美激情| 日韩欧美一区视频在线观看 | 久久久久久九九精品二区国产| 欧美日韩综合久久久久久| 99久久九九国产精品国产免费| 国产欧美亚洲国产| 欧美激情久久久久久爽电影| 久久久久久久久久成人| 99久久人妻综合| 亚洲成人一二三区av| 18禁动态无遮挡网站| 久久久久久久国产电影| 欧美 日韩 精品 国产| 啦啦啦啦在线视频资源| 韩国av在线不卡| 国产亚洲一区二区精品| 久久99热6这里只有精品| 久久久久久久精品精品| 日韩制服骚丝袜av| 中文欧美无线码| 免费看a级黄色片| 国产精品一二三区在线看| 六月丁香七月| 亚洲aⅴ乱码一区二区在线播放| 亚州av有码| 亚洲国产欧美人成| 亚洲av一区综合| 国产男女内射视频| 亚洲精品亚洲一区二区| av天堂中文字幕网| 国产成人一区二区在线| 看黄色毛片网站| 成人综合一区亚洲| 亚洲精华国产精华液的使用体验| av黄色大香蕉| 久久久久久久国产电影| av线在线观看网站| 老师上课跳d突然被开到最大视频| 韩国高清视频一区二区三区| 国内精品宾馆在线| 激情五月婷婷亚洲| 各种免费的搞黄视频| 交换朋友夫妻互换小说| 汤姆久久久久久久影院中文字幕| 纵有疾风起免费观看全集完整版| 老司机影院毛片| 国产熟女欧美一区二区| 免费观看av网站的网址| 国产女主播在线喷水免费视频网站| 免费观看在线日韩| 亚洲精品aⅴ在线观看| 精品人妻偷拍中文字幕| 国产成人精品一,二区| 特大巨黑吊av在线直播| 国产精品蜜桃在线观看| 特大巨黑吊av在线直播| av黄色大香蕉| 国产日韩欧美在线精品| 国产精品不卡视频一区二区| 亚洲av二区三区四区| 国内精品美女久久久久久| 麻豆久久精品国产亚洲av| 精品国产一区二区三区久久久樱花 | 国产亚洲5aaaaa淫片| 日韩欧美精品v在线| 国产精品av视频在线免费观看| 久久人人爽人人爽人人片va| 国产视频首页在线观看| 黄色怎么调成土黄色| 最近手机中文字幕大全| 水蜜桃什么品种好| 特大巨黑吊av在线直播| 精品视频人人做人人爽| 久久久久久久久久成人| 精品国产露脸久久av麻豆| 蜜臀久久99精品久久宅男| 亚洲一级一片aⅴ在线观看| 搡老乐熟女国产| 天天躁日日操中文字幕| 国产成人aa在线观看| 精品99又大又爽又粗少妇毛片| 日本三级黄在线观看| av专区在线播放| 免费看光身美女| 日本免费在线观看一区| 欧美区成人在线视频| 男人舔奶头视频| 精华霜和精华液先用哪个| 亚洲自偷自拍三级| 欧美zozozo另类| 亚洲国产色片| 中文字幕制服av| 国产综合懂色| 欧美老熟妇乱子伦牲交| 99视频精品全部免费 在线| 久久久午夜欧美精品| 国产精品秋霞免费鲁丝片| 亚洲欧洲日产国产| av在线播放精品| 久久久久精品性色| 亚洲av在线观看美女高潮| 国产伦理片在线播放av一区| 免费av不卡在线播放| 亚洲一区二区三区欧美精品 | 三级国产精品片| 亚洲精品国产av蜜桃| 中文字幕人妻熟人妻熟丝袜美| 秋霞伦理黄片| 国产欧美亚洲国产| 22中文网久久字幕| 日本色播在线视频| 一边亲一边摸免费视频| 日韩欧美精品免费久久| 干丝袜人妻中文字幕| 男人添女人高潮全过程视频| 伊人久久精品亚洲午夜| 一级毛片黄色毛片免费观看视频| 国内精品美女久久久久久| 亚洲精品日韩在线中文字幕| 丰满人妻一区二区三区视频av| 精品一区在线观看国产| 一本久久精品| 中文字幕制服av| 97超碰精品成人国产| 欧美区成人在线视频| av.在线天堂| 国产永久视频网站| 日韩不卡一区二区三区视频在线| 2018国产大陆天天弄谢| 国产精品久久久久久精品电影小说 | 全区人妻精品视频| 熟女电影av网| 亚洲精品视频女| 又大又黄又爽视频免费| 激情 狠狠 欧美| 大香蕉97超碰在线| 成年av动漫网址| 又黄又爽又刺激的免费视频.| 成人欧美大片| 岛国毛片在线播放| 亚洲精品日韩在线中文字幕| 国产成人免费观看mmmm| 精品少妇久久久久久888优播| 国产精品熟女久久久久浪| 亚洲成人一二三区av| 夜夜爽夜夜爽视频| 国产精品一区二区三区四区免费观看| 日韩欧美精品v在线| 国产男人的电影天堂91| 黄色怎么调成土黄色| 国产乱来视频区| 99久久精品一区二区三区| 插逼视频在线观看| www.色视频.com| 毛片一级片免费看久久久久| 精品人妻熟女av久视频| 国产亚洲av片在线观看秒播厂| 麻豆成人av视频| 蜜臀久久99精品久久宅男| 国产欧美另类精品又又久久亚洲欧美| 一级毛片aaaaaa免费看小| 中文在线观看免费www的网站| 亚洲精品一二三| 国产午夜福利久久久久久| 汤姆久久久久久久影院中文字幕| 大片电影免费在线观看免费| 欧美xxxx黑人xx丫x性爽| 极品教师在线视频| 日韩成人伦理影院| av网站免费在线观看视频| 久久人人爽人人爽人人片va| 日本一二三区视频观看| 别揉我奶头 嗯啊视频| 免费看光身美女| 日韩av在线免费看完整版不卡| 国产一区二区亚洲精品在线观看| 久久6这里有精品| 成人亚洲精品av一区二区| 亚洲国产精品999| 日韩一本色道免费dvd| 在线观看三级黄色| 亚洲精品久久午夜乱码| 免费在线观看成人毛片| 免费av观看视频| 蜜臀久久99精品久久宅男| 啦啦啦在线观看免费高清www| 精品久久久久久久末码| 女的被弄到高潮叫床怎么办| 亚洲欧美日韩东京热| 日韩中字成人| 最近中文字幕高清免费大全6| 秋霞在线观看毛片| 少妇的逼水好多| 欧美xxⅹ黑人| 亚洲国产av新网站| av卡一久久| 亚洲天堂国产精品一区在线| 三级经典国产精品| 五月伊人婷婷丁香| 噜噜噜噜噜久久久久久91| 亚洲人与动物交配视频| 国产欧美日韩精品一区二区| 插逼视频在线观看| 99久久精品热视频| 嫩草影院入口| 91精品国产九色| 国产一区二区三区综合在线观看 | 亚洲精品色激情综合| 国产综合精华液| 国产中年淑女户外野战色| 18+在线观看网站| 制服丝袜香蕉在线| 国产男人的电影天堂91| 国模一区二区三区四区视频| 一级av片app| 特级一级黄色大片| 九九久久精品国产亚洲av麻豆| 午夜免费鲁丝| 99热这里只有是精品在线观看| 成人欧美大片| 久久精品人妻少妇| 欧美另类一区| 久久久久网色| 久久精品国产a三级三级三级| 在线精品无人区一区二区三 | 亚洲精品一二三| 成人毛片60女人毛片免费| 亚洲天堂av无毛| 99九九线精品视频在线观看视频| 日韩 亚洲 欧美在线| 男人添女人高潮全过程视频| 国产成人精品久久久久久| 久久99热这里只有精品18| 久久韩国三级中文字幕| 中文字幕制服av| 精品少妇黑人巨大在线播放| 日韩av不卡免费在线播放| 97超视频在线观看视频| 大香蕉97超碰在线| a级一级毛片免费在线观看| 日本与韩国留学比较| 校园人妻丝袜中文字幕| 久久久久久久大尺度免费视频| 国产精品一区二区在线观看99| 久久久成人免费电影| 一个人观看的视频www高清免费观看| 国产91av在线免费观看| 成年版毛片免费区| 又粗又硬又长又爽又黄的视频| 国产精品熟女久久久久浪| 麻豆成人av视频| 亚洲欧洲国产日韩| 婷婷色综合www| 国产大屁股一区二区在线视频| 国产女主播在线喷水免费视频网站| 激情 狠狠 欧美| 欧美 日韩 精品 国产| 黄色配什么色好看| 久久精品久久久久久噜噜老黄| 最近手机中文字幕大全| 日本一本二区三区精品| 亚洲精品乱码久久久久久按摩| 久久久久久久午夜电影| 久久久久国产精品人妻一区二区| 欧美激情国产日韩精品一区| 久久精品久久久久久噜噜老黄| 18禁在线无遮挡免费观看视频| 国产高清三级在线| 男女边摸边吃奶| 18禁在线播放成人免费| 美女视频免费永久观看网站| 在线a可以看的网站| 一边亲一边摸免费视频| 麻豆精品久久久久久蜜桃| 五月开心婷婷网| 九色成人免费人妻av| 一级av片app| 久久女婷五月综合色啪小说 | 国产成年人精品一区二区| 在现免费观看毛片| 欧美高清成人免费视频www| 黄片wwwwww| 中文乱码字字幕精品一区二区三区| 男女无遮挡免费网站观看| 国产精品偷伦视频观看了| 亚洲aⅴ乱码一区二区在线播放| 国产综合懂色| 亚洲欧美成人综合另类久久久| 国产亚洲午夜精品一区二区久久 | 人妻制服诱惑在线中文字幕| 永久网站在线| 国产成年人精品一区二区| 久久人人爽人人片av| 国产精品.久久久| 亚洲精品,欧美精品| 免费大片18禁| 亚洲图色成人| 亚洲性久久影院| 免费观看av网站的网址| 色5月婷婷丁香| 一级av片app| 好男人在线观看高清免费视频| a级毛片免费高清观看在线播放| 亚洲av免费在线观看| 免费观看的影片在线观看| 国产日韩欧美在线精品| 日韩av在线免费看完整版不卡| 亚洲欧美日韩卡通动漫| 可以在线观看毛片的网站| 男女下面进入的视频免费午夜| 人妻夜夜爽99麻豆av| 狂野欧美激情性xxxx在线观看| 高清毛片免费看| 久久热精品热| 卡戴珊不雅视频在线播放| 久热这里只有精品99| 亚洲国产av新网站| 免费黄色在线免费观看| 亚洲成人av在线免费| 国产av不卡久久| 99热这里只有精品一区| 欧美精品人与动牲交sv欧美| 午夜福利视频精品| 国产精品国产av在线观看| 亚洲av.av天堂| 啦啦啦啦在线视频资源| 国产免费一级a男人的天堂| 久久97久久精品| 99久久精品一区二区三区| 亚洲av成人精品一二三区| 久久久久性生活片| 九草在线视频观看| 夫妻午夜视频| 久久精品国产亚洲av天美| 久久精品人妻少妇| 能在线免费看毛片的网站| 亚洲国产精品999| 亚洲国产av新网站| 成年免费大片在线观看| 日本黄大片高清| 一个人观看的视频www高清免费观看| 国产 一区 欧美 日韩| 亚洲精品自拍成人| 丝袜美腿在线中文| 成人欧美大片| 久久99热这里只有精品18| 国产人妻一区二区三区在| 99久久九九国产精品国产免费| 综合色av麻豆| 成人亚洲精品av一区二区| 亚洲精品自拍成人| 午夜老司机福利剧场| 日韩在线高清观看一区二区三区| 亚洲国产精品专区欧美| 久久精品久久久久久久性| 精品国产一区二区三区久久久樱花 | 黄色视频在线播放观看不卡| 国产在线男女| 免费播放大片免费观看视频在线观看| 精品一区二区三区视频在线| 99re6热这里在线精品视频| 欧美国产精品一级二级三级 | 国产伦精品一区二区三区视频9| 人妻系列 视频| 身体一侧抽搐| 男男h啪啪无遮挡| 伊人久久精品亚洲午夜| 日韩强制内射视频| 青春草视频在线免费观看| 亚洲av男天堂| 欧美高清性xxxxhd video| 国产精品福利在线免费观看| 日韩 亚洲 欧美在线| 免费观看在线日韩| 国产成人免费无遮挡视频| 欧美人与善性xxx| 欧美国产精品一级二级三级 | 又大又黄又爽视频免费| 最近的中文字幕免费完整| av.在线天堂| 六月丁香七月| 国产精品99久久久久久久久| 国产精品三级大全| 国产探花在线观看一区二区| 国产成人免费观看mmmm| 狠狠精品人妻久久久久久综合| 亚洲欧美精品专区久久| av女优亚洲男人天堂| 全区人妻精品视频| 午夜福利视频精品| 大香蕉久久网| av在线播放精品| 亚洲无线观看免费| 国产亚洲最大av| 大又大粗又爽又黄少妇毛片口| 精品久久久久久电影网| 国产v大片淫在线免费观看| 国产精品福利在线免费观看| 亚洲欧美日韩另类电影网站 | 在线观看一区二区三区激情| 亚洲av男天堂| 亚洲国产精品国产精品| 在线观看一区二区三区| 久热久热在线精品观看| 日韩欧美精品v在线| 男人添女人高潮全过程视频| 精品久久久久久久久av| 老女人水多毛片| av免费在线看不卡| 成人综合一区亚洲| 国产精品国产三级国产av玫瑰| 丝袜喷水一区| 国产一区亚洲一区在线观看| 亚洲天堂国产精品一区在线| 久久久久久伊人网av| 又爽又黄无遮挡网站| 国产永久视频网站| 国产精品一区www在线观看| 插逼视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲,欧美,日韩| 色视频在线一区二区三区| 一个人看视频在线观看www免费| 成人漫画全彩无遮挡| 看黄色毛片网站| 青春草亚洲视频在线观看| 18+在线观看网站| 舔av片在线| 18+在线观看网站| 国产精品精品国产色婷婷| 人人妻人人看人人澡| 一级毛片电影观看| 欧美高清成人免费视频www| a级毛片免费高清观看在线播放| 小蜜桃在线观看免费完整版高清| 综合色av麻豆| 日韩在线高清观看一区二区三区| 欧美性猛交╳xxx乱大交人| 亚洲,欧美,日韩| 激情 狠狠 欧美| 在线播放无遮挡| 狂野欧美激情性xxxx在线观看| 91狼人影院| 色视频在线一区二区三区| 久久鲁丝午夜福利片| 嫩草影院入口| 国产av码专区亚洲av| 在现免费观看毛片| 麻豆久久精品国产亚洲av| 狂野欧美激情性bbbbbb| 亚洲真实伦在线观看| 韩国高清视频一区二区三区| 亚洲精品成人久久久久久| 亚洲精品国产av蜜桃| 亚洲欧美成人综合另类久久久| 又爽又黄a免费视频| 国产精品人妻久久久影院| 一级毛片aaaaaa免费看小| 国产视频首页在线观看| 内射极品少妇av片p| 日韩成人av中文字幕在线观看|