• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Speed Control of Motor Based on Improved Glowworm Swarm Optimization

    2021-12-10 11:54:50ZhenzhouWangYanZhangPingpingYuNingCaoandHeinerDintera
    Computers Materials&Continua 2021年10期

    Zhenzhou Wang,Yan Zhang,Pingping Yu,*,Ning Cao and Heiner Dintera

    1School of Information Science and Engineering,Hebei University of Science and Technology,Shijiazhuang,050018,China

    2School of Internet of Things and Software Technology,Wuxi Vocational College of Science and Technology,Wuxi,214028,China

    3German-Russian Institute of Advanced Technologies,Karan,420126,Russia

    Abstract:To better regulate the speed of brushless DC motors,an improved algorithm based on the original Glowworm Swarm Optimization is proposed.The proposed algorithm solves the problems of poor robustness,slow convergence,and low accuracy exhibited by traditional PID controllers.When selecting the glowworm neighborhood set,an optimization scheme based on the growth and competition behavior of weeds is applied to a single glowworm to prevent falling into a local optimal solution.After the glowworm’s position is updated,the league selection operator is introduced to search for the global optimal solution.Combining the local search ability of the invasive weed optimization with the global search ability of the league selection operator enhances the robustness of the algorithm and also accelerates the convergence speed of the algorithm.The mathematical model of the brushless DC motor is established,the PID parameters are tuned and optimized using improved Glowworm Swarm Optimization algorithm,and the speed of the brushless DC motor is adjusted.In a Simulink environment,a double closed-loop speed control model was established to simulate the speed control of a brushless DC motor,and this simulation was compared with a traditional PID control.The simulation results show that the model based on the improved Glowworm Swarm Optimization algorithm has good robustness and a steady-state response speed for motor speed control.

    Keywords:PID speed control;improved Glowworm Swarm Optimization;brushless DC motor

    1 Introduction

    With the advancement of Internet of Things(IoT)technology,new motor manufacturing technology has been rapidly developed,and power electronics technology has also entered a new stage of rapid development.In traditional mechanical equipment,the mechanical transmission links in a motor can lead to a series of problems,such as friction,motion lag,vibration and noise.Therefore,electromechanical equipment is being developed towards energy savings,high efficiency and intelligence[1].As a new type of motor,brushless DC motors have a wide range of control system applications,whether in the field of industrial automation or in smart homes.Intelligent drilling water level detection systems based on IoT technology used in industry,red tide detection systems,sweeping robots used at home,precision IoT-based water and fertilizer management and control systems,and intelligent cloud irrigation systems,all of these applications require motors to drive motion[2].Brushless DC motors have penetrated into all aspects of people’s lives,and the participation of brushless DC motors in smart home life has been indispensable[3].Currently,in view of the lack of effective motor monitoring,a monitoring system based on the Internet of things technology has been designed.Serial communication interfaces between devices have been added to facilitate data transmission between devices.If there is a network interface outside the brushless DC motor controller,measurement data and related environmental parameters can be collected from the controller.There data can be sent to a cloud server,to achiever remote monitoring of the brushless DC motor[4].Currently,many schools connect the controller with Internet to improve students’ability to analyze and design motors.Information exchange and communication are carried out through a specified network protocol for support hardware-in-theloop simulations as a teaching platform[5].At the same time,greater requirements are placed on the control performance of the motor.There are two ways to improve motor control performance.One is to solve the problem by upgrading the hardware.The choice of high-performance hardware will surely improve the performance of the whole system.The second is to improve the speed performance of the motor by changing the control algorithm,which is the focus of this article.Currently,PID controllers are the predominant devices used for motor speed control.With the emergence of intelligent bionic algorithms,at many universities and scientific research institutions,research on PID control algorithms for motors has begun to mostly focus on new algorithms that combine intelligent bionic control algorithms with the PID control.This paper proposes a scheme for controlling a brushless DC motor using a traditional PID controller combined with an existing intelligent control algorithm.

    Brushless DC motors are used in the automotive industry,aviation,intelligent robots,highprecision servo motors and other applications due to their small size,light weight,high reliability,simple structure,and high control accuracy[6].However,brushless DC motors are nonlinear and have a strongly coupled and multivariable structure,making it impossible to achieve the expected speed regulation effect through traditional PID control[7].Therefore,in recent years,improving the speed regulation performance of brushless DC motors has been a popular topic studied by worldwide scholars.Various intelligent control algorithms have been proposed to optimize brushless DC motors control systems.Zhang[8]used a team competition strategy to develop an improved genetic algorithm.Tuning and optimizing the PID parameters improves the convergence speed and the global optimization,and reduces the overshooting and transition time of the motor in the process of starting,changing load and changing speed.Geng et al.[9]designed a particle swarm optimization algorithm using an orthogonal experiment mechanism for PID parameter tuning to achieve a smaller overshoot and good anti-interference performance.Niasar et al.[10]developed an emotion learning algorithm based on an adaptive neuro-fuzzy inference system(ANFIS)controller,in which a proportional-differential controller function is used to modify the output layer gain of the neuro-fuzzy controller.Kommula et al.[11]proposed a fractional PID control scheme based on the firefly algorithm.In brushless DC motor control,the instantaneous torque of the motor is directly controlled with very low ripple,which improves the efficiency of the motor control torque.Jin et al.[12]combined genetic algorithms with fuzzy control strategies and uniformly encoded membership functions and fuzzy control rule tables for global optimization to improve the robustness of brushless DC motors.Kahveci et al.[13]applied fuzzy control in both the speed and current loops of a brushless DC motor to improve the overall performance of the motor control system.This improved the overall performance of the motor control system.The algorithm designed by Ramesh et al.[14]applied fuzzy logic to predictive control.This simplified the control model identification process,optimized the control effects,and improved the response speed.Taheri et al.[15]used a unified rule table for fuzzy logic to tune the PID parameters in accordance with the system’s error and error rate of change to adapt to different motor control parameter requirements.Xue et al.[16]designed a fuzzy adaptive PID controller.They used a fuzzy control strategy to adaptively adjust the three parameters(Kp,Ki,Kd)for PID control,which resulted in a smooth and rapid speed response in the brushless DC motor.Ramya et al.[17]designed a hybrid controller that combines a PID controller and a PID self-tuning fuzzy logic controller to control a brushless DC motor.This hybrid controller,combined the advantages of the two controllers to effectively improve the performance of the controller.Yang et al.[18]used the Particle Swarm Optimization(PSO)algorithm to optimize the fuzzy controller’s quantitative factor and fuzzy rules,which further improved the controller’s robustness and stability.Tian et al.[19]combined a PSO algorithm and a neural network to perform online PID parameter self-tuning and optimized the brushless DC motor to improve the response performance and reduced the speed fluctuation.

    Based on a traditional PID control,this paper improves the traditional Glowworm Swarm Optimization,introduces the invasive weed optimization and the league selection operator,and applies these to the PID speed control system of the brushless DC motor.The PID parameters are adjusted and optimized.The convergence speed and robustness of the algorithm are enhanced.

    The remainder of this paper is organized as follows:Section 2 describes the mathematical model of the brushless DC motor,Section 3 introduces the standard Glowworm Swarm Optimization algorithm and the improved algorithm after introducing the invasive weed optimization and Section 4 builds the brushless DC motor using Simulink to simulate the algorithm and analyzes the simulation results.Section 5 summarizes this article.

    2 Mathematical Model of Brushless DC Motor

    The equivalent circuit diagram of a brushless DC motor control system is shown in Fig.1.

    Figure 1:Equivalent circuit diagram of a brushless DC motor

    A brushless DC motor is composed of a stator and a rotor.By changing the current,frequency and waveform of the stator winding,the operating state of the rotor can be controlled.The following assumptions can be made when building a mathematical model:1○The three-phase windings are completely symmetrical,and the parameters of each stator winding group are the same.2○The armature winding is evenly and continuously distributed on the inner surface of the stator.3○The magnetic circuit is not saturated,and eddy current and hysteresis losses are not considered.4○The cogging,commutation process and armature reaction are ignored[20].The voltage balance equation can be expressed as

    whereUa,UbandUcare the terminal voltages of the motor’s three-phase windings,Ris the resistance,ia,ibandicare the phase currents,La,LbandLcare the self-inductances of the windings,Lab,Lac,Lba,Lbc,LcaandLcbare the mutual inductances of the windings,andea,ebandecare the back electromotive forces.Because the influence and losses between the magnetic circuits are ignored,the mutual inductances between the windings can be considered constant,namely,

    Because the three-phase windings are completely symmetrical and the parameters of each group of the stator windings are the same,ia+ib+ic=0 andMia+Mib+Mic=0 therefore,formula(1)simplifies to formula(3).

    According to the working performance of a brushless DC motor,the electromagnetic torque equation can be obtained as

    wherewis the angular velocity of the mechanical angle of the motor.

    The motor motion equation is

    whereTlis the load torque,Bis the damping coefficient,andJis the moment of inertia.

    3 Improved Glowworm Swarm Optimization

    3.1 Standard Glowworm Swarm Optimization

    The Glowworm Swarm Optimization(GSO)is a bionic swarm intelligent optimization algorithm proposed by Indian scholars Krishnan and Ghose[21,22]in 2005.The algorithm simulates the luminous characteristics of fireflies.The fireflies are scattered in space,and each firefly carries fluorescein and has its own visual range,which represents the decision domain.The fireflies will look for a set of neighbors within the decision domain.The brighter neighbors in the set attract the current firefly to move in that direction.Each time the firefly moves,the direction of the firefly will change with the neighbors selected and with the size of the decision domain.The size of the decision domain is also affected by the number of neighbors.When the neighbor density is lower,the decision domain radius of the firefly will increase to find more neighbors;when the firefly density is higher,a firefly’s decision domain radius will decrease.Allowing the fireflies to gather around the brighter fireflies achieves the optimization.The GSO algorithm includes four primary steps:GSO parameter initialization,fluorescein updating,firefly movement and decision domain updating.

    Step One:GSO parameter initialization.Randomly placenfireflies in a search space and assign the following:fluorescein of each fireflyli,the dynamic decision domain r0,the initial step sizes,the domain threshold valueni,the fluorescein disappearance rateρ,fluorescein update rate γ,the dynamic decision domain update coefficientβ,the dynamic decision domain update coefficientr,and the iteration numberM.

    Step Two:Fluorescein updating:

    whereli(t)represents the value of fluorescein of fireflyiat timet,andJ(xi(t))is the value of the objective function of the location of fireflyiat timet.

    Step Three:Firefly movement.Find the neighborhood fireflies:

    whereNi(t)represents the set of neighborhoods of fireflyiat timet,andrepresents the dynamic decision domain of fireflyiat timet.

    Determine the direction of the fireflies:

    Step Four:Decision domain updating.Update the location of each fireflyi:

    wheresis the movement step length.

    Update the radius of the dynamic decision domain of each firefly:

    wherersis the radius of the firefly’s movement,βis a constant,nsis used to control the number of neighbors attracted,and |Ni(t)|is the number of fireflies in.

    3.2 Invasive Weed Optimization

    The invasive weed optimization is an algorithm proposed by Mehrabian et al.[23–25]to simulate the reproduction of weeds.It shows good robustness and convergence and strong randomness.The invasive weed optimization algorithm simulates the natural processes of seed generation,diffusion,and reproduction of weeds and the survival of the fittest.

    Step One:Randomly initialize some weeds in an initial area.

    Step Two:During the process of evolution,the weeds produce seeds in proportion to their fitness.The relationship between the adaptive function and the number of weed seeds is the following:

    whereseediis the number of weed seeds,fiis the adaptive function of the weeds,SmaxandSminare the maximum and minimum number of seeds,respectively.

    The method for determining the number of weed seeds is illustrated in Fig.2.

    Figure 2:Determine the number of weed seeds

    Fig.2 shows the relationship between the fitness value and the number of weed seeds.The number of seeds is determined by the fitness value.High fitness values produce more seeds,and individuals with low fitness values produce fewer seeds.

    Step Three:Randomly generated seeds are scattered around the mother plant in a normal distribution in the search space,and the standard deviation of the normal distribution is also scattered:

    whereσiteris the standard deviation of the scattered normal distribution,iterrepresents the number of iterations,itermaxrepresents the maximum number of iterations,σinitis the initial standard deviation,andσfinalis the final standard deviation of.These values are selected to ensure that the standard deviation decreases from the initial value to the final value in stages.

    Step Four:After multiple iterations,the population reaches its maximum value.For plants with poor adaptability,the competitive process will begin,and the fittest will survive.Arrange the mother plants and progeny plants in the order of fitness from large to small,and the remaining plants are eliminated when the population reaches the maximum.

    3.3 Improved Glowworm Swarm Optimization

    In the GSO,if the area to be optimized is relatively wide,the position of the firefly will be more scattered during initialization,and a single firefly cannot be searched due to insufficient brightness.The existence of multiple independent fireflies in the space will lead to waste of resources.So the operating efficiency of the algorithm will be reduced,and the shortcoming of falling into a local optimization will occur.Coupled with the randomness of the firefly movement,and because the positions of the fireflies are constantly updated,the distance between the movement of bright fireflies and the optimal value cannot be accurate.When controlled,the firefly moves too far to exceed the optimal position.If the step is too small,the number of iterations will increase,which will lead to problems such as slow convergence,poor robustness,and poor accuracy.Therefore,the encroachment,reproduction and competition behavior of weeds are introduced.And the standard deviationσiterof the normal distribution of the offspring individuals in the invasive weed optimization is the distribution step length of the offspring fireflies.The distribution stepσiterof the offspring fireflies generated by a single maternal firefly will decrease with an increase in the number of iterations.A large-scale search will be carried out in the early stage of the algorithm,and a small-scale search will be carried out in the later stage,which will enhance the local search ability of the algorithm.The league selection operator in the genetic algorithm is used to optimize the selection of all individuals in the global space and to enhance the algorithm’s global search capabilities.Combining the two advantages and applying them to the GSO can effectively solve the problems of slow convergence,poor robustness and low accuracy.The algorithm implementation process is shown in Fig.3.

    The specific implementation steps are as follows:

    Step One:Initialize the population parameters and randomly generatenfireflies in space:each firefly’s fluorescein isli,the dynamic decision domain isr0,the initialization step iss,the fluorescein disappearance rate isρ,the fluorescein update rate isγ,the dynamic decision domain update domain isβ,the firefly signal recognition perception domain isr,and the maximum number of iterations isM;

    Step Two:Update and calculate the fluorescein of each firefly:use Eq.(6)to update the fluorescein;

    Step Three:Within the sight of the firefly,look for the setNi(t)in the neighborhood of the firefly.IfNi(t)is an empty set,go to step five,and if the set is not empty,go to step four;

    Step Four:Select the neighborhood set,use formula(9)to calculate the probabilitypijof fireflyimoving to each firefly inNi(t),determine the moving direction according to formula(8),and move to the neighbor firefly,then go to step six;

    Step Five:Introduce the preemptive reproduction behavior and the survival of the fittest competition behavior in the invasive weed optimization into the firefly,and reproduce the offspring of a single firefly.According to formula(12),the “seed” of the fireflyseediis produced according to the current iteration Calculate the distribution stepσiterof the offspring fireflies using formula(13).Nseedfireflies randomly scattered around the maternal fireflies in a normal distribution.Combine the maternal fireflies and the newly generated fireflies form a new firefly population,sorted according to the adaptive value from large too small.Keep the number of fireflies in the maximum space,occupy the corresponding position space,eliminate all the redundant fireflies,and finally take the position of the firefly with the largest fitness value instead of a single fireflies as the location of the next moment;

    Figure 3:Flow chart of improved GSO

    Step Six:Use formula(10)to update the position of each firefly;

    Step Seven:Introduce the league selection operator in the genetic algorithm.The league selection operator strategy is:selecting the optimal solution to enter the next iteration.In order to continue the excellent genes in the maternal fireflies,the progeny with poorer fitness values are replaced with the maternal with better fitness values during the generation of the offspring of the maternal firefly through the league selection operator strategy.All individuals are sorted according to the value of the objective function,and a threshold δ is selected:All individuals below this threshold are replaced with individuals above the threshold,and better individuals are selected to enter the next iteration;

    Step Eight:After sorting,the fish school bulletin board is used to record the position of the optimal individual and the objective function value.After each iteration,the objective function value of each firefly is calculated and compared with the optimal objective function value in the bulletin board.If the objective function is better than the value in the bulletin board,use this instead.If it is lower than the objective function value in the bulletin board,the value in the bulletin board remains unchanged;

    Step Nine:Update the firefly’s decision domain radiusrid(t+1)and step sizesusing the optimal objective function value in the bulletin board;

    Step Ten:Judge whether the number of iterations reaches the maximum number of iterationsM,if the number of iterations does not reach the maximum number of iterations,the number of iterationsiter=iter+1 jump to step Two.The optimal value is output when the number of iterations reaches the maximum iterations numberM.

    4 Simulation of the PID Speed Regulation of a Brushless DC Motor

    The principle of PID control is to make adjustment according to the deviation e(t),and the output is adjusted to drive the brushless DC motor[26,27].The mathematical expression of the PID algorithm is the following:

    whereKpis the proportional gain,Kiis the integral gain,andKdis the derivative gain.

    According to the PID calculation formula,the PID control block diagram can be obtained,as shown in Fig.4.

    Figure 4:Block diagram of PID control

    Simulink model is built according to the PID control[28]block diagram shown in Fig.5.

    The brushless DC motor uses three-phase six-states motor.The double closed loop consists of a speed loop and a current loop.The speed loop is the outer loop and the current loop is the inner loop.The model includes a brushless DC motor module,an improved GSO regulation PID module,a current hysteresis loop,a regulation module and a three-phase inverter module.The system block diagram is shown in Fig.6.

    Figure 5:PID simulation model

    Figure 6:System block diagram of the brushless DC motor

    First,we input a rated speed,and set the difference between the feedback value of the loop speed of the brushless DC motor as e(t),and input e(t)to the PID controller.The difference in the speed is calculated by proportional,integral and derivative.The error of the feedback value with the current loop is output,and fed to the brushless DC motor through the current hysteresis loop and the three-phase inverter,so as to control the stable operation of the motor.Adjustment of speed control is very important for brushless DC motors.However,a traditional PID controller has a long adjustment time,and a phenomenon of chattering during the control process which cannot be recovered in time due to large external interference.These make the traditional PID controller difficult to meet the requirements of production.The PID controller optimized by the improved GSO can effectively solve the shortcomings of the motor,such as an extended motor adjustment time,poor robustness,and large overshoot,and make the brushless DC motor run more smoothly and reliably.

    According to the mathematical model and system control block diagram of the brushless DC motor,a double closed-loop speed regulation simulation model of the brushless DC motor is built in Simulink and it shown in Fig.7.

    The parameters used by the motor are as follows:the back electromotive force coefficientke=0.453,resistanceR= 1Ω,inductanceL= 1.17 mH,torque coefficientKt= 1 moment of inertia J= 2 × 10?3kg·m2.The transfer functionW(s)of the brushless DC motor is derived according to formula(1)and formula(4).

    Figure 7:Double closed-loop speed regulation model of the brushless DC motor

    The transfer function is obtained by substituting the parameters into formula(15).

    The initial firefly population is set to 50,and the maximum number of iterations isM= 200.The initial distribution of fireflies can be obtained as shown in Fig.8.

    Figure 8:The initial distribution of fireflies

    After 200 iterations,the fireflies gather around the brighter fireflies,as shown in Fig.9.Almost all fireflies congregate at the four extreme points below.

    Figure 9:Firefly extremum distribution map

    After 200 iterations,the best fitness value is obtained,as shown in Fig.10.

    Figure 10:Evolution of fitness over 200 iterations

    The initial speed is set to 1,450 rpm.The simulation model is built by using the transfer function of the brushless DC motor.The improved GSO is applied to the PID control to compare with the conventional PID algorithm and compare the waveform.The motor is started to the input rated speed under the two algorithms.Their waveforms are shown in Figs.11 and 12.

    Figure 11:Waveform of traditional PID algorithm

    Figure 12:Waveform of improved PID control algorithm

    Though waveform comparison,it can be seen that the PID control with improved GSO has almost no overshoot before the motor starts to reach the rated speed,while the traditional PID control has a higher overshoot.The improved GSO has reached a stable state at 0.4 s,while the traditional PID algorithm reaches a stable state at about 0.5 s.

    The current-time diagrams for both algorithms are shown in Figs.13 and 14.

    Figure 13:The current waveform of the traditional PID algorithm

    It can be seen from the figures that the current fluctuation of the traditional PID is relatively large at 0.4 s,while the improved algorithm has almost no current fluctuation at 0.4 s,and the overshoot is small.

    Figure 14:The current waveform of the improved algorithm

    5 Conclusions

    This paper proposes an improved GSO to be applied to the PID speed control system of a brushless DC motor,which combines the improved GSO with traditional PID control for the speed control of a brushless DC motor.A dual closed-loop control simulation model of a brushless DC motor was built in Simulink to simulate the application of the improved GSO to motor speed control.The simulation results show that the improved GSO overcomes the slow convergence speed and poor robustness of the standard GSO.The speed response of the brushless DC motor is accelerated,the robustness is enhanced,and the accuracy of the algorithm is improved.This approach provides a new reference idea for optimizing motor control systems.

    Acknowledgement:We acknowledge funding from the Hebei Science and Technology Support Project(19273703D)and the Hebei Provincial Higher Education Science and Technology Research Project(ZD2020318).

    Funding Statement:This research was funded by the Hebei Science and Technology Support Program Project(19273703D),and the Hebei Higher Education Science and Technology Research Project(ZD2020318).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    精品亚洲成国产av| 国产av国产精品国产| 18禁在线无遮挡免费观看视频| 久久人人爽人人片av| 少妇精品久久久久久久| 久久国产精品大桥未久av | 1000部很黄的大片| 国产黄频视频在线观看| 爱豆传媒免费全集在线观看| 最近中文字幕高清免费大全6| 久久久久精品性色| 一级爰片在线观看| 国产在线视频一区二区| 99热国产这里只有精品6| 超碰av人人做人人爽久久| 亚洲欧美一区二区三区国产| 国产在线男女| 午夜日本视频在线| 舔av片在线| 欧美精品亚洲一区二区| 亚洲人成网站在线观看播放| 国产黄色免费在线视频| 九色成人免费人妻av| 婷婷色综合www| 丝瓜视频免费看黄片| 亚洲最大成人中文| 男女下面进入的视频免费午夜| 最近中文字幕高清免费大全6| 色视频www国产| 少妇的逼水好多| 大话2 男鬼变身卡| 国产亚洲欧美精品永久| 久久久色成人| 特大巨黑吊av在线直播| 大片电影免费在线观看免费| 少妇人妻 视频| 亚洲国产欧美在线一区| 丰满迷人的少妇在线观看| 在线观看免费高清a一片| 免费看av在线观看网站| 亚洲国产日韩一区二区| 国产伦精品一区二区三区视频9| 校园人妻丝袜中文字幕| 丝瓜视频免费看黄片| 国产黄片美女视频| 99久久中文字幕三级久久日本| 亚洲婷婷狠狠爱综合网| 免费黄频网站在线观看国产| 纵有疾风起免费观看全集完整版| 麻豆国产97在线/欧美| 国产老妇伦熟女老妇高清| 在线观看人妻少妇| 亚洲电影在线观看av| 一级毛片 在线播放| 性色avwww在线观看| 久久久久久久久久久丰满| 免费大片黄手机在线观看| 国产 一区精品| 少妇裸体淫交视频免费看高清| 成年免费大片在线观看| 女性生殖器流出的白浆| 中国三级夫妇交换| 熟女人妻精品中文字幕| 欧美+日韩+精品| 中文欧美无线码| 一级二级三级毛片免费看| 国产视频内射| 九草在线视频观看| 一本—道久久a久久精品蜜桃钙片| 精品久久久精品久久久| 久久婷婷青草| 亚洲美女黄色视频免费看| 人人妻人人添人人爽欧美一区卜 | 另类亚洲欧美激情| 少妇人妻一区二区三区视频| 嫩草影院入口| 99热这里只有是精品50| 日韩av在线免费看完整版不卡| 少妇的逼好多水| 日韩强制内射视频| 全区人妻精品视频| 亚洲av中文av极速乱| 午夜福利高清视频| 亚洲欧洲国产日韩| 亚洲内射少妇av| 亚洲欧美清纯卡通| 一区二区三区免费毛片| 最近的中文字幕免费完整| 久久久久久久国产电影| 十八禁网站网址无遮挡 | 午夜免费男女啪啪视频观看| 一级毛片黄色毛片免费观看视频| 日产精品乱码卡一卡2卡三| 最黄视频免费看| 国产精品一区二区在线不卡| 精品少妇久久久久久888优播| 视频中文字幕在线观看| videossex国产| 久久精品夜色国产| 直男gayav资源| 晚上一个人看的免费电影| av视频免费观看在线观看| 九草在线视频观看| 国产精品偷伦视频观看了| 欧美另类一区| 最近的中文字幕免费完整| 如何舔出高潮| 国产在线一区二区三区精| 老师上课跳d突然被开到最大视频| 久久精品国产a三级三级三级| 久久国产精品男人的天堂亚洲 | av福利片在线观看| 制服丝袜香蕉在线| 亚洲精品久久久久久婷婷小说| av免费观看日本| 国内揄拍国产精品人妻在线| 夫妻午夜视频| 在现免费观看毛片| 97超碰精品成人国产| 日本av免费视频播放| 久久6这里有精品| 国产深夜福利视频在线观看| 天天躁夜夜躁狠狠久久av| 亚洲国产精品一区三区| videos熟女内射| 我的老师免费观看完整版| 国产精品精品国产色婷婷| 国产 精品1| 成人综合一区亚洲| 亚洲熟女精品中文字幕| 高清欧美精品videossex| h视频一区二区三区| 久久久午夜欧美精品| 欧美日韩视频高清一区二区三区二| 中文字幕制服av| 99视频精品全部免费 在线| 国产男人的电影天堂91| 亚洲精品中文字幕在线视频 | 国产免费福利视频在线观看| 深爱激情五月婷婷| 精品亚洲成国产av| 国产精品无大码| 少妇猛男粗大的猛烈进出视频| videos熟女内射| 国内少妇人妻偷人精品xxx网站| 在线观看美女被高潮喷水网站| 国产爽快片一区二区三区| 最近中文字幕2019免费版| 一级片'在线观看视频| 99热全是精品| 九草在线视频观看| 免费av中文字幕在线| 亚洲精品456在线播放app| 亚洲av二区三区四区| 亚洲自偷自拍三级| 国产69精品久久久久777片| 女性生殖器流出的白浆| 男女国产视频网站| 日日啪夜夜爽| 亚洲真实伦在线观看| 国产高清有码在线观看视频| 久久精品熟女亚洲av麻豆精品| 91aial.com中文字幕在线观看| 国产免费一区二区三区四区乱码| 久久亚洲国产成人精品v| av在线观看视频网站免费| 丰满乱子伦码专区| 久久久国产一区二区| 成人免费观看视频高清| 久久精品久久久久久噜噜老黄| 成人漫画全彩无遮挡| 日韩 亚洲 欧美在线| 久热这里只有精品99| 高清黄色对白视频在线免费看 | 一本—道久久a久久精品蜜桃钙片| 一级二级三级毛片免费看| 亚洲国产精品成人久久小说| 涩涩av久久男人的天堂| 网址你懂的国产日韩在线| 亚洲熟女精品中文字幕| 国精品久久久久久国模美| 欧美极品一区二区三区四区| 亚洲丝袜综合中文字幕| 天堂中文最新版在线下载| 菩萨蛮人人尽说江南好唐韦庄| 好男人视频免费观看在线| 亚洲国产精品国产精品| 亚洲人成网站在线观看播放| 日本色播在线视频| 大片免费播放器 马上看| 少妇人妻精品综合一区二区| 亚洲av中文字字幕乱码综合| 国产高潮美女av| 丰满人妻一区二区三区视频av| 成人无遮挡网站| 精品一区二区三卡| 亚洲精品久久久久久婷婷小说| 国产精品免费大片| 黄色视频在线播放观看不卡| 亚洲人成网站在线观看播放| 观看av在线不卡| 亚洲精品国产色婷婷电影| 久久久久性生活片| 免费看不卡的av| freevideosex欧美| 亚洲精品久久午夜乱码| 精品亚洲成国产av| 天堂中文最新版在线下载| 国产精品秋霞免费鲁丝片| 男女边吃奶边做爰视频| 毛片一级片免费看久久久久| 免费在线观看成人毛片| 久久婷婷青草| 亚洲欧美一区二区三区黑人 | 国产男女超爽视频在线观看| 亚洲成人中文字幕在线播放| 一级毛片电影观看| 亚洲国产精品成人久久小说| 亚洲不卡免费看| 高清视频免费观看一区二区| 亚洲精品视频女| 国产成人免费无遮挡视频| 秋霞伦理黄片| 国产欧美另类精品又又久久亚洲欧美| 晚上一个人看的免费电影| 成人毛片60女人毛片免费| 欧美zozozo另类| 久热这里只有精品99| 亚洲美女视频黄频| 国产亚洲一区二区精品| 男的添女的下面高潮视频| 亚洲aⅴ乱码一区二区在线播放| 国产伦精品一区二区三区四那| 亚洲欧美成人综合另类久久久| 亚洲欧美一区二区三区国产| 免费观看av网站的网址| 亚洲婷婷狠狠爱综合网| 亚洲国产日韩一区二区| 国国产精品蜜臀av免费| 久久国产精品男人的天堂亚洲 | 在线观看人妻少妇| 国内揄拍国产精品人妻在线| 亚洲精品中文字幕在线视频 | 国产 一区精品| 成年人午夜在线观看视频| www.av在线官网国产| 九色成人免费人妻av| 久久精品国产亚洲av天美| 蜜臀久久99精品久久宅男| 夜夜骑夜夜射夜夜干| 亚洲,欧美,日韩| 高清av免费在线| 亚洲av在线观看美女高潮| 在线观看免费日韩欧美大片 | 91久久精品国产一区二区成人| 精品一品国产午夜福利视频| 五月玫瑰六月丁香| 涩涩av久久男人的天堂| 国产精品秋霞免费鲁丝片| 建设人人有责人人尽责人人享有的 | 我要看日韩黄色一级片| a级一级毛片免费在线观看| 久久久久久伊人网av| 亚洲av综合色区一区| 男的添女的下面高潮视频| 成人无遮挡网站| 久久精品国产亚洲av涩爱| 久久久国产一区二区| 直男gayav资源| 亚洲欧美日韩无卡精品| 天堂俺去俺来也www色官网| 在线看a的网站| av卡一久久| 欧美日本视频| 狂野欧美激情性xxxx在线观看| 精品亚洲成国产av| 观看av在线不卡| 最近的中文字幕免费完整| 肉色欧美久久久久久久蜜桃| 美女福利国产在线 | 有码 亚洲区| 国产日韩欧美亚洲二区| 亚洲欧美成人综合另类久久久| 国产视频内射| 免费高清在线观看视频在线观看| 国产精品99久久99久久久不卡 | 精品酒店卫生间| 亚洲av电影在线观看一区二区三区| 国产色爽女视频免费观看| 亚洲美女黄色视频免费看| 国模一区二区三区四区视频| 啦啦啦视频在线资源免费观看| 欧美日韩视频高清一区二区三区二| 午夜激情福利司机影院| 日韩成人伦理影院| 日韩大片免费观看网站| 亚洲人成网站在线播| 午夜福利在线在线| 麻豆成人午夜福利视频| 亚洲第一区二区三区不卡| 男男h啪啪无遮挡| 亚洲久久久国产精品| av一本久久久久| 免费少妇av软件| 亚洲综合色惰| 久久精品国产a三级三级三级| 久久国产乱子免费精品| 亚洲精品第二区| 纵有疾风起免费观看全集完整版| 亚洲精品日本国产第一区| 黄色日韩在线| 久久午夜福利片| 欧美激情极品国产一区二区三区 | 日韩一区二区视频免费看| 国产精品一及| 观看免费一级毛片| 亚洲一级一片aⅴ在线观看| 成年av动漫网址| av免费观看日本| 韩国高清视频一区二区三区| 日韩av不卡免费在线播放| 亚洲精品日本国产第一区| 高清午夜精品一区二区三区| 午夜老司机福利剧场| 国产黄片美女视频| 国产免费一区二区三区四区乱码| 国产高清不卡午夜福利| 日韩欧美精品免费久久| 九九在线视频观看精品| 能在线免费看毛片的网站| 五月开心婷婷网| 午夜免费鲁丝| 黄色配什么色好看| 美女福利国产在线 | 丰满迷人的少妇在线观看| 赤兔流量卡办理| 精品久久国产蜜桃| 久热这里只有精品99| 2018国产大陆天天弄谢| 99久久精品一区二区三区| 午夜激情久久久久久久| 男女无遮挡免费网站观看| 18禁裸乳无遮挡动漫免费视频| 精品亚洲乱码少妇综合久久| 少妇人妻久久综合中文| 最近最新中文字幕大全电影3| 色婷婷av一区二区三区视频| 日日啪夜夜爽| 各种免费的搞黄视频| 极品少妇高潮喷水抽搐| av免费在线看不卡| 免费少妇av软件| 爱豆传媒免费全集在线观看| 中文字幕久久专区| 国产精品欧美亚洲77777| 久久精品熟女亚洲av麻豆精品| 中文精品一卡2卡3卡4更新| 在线观看一区二区三区激情| 国产精品人妻久久久影院| tube8黄色片| 97超视频在线观看视频| 精品一区二区三卡| 国产男女内射视频| 国产成人午夜福利电影在线观看| 国产视频首页在线观看| 伦精品一区二区三区| 免费大片18禁| 免费看光身美女| av国产精品久久久久影院| 国产在线视频一区二区| 男男h啪啪无遮挡| 国产黄片美女视频| 亚洲综合精品二区| 1000部很黄的大片| 久久精品夜色国产| 黄片无遮挡物在线观看| 啦啦啦啦在线视频资源| 少妇被粗大猛烈的视频| 久久精品国产a三级三级三级| 亚洲怡红院男人天堂| 九九爱精品视频在线观看| 日韩精品有码人妻一区| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久大av| 日日啪夜夜爽| 亚洲国产欧美在线一区| 欧美变态另类bdsm刘玥| 欧美性感艳星| 国产欧美亚洲国产| 六月丁香七月| 国产精品一区二区在线观看99| 中国国产av一级| 国产成人a区在线观看| 国产乱人偷精品视频| 成人亚洲精品一区在线观看 | 亚洲国产精品一区三区| 韩国高清视频一区二区三区| 亚洲色图av天堂| 高清av免费在线| 亚洲国产成人一精品久久久| 身体一侧抽搐| 国产av国产精品国产| 久久这里有精品视频免费| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产亚洲网站| 免费观看在线日韩| 日韩成人av中文字幕在线观看| 久久婷婷青草| 亚洲国产精品专区欧美| 成年免费大片在线观看| 国产女主播在线喷水免费视频网站| 国产精品久久久久久av不卡| 欧美老熟妇乱子伦牲交| 爱豆传媒免费全集在线观看| 亚洲av不卡在线观看| 亚洲精品乱码久久久久久按摩| 大香蕉97超碰在线| 久久鲁丝午夜福利片| 国产国拍精品亚洲av在线观看| a级毛色黄片| 免费观看av网站的网址| 国产免费一区二区三区四区乱码| 99re6热这里在线精品视频| 日本vs欧美在线观看视频 | 婷婷色综合www| 我的老师免费观看完整版| 狂野欧美白嫩少妇大欣赏| av在线观看视频网站免费| 蜜桃亚洲精品一区二区三区| 精品久久久久久电影网| 啦啦啦啦在线视频资源| 日韩不卡一区二区三区视频在线| 一级爰片在线观看| 啦啦啦在线观看免费高清www| 日韩电影二区| 亚洲国产精品一区三区| 三级经典国产精品| 毛片女人毛片| 亚洲av欧美aⅴ国产| a级毛色黄片| 黄片wwwwww| 国产日韩欧美亚洲二区| 精品久久国产蜜桃| 一个人看视频在线观看www免费| 国精品久久久久久国模美| 大陆偷拍与自拍| 18禁在线无遮挡免费观看视频| 在线精品无人区一区二区三 | 久久久精品免费免费高清| av一本久久久久| 国产探花极品一区二区| 好男人视频免费观看在线| 大陆偷拍与自拍| 亚洲国产色片| 精品人妻视频免费看| 免费黄网站久久成人精品| 免费不卡的大黄色大毛片视频在线观看| 国产色婷婷99| 久久综合国产亚洲精品| 看十八女毛片水多多多| 在线 av 中文字幕| 免费人妻精品一区二区三区视频| 国产深夜福利视频在线观看| 一边亲一边摸免费视频| 99re6热这里在线精品视频| 亚洲高清免费不卡视频| av在线蜜桃| 久久99热6这里只有精品| 精品国产三级普通话版| 国产成人精品一,二区| 91久久精品国产一区二区三区| 免费看光身美女| 性色avwww在线观看| 成人毛片a级毛片在线播放| 欧美丝袜亚洲另类| 五月伊人婷婷丁香| 99热这里只有是精品50| 一级二级三级毛片免费看| 三级经典国产精品| 久久久久精品性色| 日本午夜av视频| 亚洲精品中文字幕在线视频 | 欧美最新免费一区二区三区| 国产高清有码在线观看视频| 久热这里只有精品99| 久久久久久久久大av| 国产精品伦人一区二区| 汤姆久久久久久久影院中文字幕| 亚洲欧美一区二区三区国产| 天堂中文最新版在线下载| av卡一久久| 大香蕉久久网| 日日摸夜夜添夜夜爱| 亚洲久久久国产精品| 免费大片18禁| 日日摸夜夜添夜夜添av毛片| 搡老乐熟女国产| 18+在线观看网站| 亚洲精品国产成人久久av| 日韩欧美一区视频在线观看 | 伦理电影免费视频| 亚洲av中文字字幕乱码综合| 多毛熟女@视频| 在线观看免费视频网站a站| 久久人人爽人人爽人人片va| 黄色欧美视频在线观看| 日韩大片免费观看网站| 丝袜喷水一区| 欧美精品国产亚洲| 国产欧美日韩精品一区二区| 日本爱情动作片www.在线观看| 肉色欧美久久久久久久蜜桃| 性色av一级| 99久久中文字幕三级久久日本| 日日啪夜夜爽| 亚洲自偷自拍三级| 99久久精品一区二区三区| 久久影院123| 伊人久久精品亚洲午夜| 午夜福利视频精品| 亚洲经典国产精华液单| 久久午夜福利片| 欧美最新免费一区二区三区| 免费观看无遮挡的男女| 成人免费观看视频高清| 亚洲成人手机| 亚洲成色77777| 国模一区二区三区四区视频| 国产av精品麻豆| 国内精品宾馆在线| 纵有疾风起免费观看全集完整版| 国产精品久久久久久精品电影小说 | 亚洲怡红院男人天堂| 97在线人人人人妻| 99久久中文字幕三级久久日本| av在线老鸭窝| 国产欧美另类精品又又久久亚洲欧美| 在线观看一区二区三区激情| 日韩av免费高清视频| h视频一区二区三区| 激情五月婷婷亚洲| 日日摸夜夜添夜夜添av毛片| 欧美一区二区亚洲| 九九在线视频观看精品| 美女高潮的动态| 亚洲精品色激情综合| 亚洲在久久综合| 日本欧美国产在线视频| 亚洲精品日韩av片在线观看| 青春草视频在线免费观看| av国产精品久久久久影院| 交换朋友夫妻互换小说| 亚洲国产成人一精品久久久| 亚洲欧洲日产国产| av天堂中文字幕网| 天堂俺去俺来也www色官网| 一本色道久久久久久精品综合| 日日摸夜夜添夜夜添av毛片| 2021少妇久久久久久久久久久| 日本色播在线视频| h视频一区二区三区| 99久久综合免费| 22中文网久久字幕| 高清在线视频一区二区三区| 深爱激情五月婷婷| 在线看a的网站| 国产欧美日韩一区二区三区在线 | 亚洲怡红院男人天堂| 欧美高清成人免费视频www| 最后的刺客免费高清国语| 亚洲欧美精品专区久久| 99热这里只有是精品50| 久久6这里有精品| 男女边摸边吃奶| 97在线人人人人妻| 欧美日韩视频高清一区二区三区二| 男女免费视频国产| 欧美高清性xxxxhd video| 日韩强制内射视频| 亚洲第一区二区三区不卡| 中文字幕制服av| 精品一区在线观看国产| 你懂的网址亚洲精品在线观看| 久热久热在线精品观看| 夫妻午夜视频| 九九在线视频观看精品| 国产精品伦人一区二区| 亚洲欧洲日产国产| 美女脱内裤让男人舔精品视频| 国产精品久久久久久精品古装| 少妇的逼好多水| 久久久久久久久久人人人人人人| 国产无遮挡羞羞视频在线观看| 777米奇影视久久| 国产白丝娇喘喷水9色精品| 国产中年淑女户外野战色| 各种免费的搞黄视频| 欧美激情极品国产一区二区三区 | 视频区图区小说| 人人妻人人看人人澡| 我要看黄色一级片免费的| 黄片wwwwww| 97超碰精品成人国产| 国产精品嫩草影院av在线观看| 少妇人妻 视频| 麻豆成人av视频| 熟女人妻精品中文字幕| 十分钟在线观看高清视频www | 亚洲欧美一区二区三区黑人 | 黑丝袜美女国产一区| 一级av片app| 男女边吃奶边做爰视频| 全区人妻精品视频| 亚洲精品国产av蜜桃| 99九九线精品视频在线观看视频|