• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Scattered Data Interpolation Using Cubic Trigonometric Bézier Triangular Patch

    2021-12-10 11:53:38IshakHashimNurNabilahCheDramanSamsulAriffinAbdulKarimWeePingYeoandDumitruBaleanu
    Computers Materials&Continua 2021年10期

    Ishak Hashim,Nur Nabilah Che Draman,Samsul Ariffin Abdul Karim,Wee Ping Yeo and Dumitru Baleanu

    1Department of Mathematical Sciences,Faculty of Science and Technology,Universiti Kebangsaan Malaysia,UKM,Bangi,43600,Selangor Darul Ehsan,Malaysia

    2Department of Fundamental and Applied Sciences,Universiti Teknologi PETRONAS,Seri Iskandar,32610,Perak Darul Ridzuan,Malaysia

    3Department of Fundamental and Applied Sciences and Centre for Systems Engineering(CSE),Institute of Autonoumous System Universiti Teknologi PETRONAS,Seri Iskandar,32610,Perak Darul Ridzuan,Malaysia

    4Faculty of Science,Universiti Brunei Darussalam,Bandar Seri Begawan,BE1410,Brunei Darussalam

    5Department of Mathematics,Cankaya University,Ankara,Turkey

    6Institute of Space Sciences,Magurele-Bucharest,Romania

    7Department of Medical Research,China Medical University Hospital,China Medical University,Taichung,Taiwan

    Abstract:This paper discusses scattered data interpolation using cubic trigonometric Bézier triangular patches with C1 continuity everywhere.We derive the C1 condition on each adjacent triangle.On each triangular patch,we employ convex combination method between three local schemes.The final interpolant with the rational corrected scheme is suitable for regular and irregular scattered data sets.We tested the proposed scheme with 36,65,and 100 data points for some well-known test functions.The scheme is also applied to interpolate the data for the electric potential.We compared the performance between our proposed method and existing scattered data interpolation schemes such as Powell–Sabin(PS)and Clough–Tocher(CT)by measuring the maximumerror,root mean square error(RMSE)and coefficient of determination(R2).From the results obtained,our proposed method is competent with cubic Bézier,cubic Ball,PS and CT triangles splitting schemes to interpolate scattered data surface.This is very significant since PS and CT requires that each triangle be splitting into several micro triangles.

    Keywords:Cubic trigonometric;Bézier triangular patches; C1sufficient condition;scattered data interpolation

    1 Introduction

    This paper investigates scattered data interpolation using trigonometric Bézier triangular patch that has been proposed by Zhu et al.[1].Scattered data interpolation is about the construction of a smooth surface for non-uniform set of data.It can be prescribed by a given a set of scatteredover a polygon domain and a corresponding set of real numbersBesides that,scattered data interpolation is very vital in many areas such as engineering fields,predicting rainfall and other data that needed to be measured or generated at irregular positions.

    In a previous study,Saaban et al.[2]performed scattered data interpolation by using minimized sum of squares of principal curvatures.In additions,this scheme also uses geometric continuity which isG1continuity between adjacent triangular patches to reconstruct surfaces.They applied the proposed scheme to some functions and to some real data such as soil erosion.

    Butt et al.[3]proposed a scheme which exhibits the shape preserving properties by positivity,monotonicity and convexity 2D data by inserting more knots in the interval.The positivity of regular data arranged over a rectangular grid was discussed.Hussain et al.[4]proposedC1continuity scattered data interpolation by preserving the positivity property.This scheme is modified by adding weights to the functions if the Bézier ordinates do not satisfy the derived positivity conditions.

    Han[5]proposed cubic trigonometric polynomial curves with shape parameter where the order of continuity is dependent upon the knot vector(uniform or non-uniform)and the value of shape parameters.This scheme shows that the proposed scheme is closer to the control polygon than the corresponding B-spline curves.Besides that,the degree of the cubic trigonometric polynomial curves can be reduced to quadratic trigonometric polynomial curves which represent the ellipse.

    Butt[6]preserved the shape of positive data by deriving sufficient conditions for the first partial derivatives and twist values by using a piecewise bi-cubic interpolant.Lamberti et al.[7]also proposed a method for the construction of C2interpolating function.This scheme preserved the shape of curve via tension parameters.The calculation for approximation order and numerical examples is shown.

    Floater[8,9]proposed another shape preserving property which is the convexity where[8]shows derivation of sufficient conditions convexity of tensor-product Bézier surfaces.The conditions focused on C1tensor product B-spline surfaces.Unfortunately,the sufficient conditions in the form of inequalities which involved control points.Floater also defined convexity and rational convexity preservation of systems of functions.It is proven that the total positivity and rational convexity preservation are equivalent.Ali et al.[10]have constructed a new cubic Timmer triangular patch and applied it for scattered data interpolation.Based on the numerical results,their proposed scheme is better than the existing schemes in term of higher R2and smaller SMSE and maximum error,however,their scheme took longer computational time to generate the results.Meanwhile Draman et al.[11]have constructed scattered data interpolation scheme by using rational quartic spline with three parameters.Karim et al.[12]have constructed new cubic Bézier-Like triangular patches with three parameters for scattered data interpolation.From numerical results,their proposed scheme is better than Radial basis functions(RBFs)scheme such as thin plate spline,gaussian etc.

    The aim of this paper is to apply scattered data interpolation with trigonometric function which is cubic trigonometric Bézier.To our knowledge,this is the first study that applies trigonometric Bézier triangular for scattered data interpolation.We summarize the main advantages of the proposed scheme as follows:

    (a)The proposed scattered data interpolation uses cubic trigonometric Bézier with three parameters meanwhile Ali et al.[10],Draman et al.[11]and Karim et al.[12]have used different types of rational interpolants.

    (b)Our scheme only needs to triangulate the data one time.Meanwhile,Powell–Sabin(PS)and Clough–Tocher(CT)schemes needed to split the macro triangles into several micro triangles for each triangle.This will increase computation time to construct the final interpolating surface.

    This paper is organized as follows:Section 2 discusses trigonometric Bézier triangular patches with three shape parameters.Section 3 states the properties of cubic trigonometric Bézier.Section 4 discusses the scattered data interpolation.Section 5 presents the numerical results including comparison with existing schemes.Conclusion and future work are given in Section 6.

    2 Trigonometric Bézier Triangular Patch with Three Shape Parameters

    Trigonometric Bézier triangular patches is constructed by Zhu et al.[1].The trigonometric Bézier triangular patches are defined as follows:

    Definition 1.Let α,β,γ∈[2,+∞),given control points Pijk∈R3(i,j,k∈N,i+j+k=3),and a domain triangle D={(u,v,w)|u+v+w=π/2,u≥0,v≥0,w≥0}in which(u,v,w)are barycentric coordinates of the points in D.We call

    the trigonometric Bézier-Like patch over triangular domain with three exponential shape parameters α,β,γ.

    Noted that,Ti,j,kis the basis function that stated in Definition 2

    Definition 2.Let α,β,γ∈[2,+∞)for D={(u,v,w)|u+v+w=π/2,u≥0,v≥0,w≥0}the following ten functions are defined as trigonometric Bézier Triangular patches.

    Properties of Cubic Trigonometric Bézier Triangular Patches

    From the definition of the basis function of trigonometric triangular patches,the list below is important properties of the basis[1].

    (a)Affine invariance and convex hull.The basis function have the properties of partition of unity and nonnegativity,so its simply corresponding that cubic trigonometric Bézier has

    (b)Geometric property at the corner points.Direct computation such asR(π/2,v,w)=P3,0,0R(u,π/2,w)=P0,3,0R(u,v,π/2)=P3,0,0corner.

    (c)Corner points tangent plane.

    (d)Boundary property.

    (e)Shape adjustable property.

    3 Scattered Data Interpolation

    In this section,we will discuss the constrution of a smooth surface for given a set of scattered dataV=(xi,yi,zi),i=1,2,...,Nwith corresponding a set of real numberszi=F(xi,yi),i=1,2,...,N.We wish to reconstruct a surface which hasC1continuity everywhere.Throughout this section,we have adopted the main ideas from[11–15].

    Local scheme

    This scheme comprises of the convex combination of three local schemesP1,P2andP3and is defined as

    or

    where the local schemeP1,P2,P3is derived and replaces the inner ordinates in the proposed method as show in Fig.1.

    For inner ordinates,we have employed the cubic precision that was proposed by Foley et al.[15]while Goodman et al.[14]methods are used to calculate the boundary ordinates for each triangle.The verticesV1,V2andV3with barycentric coordinates(1,0,0),(0,1,0)and(0,0,1)respectively meanwhilee1,e2ande3are direction vectors which are(0,?1,1),(1,0,1)and(?1,1,0)respectively.

    Figure 1:Directional derivatives

    Let the directional derivatives alonge3ande2atV1be

    Then,applying directional derivative into(3),yields

    From(5)until(8),we get

    Other directional derivatives alonge1,e3atV2ande1,e2atV3are given as follows:

    Now,we need to calculate the inner ordinates for each triangle.In order to calculate inner ordinatesbk111,k=1,2,3,we have adopted Foley et al.[15]to achieve cubic precision.Since the proposed scheme is cubic degree,then cubic precision will produce surface up to degree three[15].

    The inner ordinateb1111is given as[11]

    The remaining inner ordinates are obtained by symmetry[11].

    Now,we establish the algorithm that can be used for surface reconstruction using the proposed scheme.

    Algorithm 1:Reconstruction of surface for scattered data interpolation 1)Input data points 2)Triangulate the data sites using Delaunay triangulation method.3)Derivation C1 continuity for scattered data interpolation.4)Generate the surfaces using cubic trigonometric triangular patches 5)Compute the error–maximum error,RMSE and R2 6)Compare the performances with two existing method–cubic Ball and cubic Bézier.7)Repeat 1 until 6 using different test function.

    4 Results and Discussion

    In this subsection,we discuss the performance of our proposed method by measuring 36,65 and 100 data points.Besides that,we also compare the maximum error,root mean square error(RMSE)and coefficient determination(R2).All numerical simulations are done by using MATLAB version 2019 installed on Intel? CORE?i5-2410M CPU@2.30 GHz.Four tested functions are chosen by sampling the points to 36,65 and 100.

    ?Franke’s exponential function.

    H(x,y)=H1(x,y)+H2(x,y)

    where

    ?Saddle function

    Figure 2:Delaunay triangulations.(a)Delaunay triangulation:36 data points.(b)Delaunay triangulation:65 data points.(c)Delaunay triangulation:100 data points

    ?Gentle function

    Fig.2 shows Delaunay Triangulation of 36,65 and 100 data points with domain of[0,1]×[0,1].Fig.3 until Fig.4 shows surface interpolation for 36 and 65 data points.

    Figure 3:Surface interpolation for 36 data points.(a) H(x,y)(b) P(x,y)(c) R(x,y)(d) F(x,y)

    Tabs.1–3 shows numerical result for error measurement for 36,65 and 100 data points.

    Figure 4:Surface interpolation for 65 data points.(a) H(x,y)(b) P(x,y)(c) R(x,y)(d) F(x,y)

    Tabs.1–3 show numerical results for 36,65 and 100 data points.We can see in Tabs.1–3,the proposed scheme is on par with two established schemes i.e.,Goodman et al.[14]and Karim et al.[16].

    Now,we compare the performance between the proposed scattered data interpolation scheme against two well-known scattered data interpolation methods i.e.,C1Cubic Clough–Tocher(CT)andC1quadratic Powell–Sabin(PS)schemes(Schumaker[17,18]).Tabs.4 and 5 summarize all results.Overall,the proposed scheme is also on par with PS and CT schemes.However,in term of RMSE,both PS and CT are better than the proposed scheme.This is understandable since,both PS and CT have refining the macro triangles into many macro triangles.This will reduce the interpolation error but at a cost,CPU time will be increased.All schemes are equivalent good in term of R2.Figs.5,6 show the PS and CT splitting schemes.PS schemes tend to produce not smooth surfaces around the corner compared with the proposed scattered data interpolation scheme.

    Algorithm using C1 2:(Two Stage Method[17])Reconstruction of surface for scattered data interpolationquadratic Powell–Sabin interpolant and C1 cubic Clough–Tocher interpolant?Input data points?Data are triangulated using Delaunay triangulation method.?Estimate the gradients at the vertices of the triangulation from the scattered data for PS and CT Schemes.?Compute the interpolants and generate the surfaces?Calculate the error–maximum error,RMSE and R2?Repeat 1 until 6 using different test function.

    Table 1:Error measurement for 36 data points

    Our final example in this study is to apply the proposed scheme to visualize real scattered data obtained from Ali et al.[19]and Gilat[20].The electric potential V around a charged particle is given by:

    Table 2:Error measurement for 65 data points

    Table 3:Error measurement for 100 data points

    Table 4:Errors using PS and CT schemes

    Table 5:R2 values for PS and CT

    Figure 5:Powell–Sabin split

    Figure 6:Clough–Tocher split

    Figure 7:Delaunay triangulation

    Figure 8:Surface interpolation

    5 Conclusion

    This paper discusses scattered data interpolation by using cubic trigonometric Bézier triangular patches initiated by Zhu et al.[1].Sufficient condition for C1continuity on each adjacent triangle is developed by using cubic precision method.An efficient algorithm is presented.We test the proposed scheme by using four well-known tested functions.We compare the performance against some established schemes such as Goodman et al.[14],Karim et al.[16]and Powell–Sabin(PS)and Clough–Tocher(CT)split schemes.From error analysis,we found that the proposed scheme is on par and for all data sets,we achieve higher R2values.Finally,we test the proposed scheme to interpolate real scattered data set.For future research,we can apply the proposed scheme for shape preserving interpolation such as positivity and convexity.The proposed scheme also can be applied for constrained surface modeling above,below or between two planes as discussed in Karim et al.[21].

    Funding Statement:This research was fully supported by Universiti Teknologi PETRONAS(UTP)and Ministry of Education,Malaysia through research grantFRGS/1/2018/STG06/UTP/03/1/015 MA0-020(New rational quartic spline interpolation for image refinement)and UTP through a research grantYUTP:0153AA-H24(Spline Triangulation for Spatial Interpolation of Geophysical Data).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    免费一级毛片在线播放高清视频| 丰满人妻一区二区三区视频av| 欧美黑人欧美精品刺激| 91久久精品国产一区二区成人| 国产中年淑女户外野战色| 久久精品国产鲁丝片午夜精品 | 永久网站在线| 免费不卡的大黄色大毛片视频在线观看 | 少妇人妻一区二区三区视频| 91久久精品国产一区二区三区| 欧美黑人巨大hd| 女人被狂操c到高潮| 午夜视频国产福利| 又粗又爽又猛毛片免费看| 免费电影在线观看免费观看| 国产高清有码在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 在线播放无遮挡| 成人av一区二区三区在线看| 国产国拍精品亚洲av在线观看| 一边摸一边抽搐一进一小说| 尤物成人国产欧美一区二区三区| av福利片在线观看| 他把我摸到了高潮在线观看| 日本 欧美在线| 欧美丝袜亚洲另类 | 日本精品一区二区三区蜜桃| 亚洲最大成人手机在线| 中文字幕免费在线视频6| 成人精品一区二区免费| 午夜福利高清视频| 国产黄a三级三级三级人| 欧美激情在线99| 桃色一区二区三区在线观看| 特级一级黄色大片| 日本色播在线视频| av视频在线观看入口| 成年免费大片在线观看| 欧美绝顶高潮抽搐喷水| 婷婷色综合大香蕉| 91久久精品国产一区二区成人| 国产单亲对白刺激| 亚洲国产精品合色在线| avwww免费| 狠狠狠狠99中文字幕| 麻豆av噜噜一区二区三区| 精品久久久久久久人妻蜜臀av| 国内精品美女久久久久久| 我的女老师完整版在线观看| 1024手机看黄色片| 精品国内亚洲2022精品成人| 精品人妻偷拍中文字幕| 狂野欧美激情性xxxx在线观看| 久9热在线精品视频| 国产在线精品亚洲第一网站| 三级国产精品欧美在线观看| a级毛片免费高清观看在线播放| 乱系列少妇在线播放| 亚洲欧美日韩高清在线视频| ponron亚洲| 国产av不卡久久| 日韩亚洲欧美综合| 天堂av国产一区二区熟女人妻| 国产精品一区二区性色av| 美女高潮喷水抽搐中文字幕| 国产真实乱freesex| 午夜精品一区二区三区免费看| 亚洲人成网站在线播放欧美日韩| 亚州av有码| 丰满人妻一区二区三区视频av| 久久久久久久久大av| 性插视频无遮挡在线免费观看| 成熟少妇高潮喷水视频| 内射极品少妇av片p| 有码 亚洲区| 国产精品亚洲一级av第二区| 欧美成人性av电影在线观看| 国产精品久久电影中文字幕| 欧美黑人巨大hd| 亚洲精品乱码久久久v下载方式| 在线a可以看的网站| 欧美成人一区二区免费高清观看| 亚洲人成网站高清观看| av视频在线观看入口| 国产综合懂色| 偷拍熟女少妇极品色| 日韩,欧美,国产一区二区三区 | 不卡视频在线观看欧美| 日韩亚洲欧美综合| 好男人在线观看高清免费视频| 在线免费观看不下载黄p国产 | 亚洲真实伦在线观看| 99久久精品热视频| 黄色视频,在线免费观看| 国产亚洲av嫩草精品影院| 成年女人毛片免费观看观看9| 精品人妻一区二区三区麻豆 | 99热这里只有精品一区| 免费一级毛片在线播放高清视频| av.在线天堂| 日本 av在线| 欧美日本亚洲视频在线播放| 亚洲av美国av| 久久6这里有精品| 人妻少妇偷人精品九色| 亚洲中文日韩欧美视频| 亚洲精品在线观看二区| 九色成人免费人妻av| 午夜精品在线福利| 天堂网av新在线| 夜夜看夜夜爽夜夜摸| 日本 av在线| 超碰av人人做人人爽久久| 国产成人av教育| 精品久久久久久久久久免费视频| 亚洲国产高清在线一区二区三| 国产主播在线观看一区二区| 日本一二三区视频观看| 十八禁国产超污无遮挡网站| 夜夜看夜夜爽夜夜摸| 久久久久久久久久黄片| 好男人在线观看高清免费视频| 久久精品国产亚洲av天美| 亚洲经典国产精华液单| 久久精品国产亚洲av香蕉五月| 日韩欧美免费精品| 老司机福利观看| 国产午夜精品论理片| 嫩草影视91久久| 波多野结衣高清作品| 久久久久国内视频| 又爽又黄a免费视频| 国产精品亚洲一级av第二区| 日韩欧美三级三区| www.www免费av| 日本一本二区三区精品| 99久久久亚洲精品蜜臀av| АⅤ资源中文在线天堂| 1024手机看黄色片| 麻豆一二三区av精品| 神马国产精品三级电影在线观看| or卡值多少钱| 非洲黑人性xxxx精品又粗又长| 亚洲成av人片在线播放无| 久久热精品热| 日本爱情动作片www.在线观看 | 精品日产1卡2卡| 欧美日韩瑟瑟在线播放| 一级a爱片免费观看的视频| 欧美性猛交黑人性爽| 日本撒尿小便嘘嘘汇集6| 成人综合一区亚洲| 1000部很黄的大片| 国内毛片毛片毛片毛片毛片| 校园春色视频在线观看| 日本黄大片高清| 国产精品一及| 国产亚洲精品久久久com| 亚洲av一区综合| 国产国拍精品亚洲av在线观看| 亚洲成人久久爱视频| 亚洲精华国产精华液的使用体验 | 午夜视频国产福利| 三级国产精品欧美在线观看| 99在线人妻在线中文字幕| 在线看三级毛片| 国产精品野战在线观看| 精品一区二区三区人妻视频| 亚洲熟妇中文字幕五十中出| 免费观看的影片在线观看| 午夜精品一区二区三区免费看| 国产视频一区二区在线看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品影视一区二区三区av| 亚洲一区高清亚洲精品| 级片在线观看| 日韩,欧美,国产一区二区三区 | 欧美一区二区精品小视频在线| 国产精品国产三级国产av玫瑰| 精品久久久久久久末码| 亚洲av中文字字幕乱码综合| 亚洲精品在线观看二区| 午夜老司机福利剧场| 男女那种视频在线观看| 亚洲专区中文字幕在线| 日本 欧美在线| 直男gayav资源| 不卡一级毛片| 久久久精品欧美日韩精品| 最新在线观看一区二区三区| 黄色配什么色好看| 国产av不卡久久| 麻豆av噜噜一区二区三区| 欧美+日韩+精品| 久久人人精品亚洲av| 亚洲av第一区精品v没综合| 国产成人av教育| 午夜视频国产福利| 亚洲国产高清在线一区二区三| 亚洲自偷自拍三级| 免费看日本二区| 久久久久国产精品人妻aⅴ院| 国产精品久久久久久精品电影| 亚洲黑人精品在线| 午夜视频国产福利| 亚洲av.av天堂| 午夜老司机福利剧场| 国产综合懂色| 日韩精品青青久久久久久| 日本免费a在线| 女人被狂操c到高潮| 少妇熟女aⅴ在线视频| 97碰自拍视频| 最近最新免费中文字幕在线| 久久久精品大字幕| 精品久久久久久久久亚洲 | 欧美3d第一页| 精品一区二区三区视频在线观看免费| 女生性感内裤真人,穿戴方法视频| 成人av在线播放网站| 国产精品一区二区免费欧美| 日本-黄色视频高清免费观看| 深夜精品福利| aaaaa片日本免费| 国产白丝娇喘喷水9色精品| 国内揄拍国产精品人妻在线| 免费观看的影片在线观看| 日日摸夜夜添夜夜添av毛片 | 日本一二三区视频观看| 国产亚洲精品av在线| 美女大奶头视频| 一个人观看的视频www高清免费观看| 人妻丰满熟妇av一区二区三区| 两个人的视频大全免费| 偷拍熟女少妇极品色| 国产aⅴ精品一区二区三区波| 亚洲电影在线观看av| 哪里可以看免费的av片| 日本三级黄在线观看| 又紧又爽又黄一区二区| 欧美性猛交黑人性爽| 日本在线视频免费播放| 两个人的视频大全免费| 欧美性猛交╳xxx乱大交人| 精品久久久久久久久久久久久| 国产精品久久久久久久电影| 91久久精品国产一区二区三区| 国产久久久一区二区三区| 在线观看免费视频日本深夜| 亚洲精品粉嫩美女一区| 校园春色视频在线观看| 99久久久亚洲精品蜜臀av| 国产av不卡久久| 99热6这里只有精品| 不卡视频在线观看欧美| 国国产精品蜜臀av免费| 国内久久婷婷六月综合欲色啪| 亚洲成人免费电影在线观看| 亚洲七黄色美女视频| 黄色丝袜av网址大全| 日本黄大片高清| 69av精品久久久久久| 校园春色视频在线观看| 国产高清视频在线播放一区| 日韩av在线大香蕉| 欧美国产日韩亚洲一区| 精品人妻偷拍中文字幕| 天天躁日日操中文字幕| 国产大屁股一区二区在线视频| 亚洲成人免费电影在线观看| 校园人妻丝袜中文字幕| 真实男女啪啪啪动态图| 精品一区二区三区视频在线观看免费| 搡老妇女老女人老熟妇| 99热这里只有精品一区| 成年女人看的毛片在线观看| 女人十人毛片免费观看3o分钟| 精品久久久久久久久久久久久| 人人妻,人人澡人人爽秒播| 国产高清有码在线观看视频| 欧美最黄视频在线播放免费| 少妇人妻一区二区三区视频| 亚洲av第一区精品v没综合| 别揉我奶头 嗯啊视频| 中文亚洲av片在线观看爽| 舔av片在线| 蜜桃久久精品国产亚洲av| 国产午夜福利久久久久久| 两个人视频免费观看高清| 蜜桃久久精品国产亚洲av| 国产视频一区二区在线看| 搡老妇女老女人老熟妇| 精品国内亚洲2022精品成人| 他把我摸到了高潮在线观看| 桃色一区二区三区在线观看| 男女啪啪激烈高潮av片| 精品久久久久久久末码| 真人做人爱边吃奶动态| 亚洲不卡免费看| 99久久九九国产精品国产免费| 91久久精品国产一区二区三区| 亚洲不卡免费看| 国产三级在线视频| 日韩高清综合在线| 亚洲中文日韩欧美视频| 国产私拍福利视频在线观看| 久久久国产成人精品二区| 成人av一区二区三区在线看| 亚洲七黄色美女视频| 精品久久久噜噜| 午夜免费成人在线视频| 三级毛片av免费| 亚洲av五月六月丁香网| 嫩草影院精品99| 人妻久久中文字幕网| 国产精品久久久久久亚洲av鲁大| 18禁在线播放成人免费| 国产在视频线在精品| 日韩中字成人| 亚洲成人久久爱视频| 熟妇人妻久久中文字幕3abv| 国产精品三级大全| 别揉我奶头 嗯啊视频| 在线观看av片永久免费下载| 日韩高清综合在线| 日本熟妇午夜| 最近视频中文字幕2019在线8| 欧洲精品卡2卡3卡4卡5卡区| 神马国产精品三级电影在线观看| 18禁黄网站禁片午夜丰满| 看免费成人av毛片| 亚洲18禁久久av| 成年女人毛片免费观看观看9| 欧美三级亚洲精品| 午夜老司机福利剧场| 99久久精品一区二区三区| 亚洲欧美日韩无卡精品| 97超级碰碰碰精品色视频在线观看| 国产精品亚洲一级av第二区| 欧美成人一区二区免费高清观看| 国产成人一区二区在线| 变态另类丝袜制服| 国产又黄又爽又无遮挡在线| 午夜影院日韩av| 久久6这里有精品| 内地一区二区视频在线| 在线a可以看的网站| 岛国在线免费视频观看| 国产又黄又爽又无遮挡在线| 国产高潮美女av| 男人的好看免费观看在线视频| 欧美激情国产日韩精品一区| 国产国拍精品亚洲av在线观看| 又黄又爽又刺激的免费视频.| 久久国产乱子免费精品| 一级av片app| 国产女主播在线喷水免费视频网站 | av天堂在线播放| 午夜免费激情av| 日本成人三级电影网站| 国产高清有码在线观看视频| 亚洲无线观看免费| 在线观看美女被高潮喷水网站| 免费观看精品视频网站| 麻豆国产97在线/欧美| 尤物成人国产欧美一区二区三区| 搡老岳熟女国产| 国产单亲对白刺激| 午夜福利高清视频| 免费在线观看成人毛片| 亚洲专区中文字幕在线| 男插女下体视频免费在线播放| 色综合色国产| 欧美一区二区亚洲| 日韩在线高清观看一区二区三区 | 在线免费十八禁| 身体一侧抽搐| 男人的好看免费观看在线视频| 久久精品国产亚洲av涩爱 | 国产熟女欧美一区二区| 午夜免费激情av| 99久久九九国产精品国产免费| 欧美激情在线99| 中文资源天堂在线| 91久久精品国产一区二区三区| 日韩欧美在线乱码| 国产精品日韩av在线免费观看| 亚洲av不卡在线观看| 日韩人妻高清精品专区| 国产淫片久久久久久久久| 看免费成人av毛片| 男女视频在线观看网站免费| 老司机深夜福利视频在线观看| 一个人免费在线观看电影| 在线播放无遮挡| 国产黄a三级三级三级人| 美女被艹到高潮喷水动态| 88av欧美| 九色国产91popny在线| 丰满人妻一区二区三区视频av| 亚洲男人的天堂狠狠| 亚洲精品一区av在线观看| 啦啦啦啦在线视频资源| av在线观看视频网站免费| 日韩亚洲欧美综合| 国产乱人视频| 久9热在线精品视频| 欧美精品啪啪一区二区三区| 天天躁日日操中文字幕| 婷婷亚洲欧美| 亚洲无线在线观看| 一个人看视频在线观看www免费| 国产一区二区在线av高清观看| 日韩一区二区视频免费看| 丰满人妻一区二区三区视频av| 日韩欧美在线二视频| 欧美+亚洲+日韩+国产| 国产亚洲av嫩草精品影院| 在线观看66精品国产| 俺也久久电影网| h日本视频在线播放| 69人妻影院| 亚洲经典国产精华液单| 夜夜爽天天搞| 一个人看视频在线观看www免费| 女人十人毛片免费观看3o分钟| 国产伦一二天堂av在线观看| 精品久久国产蜜桃| 国产精品野战在线观看| 亚洲精品粉嫩美女一区| 欧美高清成人免费视频www| 国产一区二区在线av高清观看| 国产探花在线观看一区二区| 亚洲av美国av| 99热这里只有是精品50| 国产精品三级大全| 国产探花在线观看一区二区| 99九九线精品视频在线观看视频| 免费无遮挡裸体视频| 午夜福利在线观看吧| av.在线天堂| 乱系列少妇在线播放| 免费看a级黄色片| 女的被弄到高潮叫床怎么办 | 精品久久久噜噜| a级毛片免费高清观看在线播放| 欧美日韩国产亚洲二区| 嫩草影院入口| 国产女主播在线喷水免费视频网站 | 精品午夜福利视频在线观看一区| www日本黄色视频网| 黄色丝袜av网址大全| 亚洲精品一区av在线观看| 亚洲精品456在线播放app | 美女被艹到高潮喷水动态| 亚洲性夜色夜夜综合| 伊人久久精品亚洲午夜| 亚洲精品久久国产高清桃花| 国产免费一级a男人的天堂| 熟女人妻精品中文字幕| 97人妻精品一区二区三区麻豆| 亚洲久久久久久中文字幕| 日日撸夜夜添| 赤兔流量卡办理| 一个人免费在线观看电影| 18+在线观看网站| 岛国在线免费视频观看| 成年版毛片免费区| 久久国内精品自在自线图片| 国内精品美女久久久久久| 午夜福利视频1000在线观看| 久久精品人妻少妇| 韩国av在线不卡| 少妇被粗大猛烈的视频| 人妻久久中文字幕网| 婷婷色综合大香蕉| 精品午夜福利视频在线观看一区| 免费不卡的大黄色大毛片视频在线观看 | 少妇裸体淫交视频免费看高清| 精品久久久久久久久久久久久| 国产黄a三级三级三级人| 日日夜夜操网爽| 麻豆国产97在线/欧美| 伦精品一区二区三区| 免费大片18禁| 国产免费男女视频| 亚洲精品影视一区二区三区av| 麻豆成人av在线观看| 高清毛片免费观看视频网站| 日韩欧美国产一区二区入口| 国产69精品久久久久777片| 精品久久久久久,| 蜜桃亚洲精品一区二区三区| 精品久久久久久久久亚洲 | 无遮挡黄片免费观看| 97超级碰碰碰精品色视频在线观看| 自拍偷自拍亚洲精品老妇| 女人被狂操c到高潮| 国产蜜桃级精品一区二区三区| 国产久久久一区二区三区| 免费av毛片视频| 国产精品电影一区二区三区| 综合色av麻豆| 欧美人与善性xxx| 性色avwww在线观看| 一区二区三区激情视频| 亚洲国产色片| 18禁黄网站禁片免费观看直播| 精品午夜福利视频在线观看一区| 黄片wwwwww| 国产精品一区二区免费欧美| 精品久久久久久久久av| 黄色配什么色好看| 久久午夜福利片| 日本免费一区二区三区高清不卡| 久久精品国产亚洲网站| 午夜a级毛片| 中文字幕人妻熟人妻熟丝袜美| 他把我摸到了高潮在线观看| 国产亚洲精品综合一区在线观看| 一夜夜www| 欧美精品啪啪一区二区三区| 男人和女人高潮做爰伦理| 国产高潮美女av| 美女 人体艺术 gogo| 日本五十路高清| 国产在视频线在精品| 亚洲自偷自拍三级| 校园春色视频在线观看| 五月玫瑰六月丁香| av专区在线播放| 欧美激情在线99| 99视频精品全部免费 在线| 日韩亚洲欧美综合| 精品人妻偷拍中文字幕| 欧美成人免费av一区二区三区| 久久精品久久久久久噜噜老黄 | 人人妻,人人澡人人爽秒播| 精品无人区乱码1区二区| 草草在线视频免费看| av在线老鸭窝| АⅤ资源中文在线天堂| 亚洲va日本ⅴa欧美va伊人久久| 啪啪无遮挡十八禁网站| 国产精品亚洲一级av第二区| 97超级碰碰碰精品色视频在线观看| 18禁黄网站禁片免费观看直播| 欧美另类亚洲清纯唯美| 长腿黑丝高跟| 在线观看舔阴道视频| 久久久久国内视频| 亚洲国产精品合色在线| 99国产精品一区二区蜜桃av| 夜夜看夜夜爽夜夜摸| 亚洲成人久久爱视频| 国产伦精品一区二区三区视频9| 国产在线精品亚洲第一网站| 亚洲精品粉嫩美女一区| 精品福利观看| 亚洲欧美清纯卡通| 国产高潮美女av| 如何舔出高潮| 99久久中文字幕三级久久日本| 亚洲性久久影院| 啪啪无遮挡十八禁网站| 亚洲中文字幕日韩| 蜜桃亚洲精品一区二区三区| 他把我摸到了高潮在线观看| 成人欧美大片| 国产精品精品国产色婷婷| 色综合色国产| 国内精品宾馆在线| 免费av不卡在线播放| 久久九九热精品免费| 少妇人妻一区二区三区视频| 99久久成人亚洲精品观看| 成人国产麻豆网| 亚洲美女搞黄在线观看 | 黄色视频,在线免费观看| 久久久久国产精品人妻aⅴ院| 桃红色精品国产亚洲av| 亚洲 国产 在线| 男人狂女人下面高潮的视频| 少妇丰满av| av在线老鸭窝| 精品久久国产蜜桃| 看免费成人av毛片| 国产精华一区二区三区| 黄片wwwwww| 国产成人a区在线观看| 亚洲国产精品成人综合色| 夜夜看夜夜爽夜夜摸| 又爽又黄无遮挡网站| 99久久中文字幕三级久久日本| 精品日产1卡2卡| 亚洲精品国产成人久久av| 国产精品国产高清国产av| 免费在线观看成人毛片| 久久精品夜夜夜夜夜久久蜜豆| 国产色爽女视频免费观看| 久久6这里有精品| 亚洲一区二区三区色噜噜| 亚洲不卡免费看| 床上黄色一级片| 伦精品一区二区三区| 国产人妻一区二区三区在| 美女免费视频网站| 中文字幕av在线有码专区| 免费搜索国产男女视频| 国产男靠女视频免费网站| 久久久久精品国产欧美久久久| 亚洲av日韩精品久久久久久密| 动漫黄色视频在线观看| 亚洲人成伊人成综合网2020| 亚洲自偷自拍三级|