• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of a Five-Band Dual-Port Rectenna for RF Energy Harvesting

    2021-12-10 11:54:44SurajoMuhammadJunJiatTiangSewKinWongJamelNebhenandAmjadIqbal
    Computers Materials&Continua 2021年10期

    Surajo Muhammad,Jun Jiat Tiang,Sew Kin Wong,Jamel Nebhen and Amjad Iqbal

    1Centre for Wireless Technology,Faculty of Engineering,Multimedia University,Cyberjaya,63100,Malaysia

    2College of Computer Science and Engineering,Prince Sattam Bin Abdulaziz University,Alkharj,11942,Saudi Arabia

    Abstract:This paper proposed the design of a dual-port rectifier with multifrequency operations.The RF rectifier is achieved using a combination of L-section inductive impedance matching network(IMN)at Port-1 with a multiple stubs impedance transformer at Port-2.The fabricated prototype can harvest RF signal from GSM/900,GSM/1800,UMTS/2100,Wi-Fi/2.45 and LTE/2600 frequency bands at(0.94,1.80,2.10,2.46,and 2.63 GHz),respectively.The rectifier occupies a small portion of a PCB board at 0.20 λg× 0.15 λg.The proposed circuit realized a measured peak RF-to-dc(radio frequency direct current)power conversion efficiency(PCE)of(21%,22.76%,25.33%,21.57%,and 22.14%)for an input power of ?20 dBm.The RF harvester attains a measured peak RF-to-dc PCE of 72.70%and an output dc voltage of 154 mV for an input power of 3 dBm at 2.46 GHz.Measurement of the proposed rectifier in the ambiance gives a peak dc output voltage of 376.1 mV from the five signal tones.Similarly,a low-powered bq25504-674 evaluation module(EVM)is integrated with the rectifier.The module boost and drive the rectifier output dc voltage to 945 mV.The performance of the proposed rectifier in the ambiance environment makes it a suitable module for low-powered RF applications.

    Keywords:RF energy harvesting;impedance matching network;power conversion efficiency;multi-band rectifier

    1 Introduction

    The evolution and advancement of wireless communications technology contribute immensely to the exponential growth of wireless devices in our day-to-day activities[1].The emergence of technologies for low-powered applications in the field of security surveillance,health care systems,agriculture,along with other vital application drivers,attracted the attention of researchers in the area of wireless power transfer(WPT)and RFEH[1–3].A reliable energy source is one of the key challenges with the growing ultra-low-powered devices[4].To overcome the challenges of battery-based conventional devices.RFEH technology is considered to provide direct power and battery recharging from the electromagnetic(EM)energy[4].In order to address the limitation of the conventional battery-based devices of charging,maintaining,or replacing a battery.The propagation of EM wave in space that carries an EM radiant energy from various sources makes it applicable as an additional source of energy for low-powered devices[3].The RFEH circuit is accomplished through a rectifying antenna(rectenna)comprising a receiving antenna,an IMN,a rectifying diode,a dc-pass filter,and a terminal load[5].

    The RFEH antenna picks relatively low AC signals.Hence,a conditioning circuit for maximum transfer of power between the antenna and the rectifying diode to the load terminal is of paramount importance[2,5].The RF rectifier is a vital component of the RFEH circuit that matches and converts the received AC signal from the antenna to the equivalent dc output through an IMN,a rectifying diode,a dc-pass filter,the load terminal.Rectenna operates at a designated frequency with a significant RF power density to ensure a reliable operation of the circuit[1,6].

    Various researchers have reported works on RFEH circuits for single-band[7,8],dual-band[9],and multi-band[1,6–10],operations.The authors in[6]present a quad-band(1.3,1.7,2.4,3.6 GHz)rectifier using a distributed T-section IMN.The authors in[11]reported a triple-band(0.94,1.95,and 2.44 GHz)RF rectifier control by a 4-stage single dual-diode matched through a single L-section IMN.A four-band(0.95,1.83,2.45,and 2.62 GHz)RF harvester using twobranches of 4-stage voltage multiplier is reported by the authors in[12].The RFEH harvester in[6,11],and[12]are suitable for high-power applications because of the complexity of the circuits that increase the parasitic capacitance across the junction of the diode.In[13],the authors reported a triple-band(2,2.5,and 3.5 GHz)rectenna.The authors in[14]present a four-band(0.89,1.27,2.02,and 2.38 GHz)rectifier comprising a series diode D1 and a combination of shunt field-effect transistor(FET)with a second diode D2.The Circuit in[14]is matched through a cross-shaped stub and a stepped impedance microstrip line.The rectifier operating frequency by the authors in[6]at 3.6 GHz,[13]at(2 and 3.5 GHz),and[14]at(1.27 and 2.02 GHz)contributes little RF power density to the RF harvester.The authors in[10]reported a multi-port rectenna with the ability to explore spatial domain through multiple receiving antennas.A single band(98 MHz)low-frequency frequency modulated(FM)RF harvester is slotted into a triple-band(0.88,1.7,and 2.370 GHz)four-cornered multi-port rectenna.The narrow bandwidth associated with the design does not sufficiently exploit the frequency domain of the EM spectrum,besides the two-level dc-combiner that introduces additional losses into the transmission line.It is worth mentioning that most of the rectenna and RF rectifiers reported from the literature have limited operational bandwidth between(20–40 MHz).Besides operating at a high input power,some works presented have insignificant RF power density to harvest and manage by the rectifier.

    In this paper,a compact dual-port rectenna with the ability to cover most of the EM spectrum with a significant RF power density is proposed.The proposed rectifier operates at(0.94,1.80,2.10,2.46,and 2.63 GHz)matched through a 2.5 kΩload terminal.The proposed rectenna harvests RF signals from GSM/900,GSM/1800,UMTS/2100,Wi-Fi/2.45,and LTE/2600 frequency bands.Improvements in compactness,operational bandwidth,and the overall RF-to-dc PCE were seen in the proposed design.The design is a promising candidate for many applications in low-powered systems.In this paper,the design of the rectifier circuit is discussed in Section 2,and Section 3 presents the performance of a dual-port rectifier.Section 4 highlights the design of a wideband antenna to complete a rectenna.The rectenna measurement results in the ambiance environment are reported in Section 5,and Section 6 concludes the work.

    2 Rectifier Design

    An RFEH system requires a rectifying diode to handle a low input power at high frequency with minimum losses[5,7].A single diode RF rectifier configuration shows a better performance at low input power than its equivalents single or multi-stage voltage multiplier[2].Hence,a singleseries diode circuit topology is considered here in this work to minimize junction parasitic and ensure a faster switching time[4,15].Fig.1 presents a typical single-series RF rectifier topology using a shunt capacitor filter.To minimize the passage of higher-order harmonics into the load,a shunt dc-pass filter is added between the diode and the load terminal(RL).

    Figure 1:A Conventional single series RF rectifier topology

    Fig.2 presents the model layout of the proposed dual-port wideband rectifier.Two IMN design approach is adopted at each port to reduce circuit complexity and ensure a compact harvester.The first section of the proposed rectifier(Rectifier1)is designed at 0.93 GHz using a second-order L-section matching network(MN)for harvesting GSM/900 available power.Rectifier-1 is connected through Port-1.Port-2 is used to connect the second segment of the rectifier(Rectifier-2),comprising three cell branches matched through an impedance transformer network.Each cell branch is matched to a single series diode D2–D4 at 1.8,2.1,and 2.45 GHz,respectively.

    The rectifier sections are designed on a high-frequency single-series HSMS-2850 low-powered Schottky barrier diode from Avago.The diode exhibit a small junction capacitance of 0.18 pF,a forward biasing voltage of 150 mV.SOT-323 provides the diode physical configuration layout[1,5].The proposed rectifier is designed and constructed on a 1.6 mm thick FR-4 substrate(with a dielectric constant of 5.4 and a loss tangent of 0.02).The dual-port RF rectifier is terminated with a 50Ωsource through a transmission line at Port-1 and Port-2.

    The input impedance of Rectifiers-1 and 2 are first computed without an MN comprising only a rectifying diode,dc-pass capacitor filter,and a load terminal.The dc-pass capacitor filter is designed to smoothing the peaks from the output of the rectifying diode and also reject higherorder harmonics[16].A source pool simulation using a harmonic balance(HB)solver is executed to determine a suitable value of RLin advance design system(ADS).A 200 pF capacitor filter shunt with a 2.5 kΩload terminal offers a better trade-off performance across the proposed rectifier operating frequencies.

    The input impedance of Rectifier-1 is matched to the 50Ωtransmission line through an L-section MN comprising two inductors L1,and L2.The evaluation of the MN parameters at a specified frequency is accomplished by canceling the imaginary reactance of a source and load and then compare their equivalent real part.Eqs.(1)–(6)provides the model equations of the MN.

    By comparing the real part of the antenna with the rectifier input impedance Zin,we get:

    Figure 2:Proposed EM model layout of the rectifier.The parameters are optimized as:L = 5.8,L1 = 2.6,L2 = L10 = L28 = Lr2 = 1.6,L3 = L4 = 11,L5 = 9,L6 = 2,L7 = 3.5,L8 = 6.1,L9 = L23 = 4.25,R = L11 = L12 = L21 = L27 = 1,L13 = 7,L14 = 9,L15 = 6.5,L16 = 9,R7 = L17 = L18 = L20 = 0.6,L19 = 5.7,L22 = 1.2,L24 = 5,L25 = 2.8,L26 = 3,W = W1= W3 = W4 = W5 = W6 = W7 = W8 = W9 = W10 = W11 = W12 = W14 = W15 = W16 =W20 = W22 = W23 = W24 = W25 = W26 = W27 = W28 = 0.6,W2 = W13 = W17 = W18= W19 = W21 = 1,Wc= Wc3= Wc5= Wc7= 0.6,R3 = 0.5,R5 = 0.9,Lr1 = 1.9,Lr3 = 1.1:(All units are in mm). θ=θ1=θ2=θ3=θ4=θ5=θ6=θ7= 90°,L1 = 22 nH,L = 6.2 nH,C1 =C2 = 200 pF,L3 = 10 nH,L4 = 8.2 nH,L5 = 4.7 nH,2.5 kΩ

    where Rant= source impedance of the antenna at 50Ω,Rin= rectifier input impedance.The quality factor Q is given by:

    The inductance L2 can be determined from the definition of a quality factor as:

    where Cin= reactive components of the load impedance operating at angular frequencyωo.From Eq.(3),L1 is given by:

    The value of L2 can be determined through parallel to series transformation.We then equate the resultant imaginary part to zero,as:

    L2 can be express from Eq.(5),as:

    The elements of the MN(L1 and L2)were first determined at(68 and 0.1 nH)using a 50Ωtransmission line at 0.93 GHz.An ideal components palette in ADS was used to transfer the equivalent parameters into the design.The parameters are then tuned to balance the effects of the transmission line at(36 and 3.78 nH),respectively.Ideal inductor elements were substituted with the equivalent S-parameter files from muRata in the ADS library to ensure the optimization of Rectifier-1 as close as possible.The parameters of the MN were further tuned and optimized at(22 and 6.2 nH)with part number of LQG18HN22NJ00D and 0603 circuit layout,respectively.

    RF rectifier with a wide impedance bandwidth is vital in achieving a reliable RFEH module[16].Normally,the input impedance of the rectifying diode in the MN design depends on the operating frequency with a narrow bandwidth[16].The method of combining RF rectifiers operating at a single or dual band in parallel for a wide bandwidth is reported in[2,8,10–17].The technique ensures maximum transfer of the harvested power through the load terminal with a meaningful signal contribution across each signal tone.The concept is adopted in the second section of the proposed rectifier(Rectifier-2).It is composed of three(3)cell blocks cascaded in parallel as(Cell-1–Cell-3)by Port-2.A curve shunt stub impedance transformer was first designed to match a single band rectifier with a 50Ωtransmission line at 1.8,2.1,and 2.40 GHz,respectively.

    The resonant length of each shunt stub is calculated atλ/8 of the guided wavelength at the three operating frequencies,respectively.The length of the stub is first computed at(9,8.5,and 7.2 mm)for the three respective cell blocks.The parameters are then transferred into the ADS by integrating a microstrip curve bend(MCURVE)with a microstrip line(MLINE)to the diode for each cell.Length of each shunt transformer is tuned to match the input impedance of the 50Ωtransmission line to the conjugate of the rectifying diode through the load.To minimize the length and losses of the transmission line,an inductor elements frommuRatais added into the MN of each cell.Connecting the inductor to the anode terminal of the diode also improves the input signal going into the rectifying diode.To improve the bandwidth of the rectifier at each operating frequency,a shunt radial stub is loaded into the MN of each cell.The use of the inductor and the radial stub helps ensure the rectifier compactness with an additional degree of freedom.The three cells of Rectifier-2 are integrated through transmission lines(TL6,TL7,TL12,and TL19)to maintain a practical design.Cascading the three cell block creates further parametric tuning to achieve the desired result.Cells-1 and 2 are linked through a dc-pass filter(C2)and the load terminal(RL).The two cells are tuned and optimized through 10 and 8.2 nH inductors frommuRata(with LQG18HN10NJ00D part number and 0603 circuit layout)for 1.8 and 2.1 GHz operating frequency,respectively.Cell-3 design covers a broader operating bandwidth(2.33–2.67 GHz),the cell is optimized with a 4.7 nH inductor(having a part number of LQG15HS4N7S02D 0402 circuit layout).The cathode terminal of the diode D4 is shunt with a capacitor C1 to minimize interference between the three cells.To provide dc biasing into the rectifier circuit,curve shunt transformers and capacitors are shorted to the ground through Vias.C1 and C2 are having a part number of GRM1885C1H201JA01 and 0402 circuit layout.

    The source connecting Port-2 is modeled as a 50Ωpower source with four signal tone at 1.80,2.10,2.41,and 2.60 GHz in ADS.The equivalent AC source at Port-1 and Port-2 is guided by a wave Eq.(7).

    whereVSis the input voltage from the source,and VSMAXrepresents maximum amplitude RF input signal entering the rectifying diode at an angular frequencyω.

    A dc combiner is used to connect the resulting output dc signal from the two rectifiers through a load terminalRL.The whole proposed circuit is realized from a set of two(2)capacitors,five(5)inductors,four(4)rectifying diodes,and a single load terminalRL.

    The overall rectifier was fine-tuned and optimized.Carrying out this process lowers down additional parasitic in the design and compensate for the losses from a transmission line interconnection,components tolerance of the chip,soldering lead,and SMA source in the circuit.The optimized parameters of the proposed design are presented in Fig.2.

    3 Results and Discussion

    The proposed dual-port rectifier is designed and fabricated on a double layer FR-4 substrate using a full ground architecture as presented in Fig.3a.The rectifier is then connected with a pair of crocodile clips across the load terminal for easy performance evaluation.A vector network analyzer(VNA)E5062A is deployed to measure the rectifier input reflection coefficient(S11).The measured and simulated S11of the proposed rectifier is reported in Fig.3b.The proposed designed achieved a simulated S11towards a ?10 dB reference point at 0.93 GHz(0.90–0.97 GHz)for Rectifier-1 and 1.8 GHz(1.760–1.850 GHz),2.1 GHz(2.04–2.160 GHz),and 2.41 GHz/2.6 GHz(2.33–2.670 GHz)for Rectifier-2.The fabricated prototype shows a good agreement with the simulated results having,S11at 0.94 GHz(0.91–0.98 GHz)for Rectifier-1 and 1.8 GHz(1.750–1.855 GHz),2.1 GHz(2.03–2.170 GHz),and 2.46 GHz/2.63 GHz(2.37–2.70 GHz)for Rectifier-2.The results show the rectifier capability to harvest RF signal from GSM/900,GSM/1800,UMTS/2100,Wi-Fi/2.45,and LTE/2600 frequency bands.S12is used to determine the isolation between Port-1 and Port-2.The measured values of S12are(59.65,25.18,43.51,49.90,and 52.42 dB)at(0.94,1.8,2.1,2.46,and 2.63 GHz),respectively.

    The measured and simulated RF-to-dc PCE of the proposed dual-port rectifier against frequency is presented in Fig.4.Frequency sweeping across the 2.5 kΩload is carried out between 0.8 to 2.8 GHz at four different input power levels(?30 to 0 dBm at an interval of 10 dBm).The measurement is performed separately at Port-1 and Port-2.The rectifier performance evaluation is achieved by using a HB simulator with a parameter sweep in ADS.The measurement of the RF-to-dc PCE against input powerPinis conducted by connecting the rectifier with a 12 GHz AnaPico signal generator(APSIN12G).A low power signal from the generator(varied between?30 to 5 dBm at an interval of 2 dBm)is supplied to the rectifier at each operating frequency.A digital multi-meter is used to record the output dc voltage separately for Port-1 and Port-2.The values are recorded across the 2 kΩterminal load at each sampling point.

    Figure 3:Proposed rectifier:(a)Fabricated prototype(b)Simulated and measured reflection coefficient S11 at Port-1 and Port-2

    Figure 4:Simulated and measured RF-to-dc PCE against frequency at four different RF input power levels Pin for Port-1 and Port-2

    From the dc output voltage results,the rectifier RF-to-dc PCE for Port-1 and Port-2 are computed using:

    whereηPCEis the rectifier RF-to-dc PCE andPdcis the equivalent dc output power acrossRL.Pindenotes the RF source signal at the input terminal of the rectifier.Vdcgives the equivalent output dc voltage across the load terminalRL.

    The total RF-to-dc PCE for the dual-port rectifier is given by:

    whereηmaxrepresents the total RF-to-dc PCE from the two ports.Pin1andPin2denote the RF signal that goes into the rectifier through Port-1 and Port-2.Vdc1andVdc2provide the equivalent output dc voltage across the loadRL.

    The measured and simulated RF-to-dc PCE against the input signal(Pin)is presented in Figs.5a and 5b.The proposed multi-band rectifier realized a measured maximum RF-to-dc PCE of 61.31% for an input power of 3 dBm at 0.94 GHz and 57.67%,71.90%,72.7%,and 70.0%for an input power of 0,?1,0,and 1 dBm at(1.80,2.10,2.46,and 2.63 GHz),respectively.At a low input power,the proposed rectifier realized a measured peak RF-to-dc PCE of 21%,22.76%,25.33%,21.57%,and 22.14% for an input power of ?20 dBm,respectively.For the entire measuring process,when a single port is subjected to test,the other port is terminated with the 50Ωimpedance.

    Figure 5:Simulated and measured RF-to-dc PCE of the proposed dual-port rectifier vs. Pin at(a)0.94,1.8,and 2.1 GHz(b)2.46,2.63 GHz

    Fig.6 shows the proposed rectifier measurement setups in the laboratory.S11and the dc output voltage were measured individually at each port of the rectifier.

    A plot of the proposed rectifier RF-to-dc PCE against the loadRLis presented in Fig.7 for an input power of 0 dBm.The rectifier realized maximum RF-to-dc PCE within the 2–3.5 kΩload terminal range.A trade-off for the optimal operation of the rectifier is achieved at 2.5 kΩ.

    A comparison table between the proposed dual-port rectifier and previous related works from the literature is shown in Tab.1.The manual setting of the MN reported by the authors in[1]makes the RF harvester impractical to be achieved.The rectifier reported by the authors in[15]has a narrow bandwidth across the designed frequencies as compares to our proposed work.The RF harvesters presented by the authors in[1]and[15]realized a peak RF-to-dc PCE for an input power of 0 dBm.The proposed dual-port RF harvester exhibit a better RF-to-dc PCE at 0 dBm of(59.57%,57.70%,71.0%,72.7%,and 67.1%)across the five respective operating frequencies,in addition to a smaller electrical length.There is an insignificant RF signal to be harvested in some operating frequencies reported by the authors in[6]at 3.6 GHz and[14]at 1.27 GHz.The work in[6]is suitable for high power applications because it is optimized for an input of 10 dBm.It can be seen that the proposed dual-port RF harvester provides better RF-to-dc PCE and compactness as against the related designs presented in[6,13]and[14].The first single band(98 MHz)rectifier presented in[10]operates at the direct line of sight(LOS)slotted in a tripleband RF harvester.The proposed design in this paper achieved a much smaller electrical length with a better operational bandwidth compared with related works in[10,17].

    Figure 6:Proposed dual-port rectifier measurement setups at Port-1 and Port-2

    Figure 7:Proposed rectifier RF-to-dc PCE vs.terminal load RL at different operating frequencies for an input power of 0 dBm

    Table 1:A comparison between the proposed dual-port rectifier and the previous related work

    4 Wideband Receiving Antenna Design

    The proposed wideband monopole antenna is designed from a rectangular patch of dimension 102 mm × 80 mm.The antenna is deployed because it offers wide bandwidth,ease of fabrication with a radiation pattern relatively close to the azimuthal omnidirectional pattern.Four triangular slots are first cuts through the rectangular radiating patch.A defected ground is deployed into the designed to achieve the desired bandwidth.A small rectangular slit is also added into the partial ground to improve the matching of the antenna.To achieve two resonance modes at 0.92 and 2.65 GHz,a semicircular slot of radius 11 mm and an arc of 32 mm diameter are added into the radiator,respectively.Two more equal semi equidistant circular slots of radius 4.1 mm are integrated to the lower arm of the rectangular patch to achieve more resonance mode in the upper bands 3.3 and 5.3 GHz,respectively.To improve the gain of the antenna in the lower band because of the partial ground effects.A circular parasitic patch of radius 13 mm is added to the ground plane.The antenna is fed through a 50Ωsource and is fabricated on the same FR-4 substrate.Because of its lightweight,low-cost,and ease of fabrication,the proposed RF rectifier and antenna are optimized on FR-4 substrate[5].Fig.8a provides the geometry of the proposed antenna with a total dimension of 140 mm × 90 mm × 1.6 mm.

    The simulated and measuredS11of the proposed antenna is shown in Fig.8b.The antenna achieved a simulated and measured bandwidth of(0.74 to 5.85 GHz)and(0.59 to 5.5 GHz),respectively.The antenna is a suitable candidate for GSM/900,GSM/1800,UMTS/2100,Wi-Fi/2.45,LTE/2600,WiMAX/3.5,and Wi-Fi/5GHz applications.The antenna attained a maximum measured gain of 4.12 dBi at 3.2 GHz.Fig.9 presents the simulated and measured gain of the proposed wideband antenna with the fabricated prototype.The measured realized gain of the antenna at(0.92,1.8,2.1,2.45,and 2.6 GHz)are(1.56,3.05,3.21,4.15,and 4.68 dBi),respectively.

    Fig.10 provides the measured and simulated radiation pattern of the wideband monopole antenna alongxz-plane having(?= 0°| 0°<θ<180°)andyz-plane for(?= 90°| 0°<θ<180°),respectively.The radiation pattern is measured and recorded at 0.92,1.8,2.1,2.45,and 2.6 GHz operating frequencies.The results alongxz-plane are close to that of a dipole antenna,and theyz-plane shows the attributes of a directional antenna.

    Figure 8:Proposed antenna(a)Geometry(b)Simulated and measured reflection coefficient S11 against frequency.The parameters are optimized as:M = 140,N = 90,P1 = 102,P2 = 80,a =5.3,b = 24,c = m = 34,d = 32,e = 5,f = 2.8,g = 12.8,g1 = 28,h = 19,i = 10,j = 35.61,k = 10.65,n = 43,u = 3,q = 3.64,r = 4.1,r1 = 11.2,r2 = 13,s = 8.78,t = 31

    Figure 9:Simulated and measured realized gain of the proposed antenna

    5 Ambiance Measurement of the Proposed Rectenna

    The proposed rectenna is tested in the ambiance environment.The measurement is carried out within Multimedia University,Cyberjaya Campus.The testing site is about 180 m apart from the nearby base station(BS)cell tower placed at 1mm high above the ground level.An ambient measurement setup is achieved using a pair of the fabricated antenna prototype.A 6 GHz(TTi PSA6005)spectrum analyzer(from Aim)is deployed to measure and record the available RF power density.The RF power densities across the five major frequency bands(GSM/900,GSM/1800,UMTS/2100,Wi-Fi/2.45,and LTE/2600)varies between(?37–?18 dBm,?35–?15 dBm,?45–?20 dBm,?50–?20 dBm,and ?45–?20 dBm),respectively.Fig.10 presents ambiance measurement of the proposed dual-port RF harvester.The two wideband antennae connect to the rectifier at Port-1 and Port-2.The proposed dual-port rectenna achieved a maximum output dc voltage of 376.1 mV from the available ambient RF power densities.

    Figure 10:Simulated and measured radiation pattern of the proposed wideband monopole antenna for Phi = 0° and Phi = 90°:(a)and(b)at 0.92 GHz,(c)and(d)at 1.8 GHz,(e)and(f)at 2.1 GHz,(g)and(h)at 2.45 GHz,(i)and(j)at 2.6 GHz,respectively

    The RF input signal from the receiving antenna is a multitoned signal from multiple RF sources at the different operating frequencies.These signals vary with time and distance.Similarly,the rectifier output signals is a time-varying signal that needs to be stabilized through a power management module(PMM).The PMM is normally incorporated with storage elements such as micro-batteries and supercapacitor to manage the operations of low-powered devices[4,18].In this paper,a low PMM(bq65504-674 EVM)from Texas Instruments is applied.A maximum power point tracking(MPPT)algorithm manages and samples the effective dc output voltage supply to the load or a storage element.This is achieved through a dc-dc converter integrated into the module,with the ability to enhance the output dc voltage to about 3.1 V.The module has a low startup input voltage of 130 and 330 mV,for a cold-start and hot-start,respectively,at a minimum quiescent current of 330 nA.Fig.11 presents the setup of the proposed rectifier using bq25504-674 EVM.The proposed rectifier realized a maximum dc output voltage of 945 mV from the available ambient RF power densities.

    Figure 11:Rectifier ambiance measurement setups(a)Without EVM(Output dc voltage= 376.1 mV)(b)With EVM(Output dc voltage = 945 mV)

    The results of the proposed dual-port five bands rectenna have shown an improvement concerning the RF-to-dc PCE and ?10 dB operational bandwidth as compared to most of the previous related works from the literature.The proposed design demonstrates compactness and the ability to power a bq25504-674 EVM from the available ambient RF power signal.

    6 Conclusions

    In this work,a five-band dual-port rectifier has been proposed using an L-section and impedance transformer MN.The two IMN applied to the dual-port(Port-1 and Port-2)rectifier are matched at 0.94 GHz by Rectifier-1 and(1.80,2.10,2.46,and 2.63 GHz)through Rectifier-2.The proposed RF harvester realized a maximum measured RF-to-dc PCE and an output dc voltage of 72.70% and 154 mV for an input power of 3 dBm at 2.46 GHz.The circuit generates an output dc signal of 376.1 mV from the multitoned signal in the ambiance environment.The output voltage attained about 31% of the RF-to-dc PCE from the measured RF power density recorded by the spectrum analyzer.A low-powered bq25504-674 EVM integrated with the rectifier achieved an output dc voltage of 945 mV.The RF harvester shows a good performance at low input power and occupies a small section of the PCB at 0.20λg × 0.15λg.The wide operational bandwidth across the operating frequencies makes the proposed rectifier a fit candidate for low-powered RF applications.

    Funding Statement:This work was supported by TM R&D Malaysia under Project Number MMUE/190001.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    av电影中文网址| 性色avwww在线观看| 亚洲国产精品成人久久小说| 男女午夜视频在线观看| 国产成人精品福利久久| 国产精品一国产av| 搡老乐熟女国产| 曰老女人黄片| 亚洲精品久久成人aⅴ小说| 欧美最新免费一区二区三区| 亚洲伊人久久精品综合| 毛片一级片免费看久久久久| av线在线观看网站| av有码第一页| 日韩制服骚丝袜av| 久久精品久久精品一区二区三区| 晚上一个人看的免费电影| 国产精品不卡视频一区二区| 成人黄色视频免费在线看| 国产视频首页在线观看| 日韩一区二区三区影片| 深夜精品福利| 一区在线观看完整版| 久久久久久久久免费视频了| 蜜桃国产av成人99| 久久久久国产网址| 亚洲欧洲国产日韩| 丝袜美足系列| 丁香六月天网| 亚洲av日韩在线播放| 99热网站在线观看| 国产免费一区二区三区四区乱码| 午夜福利视频在线观看免费| 人成视频在线观看免费观看| 最近最新中文字幕免费大全7| 亚洲成人手机| videos熟女内射| 人人妻人人澡人人爽人人夜夜| 日韩中字成人| 校园人妻丝袜中文字幕| 成年av动漫网址| 国产欧美亚洲国产| 久久婷婷青草| 捣出白浆h1v1| 一区二区av电影网| 午夜福利影视在线免费观看| 美女中出高潮动态图| 肉色欧美久久久久久久蜜桃| 可以免费在线观看a视频的电影网站 | 国产国语露脸激情在线看| 欧美日韩视频高清一区二区三区二| 少妇熟女欧美另类| 99国产精品免费福利视频| 国产精品偷伦视频观看了| 精品一区在线观看国产| 亚洲三区欧美一区| 日本黄色日本黄色录像| 久久久精品国产亚洲av高清涩受| 一级毛片我不卡| 伊人久久国产一区二区| 男女免费视频国产| 在线观看三级黄色| 国产精品嫩草影院av在线观看| 波多野结衣av一区二区av| 国产熟女欧美一区二区| 国产男女内射视频| 亚洲av综合色区一区| 中文字幕人妻丝袜一区二区 | 亚洲情色 制服丝袜| 欧美成人午夜精品| 久久久久国产网址| 各种免费的搞黄视频| 我要看黄色一级片免费的| 免费黄频网站在线观看国产| 伊人亚洲综合成人网| 国产亚洲午夜精品一区二区久久| 久久久久国产精品人妻一区二区| 99国产精品免费福利视频| 婷婷色综合大香蕉| 人妻人人澡人人爽人人| 一区福利在线观看| 成人手机av| 人人妻人人添人人爽欧美一区卜| 老熟女久久久| 在线看a的网站| 欧美精品国产亚洲| 免费黄色在线免费观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 午夜91福利影院| 极品少妇高潮喷水抽搐| 肉色欧美久久久久久久蜜桃| 国产高清国产精品国产三级| 国产精品久久久久久精品古装| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 男人爽女人下面视频在线观看| 亚洲国产看品久久| 国产精品国产三级专区第一集| 天美传媒精品一区二区| 亚洲av在线观看美女高潮| 午夜福利在线免费观看网站| 又粗又硬又长又爽又黄的视频| 亚洲国产色片| 亚洲,欧美,日韩| 波多野结衣一区麻豆| 亚洲色图综合在线观看| 999久久久国产精品视频| 久久精品人人爽人人爽视色| 午夜激情久久久久久久| 水蜜桃什么品种好| 日韩,欧美,国产一区二区三区| 观看av在线不卡| 国产免费一区二区三区四区乱码| 欧美变态另类bdsm刘玥| 日韩伦理黄色片| 嫩草影院入口| h视频一区二区三区| 亚洲激情五月婷婷啪啪| 久久人人爽av亚洲精品天堂| 日日啪夜夜爽| 男女免费视频国产| 日本爱情动作片www.在线观看| 飞空精品影院首页| 久久久久久久久久人人人人人人| 国产精品三级大全| 九九爱精品视频在线观看| 中文字幕人妻丝袜制服| 欧美日韩亚洲国产一区二区在线观看 | 97在线人人人人妻| 国产女主播在线喷水免费视频网站| 国产精品三级大全| 天天躁夜夜躁狠狠躁躁| 大话2 男鬼变身卡| 国产成人av激情在线播放| 三上悠亚av全集在线观看| 午夜福利在线免费观看网站| 亚洲欧洲精品一区二区精品久久久 | 99久国产av精品国产电影| 国产精品香港三级国产av潘金莲 | 久久精品国产亚洲av高清一级| 日韩av免费高清视频| 少妇人妻精品综合一区二区| 久久久久久久久久人人人人人人| 中国国产av一级| 久久久久久人妻| 国产熟女欧美一区二区| 综合色丁香网| 欧美97在线视频| 亚洲精品日韩在线中文字幕| 丝袜美足系列| 日韩在线高清观看一区二区三区| 国产欧美日韩综合在线一区二区| 女性被躁到高潮视频| 国产伦理片在线播放av一区| 色吧在线观看| 激情视频va一区二区三区| 岛国毛片在线播放| 国产男女内射视频| 亚洲av在线观看美女高潮| 交换朋友夫妻互换小说| 日日摸夜夜添夜夜爱| 国产亚洲av片在线观看秒播厂| 久久久亚洲精品成人影院| 久久99热这里只频精品6学生| 国产无遮挡羞羞视频在线观看| www.自偷自拍.com| 日韩制服丝袜自拍偷拍| 久久av网站| 国产国语露脸激情在线看| www日本在线高清视频| 国产成人午夜福利电影在线观看| 亚洲一级一片aⅴ在线观看| a 毛片基地| 99国产精品免费福利视频| av片东京热男人的天堂| 国产精品免费视频内射| 亚洲五月色婷婷综合| h视频一区二区三区| 欧美日韩视频精品一区| 亚洲精品日本国产第一区| 亚洲第一青青草原| 少妇人妻久久综合中文| av女优亚洲男人天堂| 免费在线观看完整版高清| 亚洲综合色惰| 热re99久久精品国产66热6| 波野结衣二区三区在线| 中国国产av一级| 十八禁高潮呻吟视频| 欧美精品人与动牲交sv欧美| 亚洲成人手机| 1024香蕉在线观看| 亚洲一级一片aⅴ在线观看| 久久久久精品性色| 国产在线免费精品| 国产日韩一区二区三区精品不卡| 国产xxxxx性猛交| 欧美日韩视频精品一区| 亚洲欧美精品综合一区二区三区 | 成人18禁高潮啪啪吃奶动态图| 18禁动态无遮挡网站| 欧美激情高清一区二区三区 | 天堂俺去俺来也www色官网| 亚洲成人av在线免费| 欧美另类一区| 熟妇人妻不卡中文字幕| 国产极品天堂在线| av不卡在线播放| 免费在线观看完整版高清| 99久久中文字幕三级久久日本| 免费黄色在线免费观看| 亚洲欧美一区二区三区黑人 | 熟女电影av网| 91在线精品国自产拍蜜月| 欧美97在线视频| 少妇被粗大猛烈的视频| 青春草国产在线视频| 久久国产精品大桥未久av| 欧美少妇被猛烈插入视频| 午夜精品国产一区二区电影| 婷婷色麻豆天堂久久| 国产成人a∨麻豆精品| 精品一品国产午夜福利视频| 色婷婷av一区二区三区视频| 成人二区视频| 18在线观看网站| 好男人视频免费观看在线| 成人午夜精彩视频在线观看| 一区二区av电影网| 久热久热在线精品观看| 交换朋友夫妻互换小说| 高清欧美精品videossex| 久久av网站| 在线观看三级黄色| 女人高潮潮喷娇喘18禁视频| 亚洲天堂av无毛| 下体分泌物呈黄色| 最近中文字幕2019免费版| 亚洲精品国产色婷婷电影| 男女午夜视频在线观看| 亚洲欧洲国产日韩| 国产成人欧美| 电影成人av| 嫩草影院入口| www.av在线官网国产| 高清av免费在线| 男人舔女人的私密视频| 街头女战士在线观看网站| 高清欧美精品videossex| 老汉色av国产亚洲站长工具| 男女国产视频网站| 日韩电影二区| xxx大片免费视频| 免费黄网站久久成人精品| 男女啪啪激烈高潮av片| 亚洲av免费高清在线观看| 亚洲国产日韩一区二区| 在线观看国产h片| 久久久国产欧美日韩av| 精品一区二区三区四区五区乱码 | 欧美日韩视频高清一区二区三区二| 久久国产精品男人的天堂亚洲| 日韩中字成人| 黄色 视频免费看| 男女下面插进去视频免费观看| 日日爽夜夜爽网站| 亚洲在久久综合| 国产亚洲欧美精品永久| 91成人精品电影| 国产 一区精品| 亚洲欧美一区二区三区国产| 满18在线观看网站| av卡一久久| 欧美激情 高清一区二区三区| 久久久久视频综合| 高清在线视频一区二区三区| 99热国产这里只有精品6| 秋霞在线观看毛片| 男女啪啪激烈高潮av片| 人妻少妇偷人精品九色| 成人毛片60女人毛片免费| 91精品伊人久久大香线蕉| 人妻一区二区av| 亚洲综合色网址| 高清在线视频一区二区三区| 国产精品秋霞免费鲁丝片| 亚洲av综合色区一区| 久久久亚洲精品成人影院| 亚洲欧美清纯卡通| 熟女电影av网| 国产在视频线精品| 国产熟女欧美一区二区| 丰满少妇做爰视频| 国产高清不卡午夜福利| 亚洲国产欧美网| 在线精品无人区一区二区三| 青青草视频在线视频观看| 成年女人在线观看亚洲视频| 一边亲一边摸免费视频| 久久久久久久亚洲中文字幕| 亚洲成国产人片在线观看| 韩国精品一区二区三区| 少妇被粗大猛烈的视频| 亚洲国产成人一精品久久久| 欧美日韩视频精品一区| 老汉色∧v一级毛片| 国产精品国产三级专区第一集| 亚洲欧美中文字幕日韩二区| 欧美精品一区二区大全| www日本在线高清视频| 久久国产精品大桥未久av| 高清不卡的av网站| 国产在线免费精品| 久久国产亚洲av麻豆专区| 尾随美女入室| 久久久久人妻精品一区果冻| 久久这里有精品视频免费| 国产精品人妻久久久影院| 男女午夜视频在线观看| 国产97色在线日韩免费| 狠狠精品人妻久久久久久综合| 18在线观看网站| 国产成人aa在线观看| 欧美xxⅹ黑人| 超碰成人久久| 最近最新中文字幕大全免费视频 | 男男h啪啪无遮挡| 伦精品一区二区三区| av天堂久久9| 考比视频在线观看| 成人影院久久| 亚洲人成网站在线观看播放| 国产人伦9x9x在线观看 | 久久久久久久精品精品| 高清视频免费观看一区二区| 美女xxoo啪啪120秒动态图| 国产av一区二区精品久久| 在线观看三级黄色| 成年动漫av网址| 成年女人毛片免费观看观看9 | 夜夜骑夜夜射夜夜干| 久久精品人人爽人人爽视色| 国产在线一区二区三区精| 久久久久精品久久久久真实原创| 伊人久久大香线蕉亚洲五| 哪个播放器可以免费观看大片| 国产精品国产三级国产专区5o| 麻豆av在线久日| 曰老女人黄片| 日韩av在线免费看完整版不卡| 超碰成人久久| 天天操日日干夜夜撸| 欧美 亚洲 国产 日韩一| 肉色欧美久久久久久久蜜桃| www日本在线高清视频| 制服丝袜香蕉在线| 欧美日韩av久久| 欧美精品一区二区大全| 国产黄色视频一区二区在线观看| a级毛片在线看网站| 成年人午夜在线观看视频| av.在线天堂| 欧美日韩国产mv在线观看视频| 免费高清在线观看日韩| 一本大道久久a久久精品| 成人亚洲精品一区在线观看| 精品卡一卡二卡四卡免费| 性高湖久久久久久久久免费观看| 毛片一级片免费看久久久久| 最近中文字幕2019免费版| 天天躁日日躁夜夜躁夜夜| 亚洲av电影在线进入| 91精品国产国语对白视频| 大香蕉久久网| 热re99久久国产66热| 90打野战视频偷拍视频| 亚洲精品国产av成人精品| 中文字幕人妻丝袜制服| 亚洲欧美中文字幕日韩二区| 婷婷色麻豆天堂久久| 韩国av在线不卡| 大香蕉久久成人网| 久久久久久久大尺度免费视频| av免费观看日本| 老汉色∧v一级毛片| 哪个播放器可以免费观看大片| 欧美 日韩 精品 国产| 成人黄色视频免费在线看| 如何舔出高潮| 精品久久久久久电影网| 午夜影院在线不卡| 日韩av免费高清视频| 午夜免费观看性视频| 有码 亚洲区| 国产午夜精品一二区理论片| 国产日韩一区二区三区精品不卡| 日本黄色日本黄色录像| 91精品国产国语对白视频| 亚洲成色77777| 美国免费a级毛片| 欧美激情高清一区二区三区 | 久久精品熟女亚洲av麻豆精品| 久久久国产一区二区| 久久这里有精品视频免费| 91久久精品国产一区二区三区| 熟女av电影| 久久久久久久精品精品| 波野结衣二区三区在线| 热99国产精品久久久久久7| 人成视频在线观看免费观看| 亚洲精品第二区| 久久精品亚洲av国产电影网| 韩国av在线不卡| 制服诱惑二区| 久久久久久人妻| 国产成人免费观看mmmm| 成年女人在线观看亚洲视频| 国产日韩一区二区三区精品不卡| 91精品三级在线观看| 卡戴珊不雅视频在线播放| 大陆偷拍与自拍| 老司机亚洲免费影院| 天天操日日干夜夜撸| 一级黄片播放器| 如日韩欧美国产精品一区二区三区| 老汉色∧v一级毛片| 亚洲欧美成人综合另类久久久| 99久久人妻综合| 少妇的丰满在线观看| 精品一品国产午夜福利视频| 青青草视频在线视频观看| 美女高潮到喷水免费观看| 丝袜美足系列| 男女下面插进去视频免费观看| 在线免费观看不下载黄p国产| 欧美精品一区二区免费开放| 老熟女久久久| 欧美日韩亚洲国产一区二区在线观看 | 免费观看性生交大片5| 久久精品人人爽人人爽视色| 免费日韩欧美在线观看| 亚洲精品自拍成人| 美女视频免费永久观看网站| 久久久精品国产亚洲av高清涩受| 国产色婷婷99| 丰满迷人的少妇在线观看| 久久精品国产亚洲av涩爱| 久久国产亚洲av麻豆专区| 香蕉丝袜av| 成年人午夜在线观看视频| 婷婷色麻豆天堂久久| 国产精品久久久久久久久免| 成人国产av品久久久| 女性生殖器流出的白浆| 美国免费a级毛片| 精品福利永久在线观看| 亚洲精品中文字幕在线视频| 亚洲国产av新网站| 国产免费又黄又爽又色| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品久久成人aⅴ小说| 国产一区二区 视频在线| 国产白丝娇喘喷水9色精品| 国产精品久久久久久精品古装| 汤姆久久久久久久影院中文字幕| 国产爽快片一区二区三区| 18禁裸乳无遮挡动漫免费视频| 久久久精品免费免费高清| 精品第一国产精品| 成人免费观看视频高清| 亚洲国产色片| 国产 一区精品| 国产日韩欧美亚洲二区| 国产精品三级大全| 黄色配什么色好看| 欧美国产精品va在线观看不卡| 最新的欧美精品一区二区| 飞空精品影院首页| av又黄又爽大尺度在线免费看| 亚洲视频免费观看视频| 大片免费播放器 马上看| 久久人妻熟女aⅴ| 久久久久国产精品人妻一区二区| 国产极品粉嫩免费观看在线| 男人添女人高潮全过程视频| 黄色怎么调成土黄色| 欧美最新免费一区二区三区| 国产黄色视频一区二区在线观看| 日韩伦理黄色片| 日本欧美视频一区| 亚洲av电影在线观看一区二区三区| 黄色配什么色好看| 在线 av 中文字幕| 国产精品成人在线| 精品亚洲成国产av| 精品一区在线观看国产| 成人亚洲精品一区在线观看| 97人妻天天添夜夜摸| 欧美日韩精品成人综合77777| 涩涩av久久男人的天堂| 搡老乐熟女国产| 久久久国产精品麻豆| 亚洲av免费高清在线观看| 91国产中文字幕| 老熟女久久久| www.熟女人妻精品国产| 美女高潮到喷水免费观看| 亚洲精品日本国产第一区| 如日韩欧美国产精品一区二区三区| 精品亚洲成a人片在线观看| 欧美精品av麻豆av| 成人亚洲欧美一区二区av| 一级a爱视频在线免费观看| 观看av在线不卡| 日本欧美视频一区| 亚洲精品久久午夜乱码| 日本免费在线观看一区| 韩国av在线不卡| 日韩一卡2卡3卡4卡2021年| 考比视频在线观看| 99久久综合免费| 男女啪啪激烈高潮av片| av线在线观看网站| 亚洲精品国产色婷婷电影| 亚洲经典国产精华液单| 人妻少妇偷人精品九色| 亚洲欧洲国产日韩| 另类亚洲欧美激情| 午夜91福利影院| 这个男人来自地球电影免费观看 | 午夜福利在线免费观看网站| 少妇人妻精品综合一区二区| 国产麻豆69| 日韩欧美一区视频在线观看| 啦啦啦视频在线资源免费观看| 边亲边吃奶的免费视频| 熟妇人妻不卡中文字幕| 丰满乱子伦码专区| 亚洲经典国产精华液单| 一级黄片播放器| 亚洲av男天堂| 熟女av电影| 亚洲欧美清纯卡通| 亚洲色图 男人天堂 中文字幕| 国产日韩欧美在线精品| 亚洲色图综合在线观看| av网站免费在线观看视频| 女的被弄到高潮叫床怎么办| 亚洲综合精品二区| 只有这里有精品99| 欧美精品高潮呻吟av久久| 观看美女的网站| 最近最新中文字幕大全免费视频 | 青春草国产在线视频| 日韩大片免费观看网站| 99re6热这里在线精品视频| 老司机亚洲免费影院| av在线观看视频网站免费| 免费黄频网站在线观看国产| 人人妻人人添人人爽欧美一区卜| 国产成人精品久久二区二区91 | 亚洲三级黄色毛片| 91精品国产国语对白视频| 男女边摸边吃奶| 久久精品国产亚洲av天美| 黑人猛操日本美女一级片| 成人亚洲欧美一区二区av| 国产亚洲一区二区精品| 一本色道久久久久久精品综合| kizo精华| 不卡av一区二区三区| 看非洲黑人一级黄片| av视频免费观看在线观看| 99久久综合免费| 只有这里有精品99| 美女午夜性视频免费| 高清不卡的av网站| freevideosex欧美| 丁香六月天网| 最近中文字幕高清免费大全6| 高清黄色对白视频在线免费看| 男人舔女人的私密视频| 制服人妻中文乱码| 久久国产精品大桥未久av| 热re99久久精品国产66热6| 久久久国产一区二区| 亚洲成色77777| 性色av一级| 高清av免费在线| 午夜福利在线免费观看网站| 热re99久久精品国产66热6| 2018国产大陆天天弄谢| 性高湖久久久久久久久免费观看| 韩国av在线不卡| 亚洲国产欧美在线一区| 久久久国产精品麻豆| 一区二区三区激情视频| 精品久久蜜臀av无| 久久鲁丝午夜福利片| 亚洲欧美日韩另类电影网站| 国产97色在线日韩免费| 看免费成人av毛片| 秋霞在线观看毛片| 777米奇影视久久| 国产成人精品在线电影| 建设人人有责人人尽责人人享有的| 少妇的丰满在线观看| 性高湖久久久久久久久免费观看| 黄网站色视频无遮挡免费观看| 国产成人精品婷婷| 国产白丝娇喘喷水9色精品| 国产亚洲一区二区精品| 亚洲精品国产一区二区精华液| 亚洲经典国产精华液单| 成人二区视频| av一本久久久久|