• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Fractional Drift Diffusion Model for Organic Semiconductor Devices

    2021-12-10 11:53:46YiYangRobertNawrockiRichardVoylesandHaiyanZhang
    Computers Materials&Continua 2021年10期

    Yi Yang,Robert A.Nawrocki,Richard M.Voyles and Haiyan H.Zhang

    School of Engineering Technology,Purdue University,West Lafayette,47906,USA

    Abstract:Because charge carriers of many organic semiconductors(OSCs)exhibit fractional drift diffusion(Fr-DD)transport properties,the need to develop a Fr-DD model solver becomes more apparent.However,the current research on solving the governing equations of the Fr-DD model is practically nonexistent.In this paper,an iterative solver with high precision is developed to solve both the transient and steady-state Fr-DD model for organic semiconductor devices.The Fr-DD model is composed of two fractionalorder carriers(i.e.,electrons and holes)continuity equations coupled with Poisson’s equation.By treating the current density as constants within each pair of consecutive grid nodes,a linear Caputo’s fractional-order ordinary differential equation(FrODE)can be produced,and its analytic solution gives an approximation to the carrier concentration.The convergence of the solver is guaranteed by implementing a successive over-relaxation(SOR)mechanism on each loop of Gummel’s iteration.Based on our derivations,it can be shown that the Scharfetter–Gummel discretization method is essentially a special case of our scheme.In addition,the consistency and convergence of the two core algorithms are proved,with three numerical examples designed to demonstrate the accuracy and computational performance of this solver.Finally,we validate the Fr-DD model for a steady-state organic field effect transistor(OFET)by fitting the simulated transconductance and output curves to the experimental data.

    Keywords:Fractional drift diffusion model;Gummel’s iteration;Caputo’s fractional-order ordinary differential equation;organic field effect transistor

    1 Introduction

    The mathematical modeling of the electrons and holes transports in an inorganic semiconductor(ISC)is established by a system of coupled partial differential equations(PDEs),which are formulated by Gauss’law applied to the electrical potential?,and the continuity of the electron and hole current densities,JnandJp,respectively[1,2].Besides modeling of ISCs,this system of coupled PDEs,namely,the drift diffusion(DD)model,has also found extensive applications in modeling other diffusion-reaction processes,such as ion exchanges in the electrochemical solvents[3,4],and the transports of positive/negative particles within cell membranes[5,6].Depending on different application scenarios,the DD model can be represented in various forms.In the Van Roosbroeck representation of the DD model,the current density equation can be augmented by Einstein’s relation,which gives a fixed proportional relationship between the diffusion coefficientsDp,Dnand the drift mobilitiesμp,μn[7].In this paper,the Van Roosbroeck representation of the DD model can be expressed in a closed-form as Eqs.(1)–(3),

    where current densities are given byJn= ?qμnn??+qDn?nandJp= ?qμpp???qDp?p,Einstein’s relations areis the thermal voltage,kis Boltzmann constant,Tis the thermal temperature,qis the charge of an electron,ε is semiconductor’s absolute dielectric permittivity,N+DandN?Aare ionized donor and acceptor concentrations.GnandGpare the net electron and hole generation rates,respectively.Previous research data collected from Silicon/Germanium test experiments have revealed the effectiveness of the DD model for modeling the charge carrier transports in ISCs[8].In the past several decades,plentiful numerical algorithms have been developed for solving Eqs.(1)–(3),including the finite element method[9],finite difference fractional step method[10],mixed finite volume and modified upwind fractional difference method[11],and monotone iterative method based on the adaptive finite element discretization[12,13],etc.All of those numerical methods have one thing in common:an efficient iterative method,e.g.,Newton’s iteration,Gauss–Seidel iteration,or Gummel’s iteration was utilized to decouple Eqs.(1)–(3).Among these iteration methods,Gummel’s approach is generally more effective than other methods due to its flexibility in finding its initial guess and customizing the update formulas to improve the convergence speed and computational performance.Moreover,the effectiveness,stability and convergence of Gummel’s decoupling method and iteration for its application to DD simulations were also thoroughly and rigorously proved by mathematicians[14–17].Recent research revealed that the conventional(integer-order)DD model may not be able to characterize the charge carrier transports in organic semiconductors(OSCs),evident from the long-tail behavior of the photocurrent curve observed in OSCs[18].Based on the DD model,Reference[19]showed that the mean squared displacement(MSD)of the carrier trajectory should be proportional to its diffusion time,i.e.,However,the long-tail behavior of the photocurrent curve observed in OSCs implies that the MSD in this scenario is given byforαtermed as the dispersive parameter of the OSC,0<α<1,depending on the temperature and band structure disorders[20–23].This long-tail photocurrent phenomenon was first observed by using time-of-flight measurements[24],and the mechanism that underpins the dispersive carrier transports can be precisely explained by the “multiple trapping model”[23,25],the “single trapping model”[26]and the “hopping model”[27–29],respectively.Based on the“multiple trapping model,” the charge carriers in OSCs can be classified as free(delocalized)charge carrierspf,nfand trap(localized)charge carrierspt,nt.The free charge carrier is the carrier that can hop freely between two trap centers and the trap charge carrier is the carrier that is permanently captured by a localized trap center.References[18,30]proved that the free hole density and the trap hole density in the p-type OSCs have a relationship as given in Eq.(4),

    whereFα(x,t)=τ0cαμpE(x,t)is the anomalous advection coefficient andDα=τ0cαDpis the anomalous diffusion coefficient.The hole mobilityμpand hole diffusion coefficientDpsatisfies the Einstein relation.Eq.(6)coupled with the 1D Poisson equation forms the 1D fractional drift diffusion(Fr-DD)model.1This was initially a simplified Fr-DD model with only time-derivative fractionalized,the order of spatial derivatives remained integer.A discretization scheme,which discretizes the time-fractional derivative with backward finite difference method and the integer-order spatial derivatives with finite center difference method,was proposed to solve the 1D Fr-DD model[20–31].Reference[20]showed that the photocurrent curves obtained from the 1D Fr-DD model are in good agreement with the recorded transient photocurrents from regio-random OSCs poly(3-hexylthiophene)(RRa-P3HT)and regio-regular poly(3-hexylthiophene)(RR-P3HT).In addition,Reference[32]introduced the fractional reduced differential transform method to solve the 1D Fr-DD model and also suggested the existence of a more general Fr-DD model with both time derivative and spatial derivatives fractionalized.As the Fr-DD model emerges as a useful tool for understanding the dispersive transport behavior of the charge carriers in OSCs,investigating how to solve it is instrumental for predicting the steady-state and transient electrical responses of OSC devices.Up to now,far too little attention has been paid to the development of a general Fr-DD model solver.Although a certain number of researches have been carried out on developing the solvers for the conventional DD model,the resulting solvers often have low accuracy and high computational complexity.The goal of this research is to develop a solver with high precision and computational performance for the Fr-DD model.The Fr-DD model is described by a group of coupled fractional-order PDEs as presented in Eqs.(7)–(9),

    Here,we set up a general-form Fr-DD model to simulate the anomalous transport behavior of charge carriers in OSCs.Equipped with proper initial values and boundary conditions,the Fr-DD model can handle the transient or steady-state dynamics of any-type OSC device.In addition,we develop an iterative solver for the Fr-DD model based on two novel algorithms and propose Theorem 4.2 to show the convergence of the model solver.It can be shown that the discretized DD model equation via our discretization scheme coincides with the discrete-form Fr-DD equations derived from the Scharfetter–Gummel(SG)discretization method[9],which implies that our Fr-DD model solver has wider applicability than the DD model solver based on SG method.Finally,we design three numerical examples to demonstrate the high accuracy and computational performance of the Fr-DD model solver,and experimentally validate the Fr-DD model for a steady-state OFET.

    The remainder of the paper is organized as follows.Section 2 presents preliminaries in fractional calculus.Section 3 develops the solver in detail.Section 4 discusses the consistency and convergence analysis of the algorithms.Three numerical examples are provided in Section 5 to support our theoretical analysis and demonstrate the computational performance of our method.In Section 6,we adjust the parameters in the Fr-DD model to fit the experimental characteristic curves measured from a DNTT-based OFET[36].In Section 7,we show the conclusions of this work.

    2 Preliminaries

    2.1 Definition of Fractional Operators

    which completes the proof for Eq.(16).

    It can be observed that both RL’s and Caputo’s fractional derivatives can be composed with an integer-order derivative from two sides,but the composition is not commutative.Next,let us give the Laplace transformation on RL and Caputo’s fractional derivatives as the following lemma.

    Lemma 2.3Assume f∈Cn?1([a,t])and n?1<γ≤n,then the Laplace transform of Riemann–Liouville and Caputo’s fractional derivatives are given by

    Proof.See[35].

    One important formula relating the Laplace transform and two-parameter Mittag–Leffler function is given in Eq.(19),and its proof can be found in[37].

    Subsequently,we will present the analytic solution for Caputo’s fractional linear time-invariant(LTI)state equation.

    2.2 Analytic Solution of Caputo’s Linear Fractional-Order ODE

    If we let 0<γ≤1,the analytic solution of Caputo’s linear fractional-order ODE is given in the following theorem.

    Theorem 2.4Consider the Caputo’s linear fractional-order ODE defined in a discrete 1D space domain with x∈[xi?1,xi]and0<γ≤1,as given in Eq.(20),where u(x)is the state variable and v(x)is the input variable.

    Then,its solution is given by

    where Φ(x)=Eγ(Axγ)is the generalized state transition function,Eγ(t)is the one-parameter Mittag–Leffler function,and the fictitious input functionis obtained by

    Proof.Apply Laplace transform on both sides of Eq.(20),it gives

    Rearrange both sides of Eq.(22)and take the inverse Laplace transform,we have

    whereId=1 orIdis the identity matrix in caseu,vare vectorized variables.The last step comes from Eq.(19),i.e.,the inverse Laplace transform of the Mittag–Leffler function,by lettingα=γandβ=1.We also apply the convolution theorem in the last step derivation,and this completes our proof.

    The theorem we presented above establishes the precise relationship between states on two consecutive grid points in a 1D discrete spaceΩh={xi=iΔx,i=0,1,2,...,N} with step sizeΔx=L/N.Lettingx=xi,we see that two consecutive states have a relation expressed by

    Let us assume that the input functionv(t)=1,the fictitious input function is then evaluated byand considering the commutative property of the convolution integral,then Eq.(23)in this special case can be reformulated as

    We notice that the second term on the RHS of Eq.(24)involves a fractional integral of orderγ.The fractional integral(or the left Riemann–Liouville integral)of orderγis defined as Eq.(25).[38]

    In the next section,we present discrete approximation formula for the left Riemann–Liouville integral and fractional derivatives.

    2.3 Discrete Approximation of Fractional Integrals and Fractional Derivatives

    where the mean value theorem is applied forf(t)andf′(t)withξ1,ξ2∈(tm,tm+1),and the continuous functionf(2)on a compact domain[0,T]assumes its maximum value,we letM=maxt∈[0,T]f(2)(t).

    3 Derivation of the Computational Scheme

    Figure 1:An illustration of notations in the discrete space for(a)discretized electron continuity equation with electron concentrationx-direction component of electron current density and y-direction component of electron current densitydiscretized hole continuity equation with hole concentration x-direction component of hole current densityand y-direction component of hole current density

    3.1 Discretization of Fr-DD Model in Transient State

    wherefn,fpare the predefined functions in Dirichlet boundary conditions,andgn,gpare the functions derived from the Neumann or Robin boundary conditions.Furthermore,the initial value conditions are specified in Eq.(61).Given the discrete form of the transient-state Fr-DD model in Eqs.(31),(40)and(49)and the consistency between the initial value and boundary conditions,we propose Algorithm 1 to solve the unknowns?,nandpfor each time step.

    Algorithm 1:To evaluate the numerical solution of the Fr-DD model in transient state Input:Constant damping parameters ωn,ωp ∈[0,1];Initial guess 0nki,j and 0pki,j for i=1,2,...,Nx;j=1,2,...,Ny; k=1,...,N Output:Unknown interior variables at each time step ?ki,j,nki,j,pki,j for i = 1,2,...,Nx;j=1,2,...,Ny; k=0,1,...,N Step-1.0 Obtain in lectron a itial potentials ?0i,j by solving Eq.(31)in presence of the initial conditions of end hole concentrations in Eq.(61)and the boundary conditions of potentials in Eqs.(32)and(33).For each time step k=0,1,...,N ?1,do Initialize Gummel iteration counts g=0,old error Err0=1,and divergence counts d=0.While Err>Tol,do Gummel iterations Step-1.1 Generate(g)?k+1 i,j by solving Eq.(31)with the initial guess(g)nk+1i,j ,(g)pk+1i,j and the boundary conditions of potentials in Eqs.(32)and(33).Step-1.2 Generate second guess(g+1)nk+1i,j ,(g+1)pk+1i,j by solving Eqs.(40)and(49)with the boundary conditions in Eqs.(59)and(60)and initial conditions(convergent solution from previous time steps) nli,j,pli,j,where l=0,1,...,k.

    Step-1.3 Update(g+1)nk+1i,j = ωn ·(g+1)nk+1i,j +(1 ?ωn) ·(g)nk+1i,jand(g+1)pk+1i,j =ωp ·(g+1)pk+1 i,j +images/BZ_253_830_419_848_465.png1 ?ωp)·(g)pk+1 i,j by damping results to improve the convergence rate.Step-1.4 Compute error Err1 =■■■■■(g+1)nk+1 i,j ?gnk+1 i,j gnk+1 i,j■■■■■,Err2 =■■■■■(g+1)pk+1i,j ?gpk+1 i,j gpk+1 i,j■■■■■ and Err=max(Err1,Err2).Update iteration counts g=g+1.Step-1.5 If Err>Err0 Update divergence counts d=d+1 and old error Err0=Err.Step-1.6 If d>1000 Update damping parameter ωn=ωn/2 and ωp=ωp/2 to improve the convergence ability,then reset divergence counts d=0.

    3.2 Discretization of Fr-DD Model in Steady State

    Since Caputo’s fractional derivative of any constant is zero,the time-derivative term with Caputo’s fractional derivatives vanishes in steady state.In contrast to the transient-state Fr-DD model,the discretized steady-state Fr-DD model is formed by Eqs.(31),(62)and(63).

    The boundary conditions for Poisson’s equation and the carrier continuity equations are specified in Eqs.(32),(33),(59)and(60).By rearranging Eqs.(31),(62)and(63),three matrix equations,i.e.,A??=b?,Ann=bnandApp=bp,can be formed for algebraic computations.As a result,we propose Algorithm 2 to solve the numerical solution of the steady-state Fr-DD model.

    Algorithm 2:To evaluate the numerical solution of the Fr-DD model in steady state Input:Constant damping parameters ωn,ωp ∈[0,1];Initial guess 0ni,j and 0pi,j for i=1,2,...,Nx;j=1,2,...,Ny Output:Unknown interior variables in steady state ?i,j,ni,j,pi,j for i = 1,2,...,Nx;j=1,2,...,Ny Initialize Gummel iteration counts g=0,old error Err0=1,and divergence counts d=0.While Err>Tol,do Gummel iterations Step-1.1 Generate(g)?i,j by solving Eq.(31)with the initial guess(g)ni,j,(g)pi,j and the boundary conditions of potentials in Eqs.(32)and(33).Step-1.2 Generate second guess(g+1)ni,j,(g+1)pi,j by solving Eqs.(62)and(63)with the boundary conditions in Eqs.(59)and(60).Step-1.3 Update(g+1)ni,j=ωn·(g+1)ni,j+(1 ?ωn)·(g)ni,j and(g+1)pi,j=ωp·(g+1)pi,j+images/BZ_253_1872_2583_1891_2629.png1 ?ωp)·(g)pi,j by damping results to improve the convergence rate.

    Step-1.4 Compute error Err1 =■■■■■(g+1)ni,j ?gni,j gni,j■■■■■,Err2 =■■■■■(g+1)pi,j ?gpi,j gpi,j■■■■■ and Err =max(Err1,Err2).Update iteration counts g=g+1.Step-1.5 If Err>Err0 Update divergence counts d=d+1 and old error Err0=Err.Step-1.6 If d>1000 Update damping parameter ωn=ωn/2 and ωp=ωp/2 to improve the convergence ability,then reset divergence counts d=0.

    3.3 Special Case when α=1 and β=1

    Whenα= 1 andβ=1,the Fr-DD model becomes the conventional DD model which is universally employed in the modeling of crystalline semiconductors(e.g.,Si,Ge,etc.).In this case,through simple calculations and substitutions,it can be verified that Eqs.(40)and(49)degenerate into Eqs.(64)and(65),respectively.

    4 Consistency and Convergence Analysis

    The proposed discretization scheme is consistent if the truncation error terms can be made to vanish as the mesh and time step size is reduced to zero.First of all,the consistency of the finite center difference scheme applied to the Poisson equation can be easily proved[40].Furthermore,it can be inferred from Lemma 2.5 and Lemma 2.6 that the truncation error of the discretized carrier continuity equations in Eqs.(40)and(49)will vanish as the spatial and time step sizes shrink to zero.Nevertheless,Eq.(16)hints that an additional truncation error can be generated by composing Caputo’s fractional derivative terms in the current density with an integer-order gradient operator on the left side of the equation.To test the influence of this truncation error on the consistency of Eqs.(40)and(49),we propose Theorem 4.1,which gives the shrinking order of this truncation error with the spatial step sizes.

    5 Numerical Examples

    Example 5.1 is a benchmark problem constructed by the method of manufactured solutions[41].The ground truth is known with its solutions att=0.02ssketched in Fig.2.The ground truth is compared to the numerical solutions to evaluate the convergence order of our algorithms.The error in this example is calculated by a variant form of the Frobenius norm acting on the error matrix,Here,the spatial step sizes inxandydimensions are both given byΔx=1/(N+1),whereNis the number of internal grid points in one dimension.

    To verify the convergence order in time,we make the spatial step sizeΔxsmall enough,such asΔx= 0.01 in this case,to ensure that the spatial discretization error is much smaller than the time discretization error.With different temporal step sizesτ,the numerical errors and the CPU times can be obtained and are shown in Tabs.1 and 2,respectively.In Tab.1,we compare three different combinations ofαandβfor fixedβ=1,and it is observed that most of the numerical convergence orders in time lie within(1,2).This observation gives an estimate for the convergence order in time and shows its dependence on the time-derivative orderα.In Tab.2,we compare three different combinations ofαandβfor fixedα=1.With space-derivative orderβvarying,the convergence orders in time approach zero,implying the negligent effect ofβon the convergence order in time.The overall error of our discretization scheme is dominated by the approximation error of the Riemann–Liouville integral(See Eq.(48)),as the approximation error of the Riemann–Liouville integral is only determined by theβvalue and the spatial step sizeΔx.Therefore,as the temporal step sizeτshrinks the error in Tab.2 remains relatively unchanged.The overall error can be further decreased by reducing the spatial step sizeΔx,which is consistent with the trend observed in Tab.4.However,it should be mentioned that the approximation of the Riemann–Liouville integral will not limit the overall accuracy of the scheme in the case ofβ=1(See Tab.1)since we can analytically calculate the Riemann–Liouville integral whenβ=1.In addition,it can also be observed in Tabs.1 and 2 that the speed at which the CPU time increases is less than the speed at which the temporal step size shrinks suggesting that the computational error of the solver can be reduced to any pre-set magnitude at the cost of a relatively small increase in CPU time.

    Figure 2:The contour plots(top)and surface plots(bottom)of the electric potentials(left)and the electron concentrations(right)at t=0.02 s

    Table 1:The errors,numerical convergence orders in time and CPU times for different temporal step sizes τ with fixed spatial step size Δx=0.01 and fixed space-derivative order β=1

    Table 2:The errors,numerical convergence orders in time and CPU times for different temporal step sizes τ with fixed spatial step size Δx=0.01 and fixed time-derivative order α=1

    To check the spatial convergence order,we take a sufficiently small temporal step sizeτ=0.00001 to guarantee that the temporal discretization errors can be neglected compared with the spatial errors.Similar to Tabs.1 and 2,we record the errors and CPU times calculated under different spatial step sizes in Tabs.3 and 4.In Tab.3,the space-derivative orderβis fixed to 1 and then forms three different combinations withα.It is observed that the distribution of the spatial convergence order is not uniform inα,and the order decreases dramatically as the spatial step size decreases.In Tab.4,we set three different combinations ofαandβfor fixedα=1.It can be noted that the spatial convergence order is very close to 1 regardless of the change inβ,which reveals the linear dependency of the scheme error on the spatial step size whenβ<1.The CPU time under different spatial step sizes does not exhibit a specific growth trend as what we observed in Tabs.1 and 2.However,considering that the growth rate of the number of discrete spatial grids is the square of the reduction rate of the spatial step size,the CPU time still grows at a slower rate relative to the growth of the number of discrete spatial grids.According to these observations,we can infer that the solver precision can indeed be raised to a certain level at the expense of a relatively small increase in computational complexity(CPU time).

    Table 3:The errors,numerical spatial convergence orders and CPU times for different spatial step sizes Δx with fixed temporal step size τ=1e ?5 and fixed space-derivative order β=1

    Table 4:The errors,numerical spatial convergence orders and CPU times for different spatial step sizes Δx with fixed temporal step size τ=1e ?5 and fixed time-derivative order α=1

    Example 5.2Consider the following steady-state single-carrier transport problem in a 2D ptype organic field effect transistor(OFET).

    where the effective hole mobilityμpand diffusion coefficientDpare constants for homogeneous materials.The net generation-recombination rateGp≈0 since the generation and recombination activities are relatively unimportant in OFETs as a majority carrier device[33,37].The solution domain is defined in Fig.3,where the size of the organic semiconductor(OSC)layer is 500 μm×30 nm and the size of the dielectric layer is 500 μm×64 nm.The parameters for OFET simulation are presented in Tab.5,and the diffusion coefficient for OSC is determined by Einstein’s relationDp=VTμp.The geometric sizes and the material types of the OFET domain are the same as the OFET fabricated in[36]and the material parameters are taken from[42,43].The encapsulating layer(Parylene)in[36]is not considered in this numerical example in order to simplify boundary conditions.

    Figure 3:The solution domain of a 2D top-contact bottom-gate(TCBG)OFET device composed of a p-type organic semiconductor layer and a dielectric layer

    Table 5:The parameters for OFET simulation

    Figure 4:The simulated steady-state electric potentials and hole concentrations within the thinner solution domain for an OFET when space-derivative order β=1 and β=0.8,respectively

    Table 6:The parameters for solar cell simulation

    In Example 5.3,we let the spatial step size be 1e?8 m and the temporal step size be 1e?6 s.First,we fixβ=1 and setα=0.8,0.6 and 0.4 to solve for solutions att=1e?5 s.As shown in Fig.5a,the hole concentration in this setting displays a decaying trend with the decrease ofα,while the electric potential remains almost the same for differentα.The decay trend in hole concentration can be easily predicted since the hole concentration with smallerαwill reduce more within each step of time advancement(i.e.,Δp≈Cτα).For the second group of numerical experiments,we fixα=0.9 and setβ=1,0.8 and 0.6 to solve for solutions att=1e?5 s.It is found in Fig.5b that the decay rate for hole concentration reduces as the decrease ofβ,and this phenomenon can be ascribed to the more inactive diffusive motions of charge carriers under smallerβ.

    Figure 5:The simulated transient-state electric potentials and hole concentrations within the thinner solution domain for the solar cell when(a)space-derivative order β=1 fixed and α=0.8,0.6 and 0.4,respectively;(b)time-derivative order α=0.9 fixed and β=1,0.8 and 0.6,respectively

    6 Experimental Validation of the Fractional Drift-Diffusion OFET Model

    In Example 5.2,we simplify boundary conditions to better discuss the influence ofβvalues on the charge carriers’diffusive motions in the steady-state OFET.As an extension to Example 5.2,this section provides the experimental validation for the Fr-DD model.The fabrication and the experimental characterization of the OFET that we model was discussed in[36].As shown in Fig.6,compared to the simplified structure of the OFET in Example 5.2,the complete structure of the OFET is encapsulated in a polymer layer made of Parylene and all the metallic electrodes have a thickness of 30 nm.The material parameters are specified in Tab.5.In addition to the boundary conditions given in Example 5.2,we should also treat the encapsulating layer as a perfect insulator,where no charge carrier is transmitted,and the dielectric displacement should be continuous on its borders.

    Figure 6:The solution domain of a 2D top-contact bottom-gate(TCBG)OFET device composed of a p-type organic semiconductor layer,a dielectric layer and encapsulating layers(top and bottom)

    Consider that the length of the source electrodeLSand the drain electrodeLDare both 200 μm and the width of the OFET(out-of-plane dimension)Wis 1000 μm,the net current flowing through the drain electrode is evaluated by

    whereJyis the y-component of the continuous current density at the Au-DNTT interface,iDis the discrete grid index in the x-direction andjDis the discrete grid y index at the Au-DNTT interface.In our case,the spatial step sizesΔx=5 μm andΔy=1 nm,so we can fixjD=184 and calculate the summation overiD=1,...,40.The fractional Riemann-Liouville integralis then evaluated using Eq.(48).

    Theβvalue in the fractional drift diffusion OFET model depends on the spatial coordinates and electrode potentials,i.e.,β=B(x,y,Vgs,Vds).This inhomogeneity ofβfor different spatial coordinates and boundary conditions is caused by the irregular crystalline structure of OSCs and the electronic polarization under different boundary conditions[44,45].If we ignore the dependence ofβon spatial coordinates and only consider its dependence onVgsandVds,we can obtain the relationship curves forβ=B(Vgs,Vds)in Figs.7b and 8b by fitting the experimental data.

    Whenβis adjusted for a fixedVdsand varyingVgsaccording to Fig.7b,we can utilize Eq.(88)to calculate the drain currentIdsunder differentVgsand obtain the theoretical transconductance.In Fig.7a,it is found that the theoretical transconductance curve(solid black line)is in good agreement with the experimentally measured transconductance(red circles).Similarly,if we adjustβfor varyingVdsand four fixedVgsaccording to dependence curves in Fig.8b,we can notice that the theoretical output curves(black solid lines)can well fit with the experimentally characterized outputs(Symbol,i.e.,red circles,blue squares,etc.)as shown in Fig.8a.These results not only confirm the validity of the Fr-DD model for predicting the OFET characteristics,but also suggest the highly nonlinear dependence ofβvalue on the electrode potentialsVgsandVds.The relationship curves betweenβand electrode potentials can be constructed very quickly by writing a simple optimization subroutine to minimize the error between the experimental data and the theoretical predictions.Due to the flexibility of adjustingβ,the Fr-DD model avoids considering the involuted trap states in OSCs,thus greatly improving the modeling efficiency of OSC devices compared with the conventional OFET analytic models involving the trap or impurity states.

    Figure 7:(a)The experimentally measured transconductance at a fixed Vds=?5 V compared with the fitted theoretical transconductance curve obtained from the fractional drift diffusion model;(b)The adjusted β values at different Vgs and a fixed Vds=?5 V

    Figure 8:(a)The experimentally measured output curve at a series of fixed Vgs = ?5~?2 V compared with the fitted theoretical output curve obtained from the fractional drift diffusion model;(b)The adjusted β values at different Vds and a series of fixed Vgs=?5~?2 V

    7 Conclusion

    This work aimed to develop a Fr-DD model solver for simulating the anomalous dynamics of OSC devices.Two algorithms based on a novel discretization scheme and successively overrelaxed Gummel’s iteration are proposed here to solve the transient and steady-state Fr-DD model equations.This study has identified the consistency of the two algorithms by showing that the truncation error from the discretized divergence of current density functions will vanish with the spatial step size to a positive fractional order of 1 ?β.The convergence analysis reveals that the Gummel mapping is a contraction mapping if we consider the successive over-relaxation mechanism in the Gummel’s iteration,which thus completes the proof of convergence.Three numerical examples,including one benchmark example and two others constructed from the perspective of engineering applications are employed to demonstrate the algorithms’accuracy and computational performance.It is found in the first example that alteringαandβcan impact the spatial convergence order but only varyingαwill affect the convergence order in time.The increase rate of CPU time is less than the shrinking rate of temporal step size and lower than the growth rate of spatial grid points.These findings suggest that our solver has high precision and fast computational speed as it limits the computational error to a predefined satisfactory level(from ~10?4to ~10?6)at a relatively small expense of CPU time(from ~20 s to ~100 s).The results reported in two numerical examples reveal the prediction and characterization of the transient-state and steady-state dynamics for any type of organic semiconductor device.Finally,we provide experimental verification for the fractional drift diffusion model of a DNTT-OFET.We stipulate that this is the first to date exploration of the Fr-DD model solver laying the groundwork for future research into fractional drift diffusion modeling of flexible organic electronics.

    Funding Statement:This work was supported in part by the National Science Foundation through Grant CNS-1726865 and by the USDA under Grant 2019-67021-28990.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    精品不卡国产一区二区三区| av视频免费观看在线观看| 我的亚洲天堂| 国产高清激情床上av| 国产真人三级小视频在线观看| 一区二区三区高清视频在线| 欧美日韩黄片免| 午夜两性在线视频| 亚洲欧美激情在线| 悠悠久久av| 国产精品综合久久久久久久免费 | 色综合婷婷激情| 男人操女人黄网站| 日韩欧美国产在线观看| 9热在线视频观看99| 18禁观看日本| 久久久久久大精品| 99香蕉大伊视频| 成人18禁高潮啪啪吃奶动态图| 美女国产高潮福利片在线看| 久久亚洲精品不卡| av视频在线观看入口| 性少妇av在线| 日韩国内少妇激情av| 久久久久亚洲av毛片大全| 亚洲av成人av| 操出白浆在线播放| 国产99久久九九免费精品| 欧美成人午夜精品| 男女床上黄色一级片免费看| 久9热在线精品视频| 伦理电影免费视频| 亚洲三区欧美一区| 老汉色av国产亚洲站长工具| 操出白浆在线播放| 女人爽到高潮嗷嗷叫在线视频| 亚洲专区中文字幕在线| 国产精品精品国产色婷婷| 国产精品秋霞免费鲁丝片| 免费观看精品视频网站| 18禁观看日本| 香蕉丝袜av| 女人精品久久久久毛片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲伊人色综图| 天堂√8在线中文| 嫁个100分男人电影在线观看| 欧美中文综合在线视频| 一级黄色大片毛片| 人人妻人人爽人人添夜夜欢视频| 99在线视频只有这里精品首页| 亚洲天堂国产精品一区在线| 欧美精品亚洲一区二区| 亚洲精品久久成人aⅴ小说| 久久精品国产亚洲av高清一级| 少妇的丰满在线观看| 在线国产一区二区在线| 男女午夜视频在线观看| 国产av精品麻豆| 国产精品美女特级片免费视频播放器 | 成人永久免费在线观看视频| 一级a爱片免费观看的视频| 欧美日韩亚洲综合一区二区三区_| 国产国语露脸激情在线看| 两个人看的免费小视频| 在线观看免费视频日本深夜| 丰满的人妻完整版| 色播亚洲综合网| 国产区一区二久久| 欧美激情久久久久久爽电影 | 国产亚洲欧美98| 国产成人免费无遮挡视频| 黄色 视频免费看| 亚洲片人在线观看| 男女下面插进去视频免费观看| 狂野欧美激情性xxxx| 亚洲 欧美一区二区三区| 黄网站色视频无遮挡免费观看| 国产一卡二卡三卡精品| 18禁裸乳无遮挡免费网站照片 | 亚洲精品国产色婷婷电影| 可以在线观看毛片的网站| 国产欧美日韩综合在线一区二区| 日韩欧美免费精品| 欧美在线一区亚洲| 国产av又大| 午夜精品久久久久久毛片777| 欧美乱妇无乱码| 精品久久久久久久毛片微露脸| 露出奶头的视频| av在线播放免费不卡| 动漫黄色视频在线观看| √禁漫天堂资源中文www| 老司机午夜十八禁免费视频| 亚洲精品久久国产高清桃花| 给我免费播放毛片高清在线观看| 黄色女人牲交| 99re在线观看精品视频| 成人国产一区最新在线观看| 亚洲一区二区三区色噜噜| 欧美精品啪啪一区二区三区| 久久久久国产精品人妻aⅴ院| 亚洲无线在线观看| 叶爱在线成人免费视频播放| 色综合欧美亚洲国产小说| 国产99久久九九免费精品| 亚洲一区中文字幕在线| 一a级毛片在线观看| 色精品久久人妻99蜜桃| 人人澡人人妻人| 亚洲一区二区三区色噜噜| 19禁男女啪啪无遮挡网站| 久9热在线精品视频| 黄色毛片三级朝国网站| 亚洲成人精品中文字幕电影| 一夜夜www| 久久精品国产99精品国产亚洲性色 | 老司机深夜福利视频在线观看| 日韩精品青青久久久久久| 久久久精品欧美日韩精品| 国产麻豆69| 国产熟女xx| 乱人伦中国视频| 亚洲av电影在线进入| 国产亚洲欧美98| 久久久久国产精品人妻aⅴ院| 国产av一区二区精品久久| 青草久久国产| 国产伦一二天堂av在线观看| 18禁国产床啪视频网站| 一本久久中文字幕| 色播在线永久视频| 精品人妻在线不人妻| 亚洲黑人精品在线| 午夜免费鲁丝| 好男人电影高清在线观看| 国产av精品麻豆| 亚洲精品国产一区二区精华液| 成年版毛片免费区| 18禁国产床啪视频网站| 国产成人一区二区三区免费视频网站| 欧美绝顶高潮抽搐喷水| 亚洲片人在线观看| 69精品国产乱码久久久| 99国产精品99久久久久| 亚洲精品在线观看二区| а√天堂www在线а√下载| 午夜久久久在线观看| 侵犯人妻中文字幕一二三四区| 一级毛片高清免费大全| 色在线成人网| 香蕉国产在线看| 久久影院123| 女人被躁到高潮嗷嗷叫费观| 久久中文字幕一级| 精品欧美一区二区三区在线| 中文亚洲av片在线观看爽| 国产一区二区三区综合在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲最大成人中文| 日韩精品免费视频一区二区三区| 国产熟女午夜一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 一a级毛片在线观看| 51午夜福利影视在线观看| 精品日产1卡2卡| 亚洲自偷自拍图片 自拍| av欧美777| av超薄肉色丝袜交足视频| 欧美大码av| 黄色 视频免费看| 国产欧美日韩精品亚洲av| 国产精品美女特级片免费视频播放器 | 日本 av在线| 老鸭窝网址在线观看| 精品第一国产精品| 12—13女人毛片做爰片一| 国产精品精品国产色婷婷| 国产亚洲欧美精品永久| 麻豆久久精品国产亚洲av| 亚洲人成77777在线视频| 久久精品国产99精品国产亚洲性色 | 日本五十路高清| 久久精品国产亚洲av高清一级| 午夜成年电影在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 国内毛片毛片毛片毛片毛片| 日韩欧美在线二视频| 久久精品91蜜桃| 国产精品九九99| 老司机午夜十八禁免费视频| 亚洲国产高清在线一区二区三 | 久久久国产精品麻豆| 十分钟在线观看高清视频www| 国产精品98久久久久久宅男小说| 99在线人妻在线中文字幕| aaaaa片日本免费| 亚洲最大成人中文| 黄片小视频在线播放| 在线观看免费午夜福利视频| www日本在线高清视频| 美女午夜性视频免费| 免费搜索国产男女视频| 韩国av一区二区三区四区| 国产主播在线观看一区二区| x7x7x7水蜜桃| 久久国产精品影院| 成人免费观看视频高清| 国产aⅴ精品一区二区三区波| 91字幕亚洲| 亚洲狠狠婷婷综合久久图片| 最新美女视频免费是黄的| 午夜福利高清视频| 亚洲一码二码三码区别大吗| 国产成人免费无遮挡视频| av欧美777| 午夜精品久久久久久毛片777| 国产精品乱码一区二三区的特点 | 亚洲一区二区三区不卡视频| 欧美黄色片欧美黄色片| 国产麻豆69| 国产精品一区二区精品视频观看| 久久精品影院6| 美女 人体艺术 gogo| 老熟妇乱子伦视频在线观看| 成人免费观看视频高清| www.精华液| 亚洲精品中文字幕在线视频| 亚洲av熟女| 成人18禁在线播放| 91字幕亚洲| 啪啪无遮挡十八禁网站| 精品久久久久久久人妻蜜臀av | 热99re8久久精品国产| 国产精品 欧美亚洲| 女性被躁到高潮视频| 国产免费av片在线观看野外av| 桃红色精品国产亚洲av| 国产成+人综合+亚洲专区| 宅男免费午夜| 亚洲第一欧美日韩一区二区三区| 日韩欧美国产一区二区入口| 人妻久久中文字幕网| 曰老女人黄片| av在线天堂中文字幕| 久久午夜综合久久蜜桃| 国产一区在线观看成人免费| 精品国产一区二区久久| 999精品在线视频| 欧美激情高清一区二区三区| 精品欧美一区二区三区在线| 看黄色毛片网站| 欧美日本视频| 在线观看www视频免费| 黄片小视频在线播放| 久久久国产成人免费| 国产1区2区3区精品| 日韩成人在线观看一区二区三区| 亚洲精品中文字幕一二三四区| 久久人妻av系列| 丝袜在线中文字幕| 19禁男女啪啪无遮挡网站| 久9热在线精品视频| 国产在线精品亚洲第一网站| 18禁观看日本| 视频区欧美日本亚洲| 69精品国产乱码久久久| 国产99久久九九免费精品| 国产野战对白在线观看| 日韩av在线大香蕉| av天堂久久9| 女同久久另类99精品国产91| 国产蜜桃级精品一区二区三区| 一a级毛片在线观看| 搡老妇女老女人老熟妇| 欧美色欧美亚洲另类二区 | 国产不卡一卡二| а√天堂www在线а√下载| 老司机午夜福利在线观看视频| 真人做人爱边吃奶动态| 99久久久亚洲精品蜜臀av| 在线视频色国产色| 变态另类丝袜制服| 这个男人来自地球电影免费观看| 成人亚洲精品av一区二区| 中文字幕精品免费在线观看视频| 久久欧美精品欧美久久欧美| 欧美日韩中文字幕国产精品一区二区三区 | 精品第一国产精品| 午夜a级毛片| 一区在线观看完整版| 777久久人妻少妇嫩草av网站| 久久久久久大精品| 啦啦啦观看免费观看视频高清 | xxx96com| 国产xxxxx性猛交| av福利片在线| 久久婷婷成人综合色麻豆| 久久久久久久精品吃奶| 香蕉久久夜色| 午夜福利免费观看在线| 久久人人爽av亚洲精品天堂| 国产精品久久久人人做人人爽| 午夜老司机福利片| 99久久久亚洲精品蜜臀av| 免费看十八禁软件| 99国产精品一区二区三区| 国产三级黄色录像| 日韩大尺度精品在线看网址 | 国产在线精品亚洲第一网站| 男人舔女人下体高潮全视频| 99香蕉大伊视频| 日本黄色视频三级网站网址| 最近最新中文字幕大全免费视频| 无限看片的www在线观看| 亚洲精品美女久久久久99蜜臀| 国产精品久久电影中文字幕| 在线视频色国产色| 人人妻人人澡人人看| 91九色精品人成在线观看| 午夜福利一区二区在线看| 亚洲成av人片免费观看| 国产欧美日韩综合在线一区二区| av有码第一页| 视频在线观看一区二区三区| 黄色毛片三级朝国网站| 午夜a级毛片| 午夜精品久久久久久毛片777| 亚洲国产日韩欧美精品在线观看 | 亚洲av电影不卡..在线观看| 亚洲成人免费电影在线观看| 日本a在线网址| 黄片播放在线免费| 亚洲av成人不卡在线观看播放网| 日韩大码丰满熟妇| 黄片播放在线免费| 国产精品香港三级国产av潘金莲| 亚洲人成电影免费在线| 亚洲最大成人中文| 人人妻人人爽人人添夜夜欢视频| 可以免费在线观看a视频的电影网站| 亚洲精品在线美女| 性色av乱码一区二区三区2| 亚洲欧洲精品一区二区精品久久久| 男人舔女人的私密视频| av网站免费在线观看视频| 丝袜美足系列| 91麻豆精品激情在线观看国产| 男人的好看免费观看在线视频 | 亚洲熟妇中文字幕五十中出| 一级作爱视频免费观看| 精品久久久精品久久久| 国产一卡二卡三卡精品| 一夜夜www| 国产人伦9x9x在线观看| 每晚都被弄得嗷嗷叫到高潮| 精品国产乱码久久久久久男人| 国产在线精品亚洲第一网站| 亚洲国产精品999在线| 久久久国产成人免费| 亚洲午夜理论影院| 亚洲视频免费观看视频| 国产熟女午夜一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 国产精品一区二区在线不卡| 精品一区二区三区视频在线观看免费| 香蕉丝袜av| 国产片内射在线| 亚洲专区中文字幕在线| 啪啪无遮挡十八禁网站| 国产成人免费无遮挡视频| 亚洲国产毛片av蜜桃av| 好男人在线观看高清免费视频 | 欧美日韩福利视频一区二区| 久久热在线av| 精品电影一区二区在线| 国产精品自产拍在线观看55亚洲| 热99re8久久精品国产| 亚洲欧美日韩另类电影网站| 国产三级黄色录像| 欧美另类亚洲清纯唯美| 精品福利观看| 在线永久观看黄色视频| 日韩有码中文字幕| 丝袜美足系列| av欧美777| 老鸭窝网址在线观看| 亚洲精品av麻豆狂野| 少妇被粗大的猛进出69影院| 99精品久久久久人妻精品| 国产熟女xx| avwww免费| 欧美成狂野欧美在线观看| 欧美日本视频| 精品国产一区二区三区四区第35| 国产成人影院久久av| 亚洲精品av麻豆狂野| 美女大奶头视频| 18禁黄网站禁片午夜丰满| 老司机深夜福利视频在线观看| 人人妻人人爽人人添夜夜欢视频| 桃色一区二区三区在线观看| 久久欧美精品欧美久久欧美| 国产单亲对白刺激| 美女大奶头视频| 国产单亲对白刺激| 两个人免费观看高清视频| 国产激情久久老熟女| 国产av一区二区精品久久| av天堂久久9| 欧美午夜高清在线| 黄色丝袜av网址大全| 久久亚洲精品不卡| 亚洲天堂国产精品一区在线| 午夜福利,免费看| 50天的宝宝边吃奶边哭怎么回事| 亚洲久久久国产精品| 我的亚洲天堂| 国产欧美日韩精品亚洲av| 99国产精品99久久久久| 久久久水蜜桃国产精品网| 久久影院123| 亚洲,欧美精品.| 国产精品一区二区免费欧美| 国产精品日韩av在线免费观看 | 亚洲中文av在线| 啦啦啦韩国在线观看视频| 变态另类丝袜制服| 色综合婷婷激情| 久久中文字幕一级| 在线观看舔阴道视频| 成人免费观看视频高清| 免费在线观看视频国产中文字幕亚洲| 亚洲av熟女| 日韩国内少妇激情av| 久久久久久久久久久久大奶| 激情视频va一区二区三区| 亚洲五月天丁香| 欧美成人午夜精品| 男人操女人黄网站| 国产男靠女视频免费网站| 精品欧美一区二区三区在线| 午夜福利一区二区在线看| av天堂久久9| 久久精品影院6| 精品卡一卡二卡四卡免费| 国产精品二区激情视频| 成人精品一区二区免费| 精品免费久久久久久久清纯| 又紧又爽又黄一区二区| 在线观看免费日韩欧美大片| 亚洲专区中文字幕在线| 极品人妻少妇av视频| 婷婷精品国产亚洲av在线| 中出人妻视频一区二区| 午夜a级毛片| 两个人看的免费小视频| 亚洲第一青青草原| 可以在线观看毛片的网站| 成人亚洲精品一区在线观看| 欧美性长视频在线观看| 男女之事视频高清在线观看| 侵犯人妻中文字幕一二三四区| 久久性视频一级片| 黄色 视频免费看| 国内精品久久久久久久电影| 久久狼人影院| 欧美大码av| 老汉色av国产亚洲站长工具| 中文字幕精品免费在线观看视频| 大型av网站在线播放| 少妇 在线观看| tocl精华| www.自偷自拍.com| 日韩有码中文字幕| 国产一区在线观看成人免费| 欧美另类亚洲清纯唯美| 亚洲精品美女久久久久99蜜臀| 国产成人av激情在线播放| 琪琪午夜伦伦电影理论片6080| 国产亚洲精品综合一区在线观看 | 精品乱码久久久久久99久播| 久久久久久久久中文| 淫秽高清视频在线观看| 精品福利观看| 久久久久九九精品影院| 国产欧美日韩一区二区三区在线| 美女 人体艺术 gogo| 亚洲精品一区av在线观看| 国产亚洲欧美精品永久| 十八禁网站免费在线| 午夜日韩欧美国产| 欧美成人性av电影在线观看| 一级a爱视频在线免费观看| 99香蕉大伊视频| 亚洲国产毛片av蜜桃av| 日本三级黄在线观看| 88av欧美| 午夜福利影视在线免费观看| 一本久久中文字幕| 亚洲成人久久性| 99久久精品国产亚洲精品| 久久狼人影院| 伦理电影免费视频| 亚洲av电影在线进入| 国产免费男女视频| 午夜亚洲福利在线播放| 国产视频一区二区在线看| 亚洲色图 男人天堂 中文字幕| 神马国产精品三级电影在线观看 | 国产区一区二久久| 无遮挡黄片免费观看| 午夜久久久在线观看| 长腿黑丝高跟| 日韩国内少妇激情av| 中国美女看黄片| 亚洲中文字幕一区二区三区有码在线看 | 亚洲午夜理论影院| a级毛片在线看网站| 亚洲专区中文字幕在线| 国产精品久久电影中文字幕| 欧美激情极品国产一区二区三区| 亚洲一区中文字幕在线| 午夜精品在线福利| 亚洲自拍偷在线| av天堂久久9| 亚洲人成77777在线视频| 美女国产高潮福利片在线看| 日韩有码中文字幕| av欧美777| 黑人欧美特级aaaaaa片| 欧美日韩乱码在线| 国产午夜福利久久久久久| 女人被狂操c到高潮| 亚洲,欧美精品.| 搡老熟女国产l中国老女人| 欧美在线一区亚洲| 国产视频一区二区在线看| 日韩国内少妇激情av| 成年人黄色毛片网站| 亚洲国产毛片av蜜桃av| 怎么达到女性高潮| 女性生殖器流出的白浆| 一级a爱视频在线免费观看| 波多野结衣一区麻豆| 美女免费视频网站| 最近最新中文字幕大全电影3 | 少妇裸体淫交视频免费看高清 | 国产麻豆69| 国产免费av片在线观看野外av| 男男h啪啪无遮挡| 久久精品91无色码中文字幕| 亚洲精品国产区一区二| 国产单亲对白刺激| 亚洲久久久国产精品| 天天一区二区日本电影三级 | 老司机靠b影院| 国产单亲对白刺激| 欧美日本中文国产一区发布| 老司机深夜福利视频在线观看| 欧美成狂野欧美在线观看| 免费少妇av软件| 亚洲色图综合在线观看| 日本免费a在线| 国产午夜福利久久久久久| 久久久久久亚洲精品国产蜜桃av| 国产欧美日韩一区二区三| 精品卡一卡二卡四卡免费| 一本久久中文字幕| 成人av一区二区三区在线看| 午夜成年电影在线免费观看| 一个人免费在线观看的高清视频| 黄色成人免费大全| 国产区一区二久久| 中文字幕人妻丝袜一区二区| 超碰成人久久| 欧美色视频一区免费| 亚洲国产精品999在线| 免费在线观看日本一区| 成在线人永久免费视频| 亚洲中文字幕一区二区三区有码在线看 | 一本综合久久免费| 99国产精品一区二区蜜桃av| 老熟妇仑乱视频hdxx| 精品日产1卡2卡| 视频区欧美日本亚洲| 女性被躁到高潮视频| 国产成人av教育| 天天躁狠狠躁夜夜躁狠狠躁| 人妻丰满熟妇av一区二区三区| 精品久久久久久久毛片微露脸| 日韩中文字幕欧美一区二区| 可以免费在线观看a视频的电影网站| 天堂√8在线中文| 国产精品乱码一区二三区的特点 | 午夜福利欧美成人| 成人欧美大片| a级毛片在线看网站| 国产三级在线视频| 脱女人内裤的视频| 满18在线观看网站| 亚洲全国av大片| 国产av一区在线观看免费| 久久久久久久午夜电影| 一本大道久久a久久精品| 一区在线观看完整版| 国产xxxxx性猛交| 在线国产一区二区在线| 一级片免费观看大全| 婷婷精品国产亚洲av在线| 黄色a级毛片大全视频| 露出奶头的视频| 欧美日韩黄片免| 日韩欧美在线二视频| 成人亚洲精品一区在线观看|