• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hep-Pred:Hepatitis C Staging Prediction Using Fine Gaussian SVM

    2021-12-10 11:53:32TaherGhazalMarriumAnamMohammadKamrulHasanMuzammilHussainMuhammadSajidFarooqHafizMuhammadAmmarAliMunirAhmadandTariqRahimSoomro
    Computers Materials&Continua 2021年10期

    Taher M.Ghazal,Marrium Anam,Mohammad Kamrul Hasan,Muzammil Hussain,Muhammad Sajid Farooq,Hafiz Muhammad Ammar Ali,Munir Ahmad and Tariq Rahim Soomro

    1Center for Cyber Security,Faculty of Information Science and Technology,Universiti Kebansaan Malaysia(UKM),Bangi,43600,Selangor,Malaysia

    2School of Information Technology,Skyline University College,University City Sharjah,Sharjah,1797,UAE

    3Department of Computer Science,Government College University,Faisalabad,38000,Pakistan

    4Department of Computer Science,School of Systems and Technology,University of Management and Technology,Lahore,54000,Pakistan

    5Department of Computer Science,Lahore Garrison University,Lahore,54000,Pakistan

    6School of Computer Science,National College of Business Administration&Economics,Lahore,54000,Pakistan

    7CCSIS,Institute of Business Management,Karachi,75190,Sindh,Pakistan

    Abstract:Hepatitis C is a contagious blood-borne infection,and it is mostly asymptomatic during the initial stages.Therefore,it is difficult to diagnose and treat patients in the early stages of infection.The disease’s progression to its last stages makes diagnosis and treatment more difficult.In this study,an AI system based on machine learning algorithms is presented to help healthcare professionals with an early diagnosis of hepatitis C.The dataset used for our Hep-Pred model is based on a literature study,and includes the records of 1385 patients infected with the hepatitis C virus.Patients in this dataset received treatment dosages for the hepatitis C virus for about 18 months.A former study divided the disease into four main stages.These stages have proven helpful for doctors to analyze the liver’s condition.The traditional way to check the staging is the biopsy,which is a painful and time-consuming process.This article aims to provide an effective and efficient approach to predict hepatitis C staging.For this purpose,the proposed technique uses a fine Gaussian SVM learning algorithm,providing 97.9%accurate results.

    Keywords:Hepatitis C;artificial intelligence;Hep-Pred;support vector machine;machine learning;hepatitis staging

    1 Introduction

    Hepatitis C is a disease affecting the human population on a global level.It is a blood-borne infection that can spread through direct contact with an infected person’s blood or body fluids containing blood.Almost 71 million people are chronically ill because of this disease worldwide,and an estimated 399,000 people died of this disease in 2016[1].

    According to the WHO(World Health Organization),hepatitis C is a global disease.The WHO report also mentioned that 3–4 million people get a new infection of this virus every year.Poor developing countries of Asia and Africa show the highest prevalence of this infection when compared to developed countries in Europe and North America.Furthermore,in countries like Pakistan,China,and Egypt,the number of people with chronic diseases is higher[2–4].

    The hepatitis C virus shows symptoms only at the later stages.Around 80% of infected people do not suffer any symptoms after getting an infection at the initial stages,leading to more liver damage with increased mortality rates.There is no proper vaccine available for the hepatitis C virus.Therefore,finding out the degree to which the liver of the affected patient is damaged could help guide clinicians in the diagnosis and treatment of chronic infection,and aid them in managing it properly.Proper management is crucial in the control of disease by preventing the transmission of the virus among people[1,5–7].

    Advancements in artificial intelligence(AI)help clinicians with the timely diagnosis and more efficient treatment of patients.Research has been performed comparing AI to human efficiency in the diagnosis of diseases.This research showed that AI was equally comparable to humans in diagnosis,and actually outperformed human efficiency when compared to less experienced doctors[8–12].Herein,we develop an AI technique using previously available data collected from 1385 patients who got treatment dosages for the hepatitis C virus for about 18 months in Egyptian patients[13].

    The 29 attributes used in this study are provided by[13].These are age,gender,BMI,fever,nausea/vomiting,headache,diarrhea,fatigue,jaundice,epigastric pain,WBC,RBC,HGB,platelets,AST 1,ALT 1,ALT 4,ALT 12,ALT 24,ALT 36,ALT 48,ALT after 24 w,RNA Base,RNA 4,RNA 12,RNA EOT,RNA EF,baseline staging,and staging.

    In 75% to 80% of hepatitis C cases,the hepatitis C infection’s progression into its last stages happens as early diagnosis is not possible because of the lack of symptoms.Moreover,sometimes patients with chronic conditions can take years to show symptoms.Then,at the last stage,the liver’s functionality has been destroyed completely,making treatment difficult[14].As Lok states in an article cited in Michigan Medicine[15],the best treatment with the highest potential of recovery is only possible when the disease is diagnosed at earlier stages.Lok further says that patients infected with hepatitis C mostly show symptoms when they develop liver cirrhosis,increasing the risk for such patients to develop liver cancer.Therefore,a useful and novel diagnostic system for hepatitis C addresses the need for early diagnosis that could help clinicians offer timely treatments to the infected patients.Also,early diagnosis will reduce the chances of transmission of the virus to other people[16].

    AI-based disease diagnostics and prediction techniques could help the timely diagnosis of acute infections and chronic diseases.Keltch,Lin,and Bayrak(2014)implemented four different types of AI techniques to the data available publicly for 424 hepatitis C patients.Their proposed model helps to predict the stage of fibrosis by comparing results of standard serum markers to the results taken from biopsies.Keltch et al.(2014)proposed novel approaches and other AI techniques that could help predict hepatitis B and hepatitis C in millions of people worldwide without performing biopsies,which could benefit the overall healthcare system.The authors of[17]also suggest in their study that AI techniques could be applied to different kinds of structured and unstructured healthcare datasets.The most popular artificial intelligence systems include machine learning methods for structured datasets.

    Pietrangelo(2018)and Lok(2016)both insist that,in order to avoid complications due to disease progression,the best results of treatment are only possible with the early detection of the infectious stage.Therefore,treatment should be started as soon as possible.Lok and her team are developing a novel system with the help of machine learning methods that could incorporate many datasets to create more accuracy in predicting the risk of developing fibrosis and its progression from mild to moderate[18–22].

    In[23],29 algorithmic parameters that are the symptoms of hepatitis C infection are used to develop an AI technique for detecting human beings’ disease.A dataset has been made publicly available by Kamal et al.(2019)from Egyptian patients who underwent treatment for the hepatitis C virus for 18 months,including 29 symptom attributes.With the proposed diagnostic method,researchers,scientists,and health practitioners will also predict the infection stages without requiring that patients go through liver biopsies.

    2 Related Work

    Research presented in[24]developed an artificial neural network(ANN)system using a data mining approach on a large socio-medical dataset.This system can make a successful predictive diagnosis of the patients who can potentially get hepatitis C virus infection.

    Research conducted at the University of Michigan[25]stated that it is a big challenge to reduce the disease management expenses for hepatitis C patients.Therefore,the scientists of Michigan University developed a system using a predictive analytics algorithm to identify the patients having a high risk.For further complications,the authors suggest that their algorithm could help high-risk patients through immediate and effective treatment.The authors claim that their system provides more accuracy when compared with former studies.

    Further,authors in[26]identified how factors like gender and obesity could affect hepatitis C infection prevalence among different populations.The study emphasizes the importance of all the mentioned parameters in developing any system,whether manual or through AI,to get highly accurate results and to acquire healthcare professionals’most efficient treatment strategies.

    In similar research,a significant difference is observed in patients for contributing factors like sex,body mass index(BMI),bilirubin,alanine aminotransferase ALT,and other parameters.It is found that the mean BMI value for male patients older than 60 years is lower than the female patients that are younger than 60 years.Furthermore,it is concluded that higher BMI values mean a high risk of early onset of hepatitis C complications in hepatitis C virus patients[27].

    A comprehensive analysis of three data mining techniques is presented by[28],i.e.,decision trees,na?ve Bayes,and neural networks,to predict hepatitis C virus infection.

    The progress in the development of machine learning artificial intelligence techniques for predicting esophageal varices(a complication of hepatitis C virus)in chronic hepatitis C patients is discussed in[29].Researchers of this study also mentioned that 9 variables among 24 are found to be the most significant for analysis through their developed system.

    Another research study[30]emphasizes the importance of decision tree learning algorithms to achieve high accuracy in predicting hepatitis C virus infected patients,especially those at high risk of developing advanced liver fibrosis because of hepatitis C virus infection.It can ultimately decrease or even replace liver biopsy,an invasive method that has drawbacks.Several research studies have been presented on hepatitis C,its prediction,and a detailed analysis thereof[31–37].Similar examples can be found in[38–41].These examples show that hepatitis C has a very severe impact and demands more research be done in order to succeed in combating this particular disease.Therefore,this article presents a prediction model,Hep-Pred,to be used against hepatitis C.

    3 Proposed Model

    The proposed method of this research article is the novel model Hep-Pred.The complete layout diagram of the proposed model is shown in Fig.1.

    Figure 1:Proposed for hepatitis c stage prediction

    Fig.1 shows that the proposed model is divided into four phases.In the first,the system acquires a raw dataset from the UCI repository.The data contain many noise and garbage values,which can lead the system toward the wrong prediction.So,at the second step(preprocessing),the system cleans the dataset and then finds the dataset feature to perform classification.For classification,the system uses the fine Gaussian support vector machine(SVM)algorithm.After training,the system arrives at a decision.

    The raw dataset contains a lot of noise,outliers,and garbage values.At the preprocessing and feature extraction stage,the system removes these values under medical experts’supervision.After that,the proposed system finds the min and max value of selected features and saves them for further processing.

    Following preprocessing,the benchmark data is given to a fine Gaussian SVM for future training.SVM is a supervised training algorithm and works on the hyperplane.The complete mathematical description of SVM is discussed below.

    The equation of the line is

    where f is a slope of the line,and z is the intersect;therefore

    fx1?x2+z=0.

    4 Results and Discussion

    For the results and simulation,Matlab R2018 was used.Different kinds of algorithms were applied to the benchmark dataset for training,and the results of these algorithms are shown in Tab.1.

    Tab.1 shows that the fine Gaussian SVM gives the best results with a 97.9% accuracy rate on 5 cross-validations.The confusion matrix and ROC graph of the proposed method are shown in Figs.2–6.

    Table 1:Accuracy of different algorithms on a benchmark dataset

    Figure 2:Confusion matrix of proposed Hep-Pred

    Fig.2 shows the confusion matrix of the proposed method,and Figs.3–6 shows the roc graph of each class.

    The traditional way to check the hepatitis staining is liver biopsy,a painful and timeconsuming procedure,so researchers endeavor to find an easy and accurate alternative.The comparison of the proposed method with other researchers’work is shown in Tab.2.Tab.2 shows that the accuracy of an alternative proposed method[30]is less than Hep-Pred.

    Figure 3:Class stage 1 roc of proposed Hep-Pred

    Figure 4:Class stage 2 roc of proposed Hep-Pred

    Figure 5:Class stage 3 roc of proposed Hep-Pred

    Figure 6:Class stage 4 roc of proposed Hep-Pred

    Table 2:The comparison of the proposed method with other

    5 Conclusion

    The liver is a vital organ of the human body,actively participating in the filtering of blood coming from the digestive system,and is responsible for removing toxins.The proposed Hep-Pred model will help doctors,and other paramedical staff,check a person’s liver health.The dataset for simulation was collected from a UCI repository donated in 2019.A fine Gaussian SVM learning algorithm is used for training the model.The model gives us 97.9% accurate results in 5 crossvalidations.In the future,we can enhance the model efficiency by adding more patients’data.Further,other liver diseases can also be considered for future research.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲成人免费av在线播放| 岛国毛片在线播放| 日本av免费视频播放| 亚洲第一欧美日韩一区二区三区 | 人人妻人人澡人人看| 成人18禁高潮啪啪吃奶动态图| 欧美国产精品va在线观看不卡| 18禁观看日本| 色94色欧美一区二区| 亚洲精品日韩在线中文字幕| 久久久久精品国产欧美久久久 | 人人妻人人澡人人爽人人夜夜| 国产av又大| 免费av中文字幕在线| 在线 av 中文字幕| 搡老岳熟女国产| 叶爱在线成人免费视频播放| 欧美黄色淫秽网站| 老司机亚洲免费影院| 涩涩av久久男人的天堂| 国产三级黄色录像| 18禁黄网站禁片午夜丰满| 国产精品一区二区免费欧美 | 欧美精品一区二区免费开放| xxxhd国产人妻xxx| 男人舔女人的私密视频| 99re6热这里在线精品视频| 久久精品国产亚洲av高清一级| 国产成人av教育| 国产日韩一区二区三区精品不卡| 日韩 亚洲 欧美在线| 亚洲欧美色中文字幕在线| 国产伦理片在线播放av一区| 国产伦理片在线播放av一区| 深夜精品福利| 另类亚洲欧美激情| 亚洲精品久久成人aⅴ小说| 成年动漫av网址| 人妻一区二区av| 80岁老熟妇乱子伦牲交| 亚洲第一青青草原| 亚洲av日韩精品久久久久久密| 日韩三级视频一区二区三区| 国产三级黄色录像| 成人免费观看视频高清| 欧美精品人与动牲交sv欧美| 亚洲一区二区三区欧美精品| 大香蕉久久网| 国产成人精品久久二区二区91| 男女之事视频高清在线观看| 天堂中文最新版在线下载| 黄频高清免费视频| 91麻豆精品激情在线观看国产 | 国产黄色免费在线视频| 在线av久久热| 亚洲专区字幕在线| 日本五十路高清| 91麻豆精品激情在线观看国产 | 欧美精品av麻豆av| 中文字幕精品免费在线观看视频| 9热在线视频观看99| 亚洲全国av大片| 国产精品影院久久| 日韩,欧美,国产一区二区三区| a级毛片在线看网站| 黄色片一级片一级黄色片| 亚洲av电影在线观看一区二区三区| 岛国毛片在线播放| 黑丝袜美女国产一区| 亚洲天堂av无毛| 精品福利永久在线观看| 性少妇av在线| 国产成人a∨麻豆精品| 亚洲av成人一区二区三| 三上悠亚av全集在线观看| 欧美激情 高清一区二区三区| 国产成人影院久久av| 大片电影免费在线观看免费| 曰老女人黄片| 亚洲第一青青草原| 亚洲精华国产精华精| 性少妇av在线| 久久久久网色| 国产主播在线观看一区二区| 久久九九热精品免费| 法律面前人人平等表现在哪些方面 | 亚洲av电影在线观看一区二区三区| 老司机影院成人| 国产主播在线观看一区二区| 亚洲精品日韩在线中文字幕| 欧美久久黑人一区二区| www.自偷自拍.com| 欧美激情极品国产一区二区三区| 制服诱惑二区| 丰满少妇做爰视频| 亚洲第一av免费看| 一级,二级,三级黄色视频| av又黄又爽大尺度在线免费看| 又黄又粗又硬又大视频| av视频免费观看在线观看| 高清黄色对白视频在线免费看| 三级毛片av免费| 久久精品国产综合久久久| 老熟妇仑乱视频hdxx| 亚洲成人国产一区在线观看| 精品国产一区二区久久| 9191精品国产免费久久| 国产一区有黄有色的免费视频| 黄色视频,在线免费观看| 久9热在线精品视频| 91精品国产国语对白视频| 欧美日韩黄片免| kizo精华| 精品熟女少妇八av免费久了| 在线观看免费高清a一片| 十八禁高潮呻吟视频| 视频区欧美日本亚洲| 69精品国产乱码久久久| 亚洲情色 制服丝袜| 国产精品1区2区在线观看. | av不卡在线播放| 老熟女久久久| 免费观看av网站的网址| 欧美精品av麻豆av| 免费在线观看影片大全网站| 亚洲av电影在线进入| 日本一区二区免费在线视频| 91九色精品人成在线观看| 天天影视国产精品| av超薄肉色丝袜交足视频| 亚洲成国产人片在线观看| 超碰成人久久| 久久精品国产亚洲av香蕉五月 | 国产精品.久久久| 后天国语完整版免费观看| 中文字幕最新亚洲高清| 黑人巨大精品欧美一区二区蜜桃| 人人妻人人澡人人爽人人夜夜| 精品久久蜜臀av无| 水蜜桃什么品种好| 国产三级黄色录像| 久久久久视频综合| 97人妻天天添夜夜摸| 蜜桃在线观看..| 超色免费av| 免费一级毛片在线播放高清视频 | www日本在线高清视频| av欧美777| 亚洲精华国产精华精| 丰满人妻熟妇乱又伦精品不卡| 一边摸一边抽搐一进一出视频| 在线永久观看黄色视频| 12—13女人毛片做爰片一| 久久久水蜜桃国产精品网| 亚洲人成电影免费在线| 少妇猛男粗大的猛烈进出视频| 无遮挡黄片免费观看| 成年美女黄网站色视频大全免费| 久久久久精品国产欧美久久久 | 欧美 亚洲 国产 日韩一| 青春草视频在线免费观看| 国产福利在线免费观看视频| 搡老乐熟女国产| 老熟妇仑乱视频hdxx| 欧美日韩中文字幕国产精品一区二区三区 | 久久精品成人免费网站| 欧美成狂野欧美在线观看| 在线av久久热| 大片免费播放器 马上看| 国产精品免费视频内射| 亚洲伊人色综图| 久久久精品免费免费高清| 女人久久www免费人成看片| 18在线观看网站| 2018国产大陆天天弄谢| 国产1区2区3区精品| 黄色视频在线播放观看不卡| 久久久久久人人人人人| 免费少妇av软件| 亚洲久久久国产精品| 欧美在线一区亚洲| 脱女人内裤的视频| 午夜福利视频在线观看免费| 亚洲性夜色夜夜综合| 午夜久久久在线观看| 又紧又爽又黄一区二区| 91成年电影在线观看| 十分钟在线观看高清视频www| 欧美乱码精品一区二区三区| 午夜免费观看性视频| 亚洲精品日韩在线中文字幕| 在线观看免费高清a一片| 男女午夜视频在线观看| 精品国产乱码久久久久久男人| 亚洲avbb在线观看| 久久久久国产精品人妻一区二区| 国产欧美日韩精品亚洲av| 精品国产乱码久久久久久小说| 丰满少妇做爰视频| 黄色视频不卡| 在线av久久热| 天天躁夜夜躁狠狠躁躁| 国产福利在线免费观看视频| 午夜91福利影院| 欧美av亚洲av综合av国产av| 黄色视频,在线免费观看| 少妇的丰满在线观看| 9热在线视频观看99| 国产一区二区激情短视频 | 国产精品一区二区精品视频观看| 宅男免费午夜| 免费不卡黄色视频| 国产精品久久久久久精品古装| videosex国产| www.精华液| 亚洲专区中文字幕在线| 国产成人精品无人区| 狂野欧美激情性xxxx| 亚洲精品国产区一区二| 最近中文字幕2019免费版| 日本av免费视频播放| 91精品伊人久久大香线蕉| 国产精品久久久av美女十八| 两性夫妻黄色片| 中文字幕av电影在线播放| 亚洲专区中文字幕在线| 亚洲精品日韩在线中文字幕| 咕卡用的链子| 国产一卡二卡三卡精品| 日韩中文字幕视频在线看片| 精品国产超薄肉色丝袜足j| 欧美激情高清一区二区三区| 精品一区在线观看国产| 国产真人三级小视频在线观看| 亚洲av国产av综合av卡| 咕卡用的链子| 精品乱码久久久久久99久播| 成人国产av品久久久| 国产精品久久久久久精品古装| 美女高潮到喷水免费观看| 免费久久久久久久精品成人欧美视频| 韩国高清视频一区二区三区| 中亚洲国语对白在线视频| 天堂8中文在线网| 欧美av亚洲av综合av国产av| 波多野结衣一区麻豆| 欧美日韩精品网址| 五月开心婷婷网| 国产精品 欧美亚洲| 丰满饥渴人妻一区二区三| 国内毛片毛片毛片毛片毛片| 亚洲国产精品一区三区| 日本欧美视频一区| 一区在线观看完整版| 中文字幕高清在线视频| 国产主播在线观看一区二区| 最黄视频免费看| 久久国产精品影院| 国产精品一区二区在线观看99| 欧美精品人与动牲交sv欧美| www.精华液| 亚洲专区中文字幕在线| 又大又爽又粗| av不卡在线播放| 日韩欧美一区二区三区在线观看 | 免费少妇av软件| 国产黄频视频在线观看| 亚洲专区字幕在线| 亚洲成人国产一区在线观看| 一本—道久久a久久精品蜜桃钙片| av免费在线观看网站| www.999成人在线观看| 一级片'在线观看视频| 热re99久久精品国产66热6| 久久久欧美国产精品| 麻豆国产av国片精品| 久久精品亚洲熟妇少妇任你| 精品久久久久久久毛片微露脸 | 欧美 亚洲 国产 日韩一| 国产精品久久久人人做人人爽| 一区在线观看完整版| 一本久久精品| 国产免费现黄频在线看| 久久影院123| 免费少妇av软件| 久久精品亚洲av国产电影网| 亚洲专区字幕在线| 精品国产一区二区三区久久久樱花| 国产高清videossex| 一个人免费看片子| 午夜精品久久久久久毛片777| 99热全是精品| 亚洲av日韩在线播放| 王馨瑶露胸无遮挡在线观看| 91精品三级在线观看| 午夜成年电影在线免费观看| 国产日韩欧美亚洲二区| 91国产中文字幕| 欧美日韩av久久| 国产一区二区激情短视频 | 在线永久观看黄色视频| 熟女少妇亚洲综合色aaa.| 另类精品久久| 欧美亚洲 丝袜 人妻 在线| 美国免费a级毛片| 美女高潮到喷水免费观看| 国产成人啪精品午夜网站| 国产高清视频在线播放一区 | 欧美精品亚洲一区二区| 黄色视频,在线免费观看| 国产一区二区 视频在线| 在线观看免费视频网站a站| 精品熟女少妇八av免费久了| 一边摸一边抽搐一进一出视频| 中文字幕另类日韩欧美亚洲嫩草| 日日夜夜操网爽| 国产伦理片在线播放av一区| 国产亚洲欧美精品永久| 人人妻,人人澡人人爽秒播| 又大又爽又粗| 国产精品99久久99久久久不卡| videosex国产| 久久久久久久久免费视频了| 蜜桃在线观看..| 亚洲成国产人片在线观看| av天堂在线播放| 免费人妻精品一区二区三区视频| 女人爽到高潮嗷嗷叫在线视频| 免费在线观看完整版高清| 亚洲精品国产色婷婷电影| 亚洲成人免费av在线播放| 精品久久久久久电影网| 美女视频免费永久观看网站| 国内毛片毛片毛片毛片毛片| 美女福利国产在线| 国产精品一区二区在线观看99| 丰满迷人的少妇在线观看| 精品亚洲成国产av| 日本vs欧美在线观看视频| 国产精品国产三级国产专区5o| 欧美精品人与动牲交sv欧美| 国产亚洲精品一区二区www | 热re99久久精品国产66热6| 久久天躁狠狠躁夜夜2o2o| 91九色精品人成在线观看| 国产精品一区二区在线观看99| 国产一区二区 视频在线| 久久久欧美国产精品| 大码成人一级视频| 久久精品国产a三级三级三级| 国产国语露脸激情在线看| 建设人人有责人人尽责人人享有的| 51午夜福利影视在线观看| 日日摸夜夜添夜夜添小说| 妹子高潮喷水视频| 欧美日韩成人在线一区二区| 老熟妇乱子伦视频在线观看 | 国产精品 欧美亚洲| 久久狼人影院| 首页视频小说图片口味搜索| 亚洲精品国产av蜜桃| 麻豆国产av国片精品| 欧美精品亚洲一区二区| 中亚洲国语对白在线视频| 国产精品久久久久成人av| 大陆偷拍与自拍| 人人妻人人添人人爽欧美一区卜| 美女中出高潮动态图| 亚洲av男天堂| 国产亚洲av片在线观看秒播厂| tocl精华| 99国产精品一区二区三区| 久久精品国产亚洲av高清一级| 精品国产国语对白av| 精品少妇黑人巨大在线播放| 亚洲国产中文字幕在线视频| 国产精品久久久人人做人人爽| 可以免费在线观看a视频的电影网站| 丝袜喷水一区| 国产成人免费观看mmmm| 丝袜喷水一区| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美色中文字幕在线| 视频区图区小说| 久久精品国产a三级三级三级| 国产av又大| 久久久久国产精品人妻一区二区| 午夜福利在线观看吧| 亚洲专区字幕在线| 亚洲av欧美aⅴ国产| 咕卡用的链子| 亚洲av日韩在线播放| 午夜91福利影院| 91av网站免费观看| 一本综合久久免费| 国产福利在线免费观看视频| www日本在线高清视频| 精品福利永久在线观看| 色老头精品视频在线观看| 美女大奶头黄色视频| 亚洲自偷自拍图片 自拍| 国产av精品麻豆| 久久国产亚洲av麻豆专区| 欧美黄色片欧美黄色片| 久久国产精品人妻蜜桃| 亚洲,欧美精品.| 久久综合国产亚洲精品| 美女高潮喷水抽搐中文字幕| 啦啦啦视频在线资源免费观看| 欧美97在线视频| 亚洲色图 男人天堂 中文字幕| 成人18禁高潮啪啪吃奶动态图| 性色av一级| 国产成人精品在线电影| 中文字幕人妻熟女乱码| 亚洲精品第二区| 国产有黄有色有爽视频| 午夜激情av网站| 欧美精品人与动牲交sv欧美| 久久人人爽人人片av| 日韩人妻精品一区2区三区| 97精品久久久久久久久久精品| 老司机影院毛片| 久久99热这里只频精品6学生| kizo精华| 真人做人爱边吃奶动态| 亚洲国产日韩一区二区| 王馨瑶露胸无遮挡在线观看| 久久国产精品大桥未久av| 国产亚洲精品一区二区www | 欧美av亚洲av综合av国产av| 亚洲avbb在线观看| 国产主播在线观看一区二区| 精品第一国产精品| 精品乱码久久久久久99久播| 91精品国产国语对白视频| 久久久久精品人妻al黑| 国产成人a∨麻豆精品| www.av在线官网国产| 亚洲av片天天在线观看| 久久国产精品大桥未久av| 国产成人免费无遮挡视频| 国产高清视频在线播放一区 | 每晚都被弄得嗷嗷叫到高潮| 美女主播在线视频| 999久久久国产精品视频| 久久精品亚洲av国产电影网| 久久久精品区二区三区| 国产极品粉嫩免费观看在线| 嫩草影视91久久| 成人国产av品久久久| 欧美在线黄色| 精品一区在线观看国产| 亚洲成人国产一区在线观看| 大码成人一级视频| 黄片小视频在线播放| 啦啦啦中文免费视频观看日本| 美女中出高潮动态图| 一本—道久久a久久精品蜜桃钙片| 国产日韩欧美亚洲二区| 99久久精品国产亚洲精品| 久久人人爽人人片av| 国产免费福利视频在线观看| 天堂俺去俺来也www色官网| 汤姆久久久久久久影院中文字幕| 国产高清视频在线播放一区 | 亚洲成人免费电影在线观看| 午夜福利在线观看吧| 婷婷成人精品国产| 欧美人与性动交α欧美精品济南到| 女人高潮潮喷娇喘18禁视频| 两人在一起打扑克的视频| 久久精品熟女亚洲av麻豆精品| 青春草亚洲视频在线观看| 欧美激情 高清一区二区三区| 黄色毛片三级朝国网站| 色94色欧美一区二区| 免费日韩欧美在线观看| 国产精品久久久久久人妻精品电影 | av又黄又爽大尺度在线免费看| 乱人伦中国视频| 久久久久视频综合| 国产日韩欧美在线精品| 伦理电影免费视频| 女性生殖器流出的白浆| 欧美乱码精品一区二区三区| 亚洲激情五月婷婷啪啪| 丰满饥渴人妻一区二区三| 国产一区二区在线观看av| 涩涩av久久男人的天堂| 久久ye,这里只有精品| 精品乱码久久久久久99久播| 99九九在线精品视频| 中文字幕人妻丝袜制服| 国产日韩欧美视频二区| 亚洲色图 男人天堂 中文字幕| videos熟女内射| 黄色片一级片一级黄色片| 欧美97在线视频| 国产亚洲欧美精品永久| 日本黄色日本黄色录像| 男男h啪啪无遮挡| 国产免费福利视频在线观看| 亚洲欧美精品综合一区二区三区| 精品熟女少妇八av免费久了| av在线app专区| 日韩制服骚丝袜av| 波多野结衣av一区二区av| 亚洲综合色网址| a级片在线免费高清观看视频| 国产一区二区 视频在线| 精品久久久久久久毛片微露脸 | 亚洲专区中文字幕在线| 国产成人免费观看mmmm| 日韩精品免费视频一区二区三区| 国产日韩一区二区三区精品不卡| 亚洲精品美女久久久久99蜜臀| 一本大道久久a久久精品| 成年美女黄网站色视频大全免费| 韩国高清视频一区二区三区| 国产精品偷伦视频观看了| 啦啦啦啦在线视频资源| 精品一区二区三区四区五区乱码| 国产一区有黄有色的免费视频| 欧美久久黑人一区二区| 女人久久www免费人成看片| 亚洲国产精品成人久久小说| 欧美日韩成人在线一区二区| 国产亚洲av片在线观看秒播厂| 人妻久久中文字幕网| 亚洲精品美女久久久久99蜜臀| 真人做人爱边吃奶动态| 亚洲精华国产精华精| 亚洲精品成人av观看孕妇| 日本一区二区免费在线视频| 午夜免费观看性视频| 黑人欧美特级aaaaaa片| 狠狠婷婷综合久久久久久88av| 精品国产国语对白av| 18在线观看网站| 国产成人欧美| 熟女少妇亚洲综合色aaa.| 欧美激情极品国产一区二区三区| 美国免费a级毛片| 91国产中文字幕| 美女视频免费永久观看网站| 欧美日韩亚洲国产一区二区在线观看 | 爱豆传媒免费全集在线观看| 午夜福利乱码中文字幕| 亚洲精品av麻豆狂野| 久久人妻福利社区极品人妻图片| 国产精品国产三级国产专区5o| 亚洲av男天堂| 久热这里只有精品99| 精品一区在线观看国产| 99国产精品免费福利视频| 无限看片的www在线观看| 久久久久久久久久久久大奶| 99久久人妻综合| 中文字幕最新亚洲高清| 少妇裸体淫交视频免费看高清 | 亚洲精华国产精华精| 99国产极品粉嫩在线观看| 高清在线国产一区| 国产精品av久久久久免费| 亚洲成人免费电影在线观看| 成年女人毛片免费观看观看9 | 少妇 在线观看| 三级毛片av免费| 在线观看一区二区三区激情| 黄色怎么调成土黄色| 久久女婷五月综合色啪小说| 国产精品一二三区在线看| 国产精品秋霞免费鲁丝片| av视频免费观看在线观看| 人妻人人澡人人爽人人| 色精品久久人妻99蜜桃| 女人高潮潮喷娇喘18禁视频| 黄色片一级片一级黄色片| 国产又色又爽无遮挡免| 欧美日韩国产mv在线观看视频| 亚洲一码二码三码区别大吗| 老熟妇仑乱视频hdxx| 亚洲第一欧美日韩一区二区三区 | 无遮挡黄片免费观看| 亚洲欧洲日产国产| 另类亚洲欧美激情| 女人爽到高潮嗷嗷叫在线视频| tocl精华| 波多野结衣av一区二区av| 啦啦啦中文免费视频观看日本| 天堂中文最新版在线下载| 超碰97精品在线观看| 精品欧美一区二区三区在线| 欧美老熟妇乱子伦牲交| 在线十欧美十亚洲十日本专区| 丝袜人妻中文字幕| 在线观看人妻少妇| 国精品久久久久久国模美| 男女免费视频国产| 亚洲av成人不卡在线观看播放网 | 宅男免费午夜| 丝袜美足系列| 桃红色精品国产亚洲av| 国产精品久久久av美女十八| 欧美久久黑人一区二区| 精品福利永久在线观看| 国产深夜福利视频在线观看| 欧美少妇被猛烈插入视频| 狠狠婷婷综合久久久久久88av| 亚洲精品一卡2卡三卡4卡5卡 | 丝袜脚勾引网站| 国产一区二区在线观看av| 中文字幕人妻丝袜一区二区| 欧美人与性动交α欧美软件|