• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of Quasi-MIL-53(Fe)Photocatalysts for Enhanced Visible Light Photocatalytic Degradation of Organic Dyes

    2021-12-09 07:22:10ZOUQiChaoMAYanCHIDianJunQIAOHongBinZHANGJunYingCHENQianSUNYuDieZHANGJianZHANGKuiLIUShengJun

    ZOU Qi-ChaoMA YanCHI Dian-Jun QIAO Hong-Bin ZHANG Jun-Ying CHEN Qian SUN Yu-Die ZHANG Jian ZHANG KuiLIU Sheng-Jun

    (School of Chemistry and Chemical Engineering,Anhui University of Technology,Ma′Anshan,Anhui 243032,China)

    Abstract:Quasi-metal-organic-frameworks(MOFs)derivative-based MFe-T(T℃stands for calcination temperature)photocatalysts with a porous structure were synthesized by the pyrolysis of MIL-53(Fe)(termed MFe hereafter).Among the tested catalysts,MFe-250 exhibited the highest photodegradation performance,degradation of 99% methylene blue(MB)within 90 min.From the photocurrent and electrochemical impedance spectroscopy results,the electronic transmission capability of MFe-250 exceeded that of MFe.Furthermore,trapping experiments revealed that while hydroxyl radicals(·OH)were essential intermediates in the photocatalytic degradation of MB.Additionally,a mechanism for the photocatalytic process was proposed.

    Keywords:metal-organic frameworks;visible light;photodegradation;organic dyes

    0 Introduction

    The rapid development of modern industry has led to water pollution,including contamination with organic dyes.One harmful pollutant is methylene blue(MB).Although the adsorbent can effectively remove MB from water,its high cost limits practical applications[1].In contrast,the solar photocatalytic degradation of organic pollutants has proven to be a clean technology that can address such environmental problems.Some successfully developed photocatalysts are metal oxides,metal sulfides and graphitic carbon nitride[1-2].However,their low quantum and solar energy conversion efficiencies limit their practical applications.Therefore,the development of new and more efficient photocatalysts is necessary.

    Metal-organic frameworks(MOFs)are structures composed of organic ligands and metals(or metal clusters)and have a wide range of uses,such as in separation,storage,detection,and catalysis[3-21].In particular,MOFs featuring numerous active sites that generate numerous electron-hole pairs under adequate illumination can be effectively used as photocatalysts.The first of such reported MOF catalysts used for photocatalytic degradation ofphenolwas MOF-5[22].Thereafter,numerous other studies have focused on the development of MOF photocatalysts for CO2reduction[23-24],water splitting[25-28]and organic pollutant degradation[29-34].

    The active sites of MOFs are important for the improvement of catalytic performance.Recent studies by Jiang′s group revealed that structurally defective UiO-66-NH2enhanced the efficiency of photocatalytic hydrogen production[35].Huang et al.reported that the synthesis of MIL-53(Fe)(termed MFe hereafter)using hydrochloric acid as a modulator exposed more active sites than as-prepared MFe without hydrochloric acid,leading to the efficient photocatalytic degradation of tetracycline[36].Further,Xu et al.reported that the use of quasi-MOFs obtained by thermal regulation enabled strong interactions between metal nanoparticles and the MOF,resulting in increased catalytic activity[37].Furthermore,we reported the preparation of quasi-MFe at lower temperatures to improve their photocatalytic activity.

    Herein,a series of MFe-based photocatalysts,collectively termed as MFe-T(T℃stands for calcination temperature),were activated at different temperatures in air and employed in the visible-light-assisted degradation of MB.Studying the photocatalytic performance of different samples allowed for the identification of the most suitable catalyst for optimized photodegradation.The resulting MFe-250 exhibited high photocatalytic activity for MB degradation,reaching a degradation rate of 99% with in 90 min.Importantly,MFe-250 had excellent performance and chemical stability.

    1 Experimental

    1.1 Materials

    N,N-dimethyl formamide(DMF,GC,99.5%),FeCl3·6H2O(AR,99.0%),ethanol(EtOH,AR,99.7%)and 2-propanol(AR,99.7%)were purchased from General-Reagent.Methylene blue(MB,AR),ethylenediamine tetraacetic acid disodium salt dihydrate(EDTA-2Na,AR)and hydrogen peroxide solution(30%,w/w)were purchased from Sinopharm Chemical Reagent Co.,Ltd.(Shanghai,China).Terephthalic acid(AR,99%)and ascorbic acid(VC,AR,99.0%)were purchased from Aladdin.All chemicals were purchased from commercial sources and used without further treatments.

    1.2 Synthesis of MFe and MFe-T

    MFe was synthesized based on minor modifications to the existing process[38],using the solvothermal method.In the process,ferric chloride hexahydrate(90 mg),terephthalic acid(55 mg)and DMF(8 mL)were mixed into a homogeneous solution.The solution was sealed in a 25 mL autoclave and heated at 180℃for 12 h.After the autoclave cooled to room temperature,the product was washed with DMF and ethanol several times,and finally placed in a vacuum oven at 60℃for 6 h for drying.Five samples were then taken from the dried product,following which each was successively placed in a muffle furnace and calcined in an air atmosphere for several hours at temperatures of 100,200,250,300,and 400℃.The resultant samples were denoted as MFe-100,MFe-200,MFe-250,MFe-300,and MFe-400,respectively.

    1.3 Characterizations

    The powder X-ray diffraction(PXRD)patterns of samples were tested on a Bruker D8 Advance X-ray diffractometer with Cu Kα radiation(λ=0.154 07 nm,40 kV,40 mA,5(°)·min-1from 5°to 80°).The FTIR spectra of the sample was tested on a Nicolet 6700 spectrometer.The Brunauer-Emmett-Teller(BET)surface area was measured at 77 K with a Micromeritics ASAP2460 instrument(The air-dried sample was activated in a vacuum at 120℃for 4 h).UV-Vis diffuse reflectance spectra(UV-Vis DRS)were recorded on a UV-Vis-NIR spectrophotometer (Shimadzu 3600).Scanning electro nmicroscopy(SEM,FEINANO SEM430)was used to analyze the morphology of the samples.X-ray electron spectroscopy(XPS)measurements were performed with a Thermo Scientific KAlpha+XPS system using Mg Kα as an excitation source.Photodegradation solutions were analyzed by UV-Vis spectroscopic measurements(Persee TU-1810)in a range from 200 to 800 nm in ambient conditions.Thermogravimetric(TG)analyses were performed on a Shimadzu DTG-60H integration thermal analyzer from 25 to 600℃ at a heating rate of 10℃·min-1under an air atmosphere.

    1.4 Evaluation of photocatalytic activity

    The photocatalytic activity of each MFe-T was evaluated by its degradation rate of MB under visible light.The photocatalytic system consisted of photocatalyst(20 mg),hydrogen peroxide(H2O2)(50 μL),and rhodamine B(RhB)(100 mL 20 mg·L-1)solution.After stirring for 60 min in the dark,the suspension was illuminated with a 300 W Xe visible-light lamp(λ>420 nm,MC-XF300,Beijing Merry Change Co.,Ltd.).During the process,the solution was sampled every 10 min,filtered,and analyzed using a UV-Vis detector.

    1.5 Photoelectrochemical measurements

    The photoelectrochemical properties of the materials were evaluated using an electrochemical workstation(CHI-760E,Chenhua Instrument,Shanghai,China).The sample(10 mg)and mass fraction of 5% Nafion solution(10 μL)were added to ethanol(1 mL),and the mixture was sonicated for 1 h to form a uniform slurry.The slurry(50 μL)was added dropwise onto the conductive side of an indium tin oxide glass(1 cm×1 cm)and then dried at 100℃for 5 h to obtain a working electrode.The reference electrode was Ag/AgCl(saturated KCl solution)while the counter electrode was a Pt sheet.A three-electrode system with a Na2SO4(0.5 mol·L-1)electrolyte was used to determine the photocurrent and perform electrochemical impedance spectroscopy(EIS).The light source was a 300 W Xe lamp(λ>420 nm).

    2 Results and discussion

    2.1 Characterization

    PXRD patterns of pristine MFe and MFe-T are shown in Fig.1a.The XRD patterns of MFe,MFe-100,MFe-200,and MFe-250 are in good agreement with simulated patterns(MFe-Sim),indicating that the MFe structure was stable only at low temperatures(Fig.1a).From the patterns for MFe-300 and MFe-400,the absence of MFe peaks in the range of 5°-20°implied that the MFe framework was destroyed.Moreover,the diffraction patterns for MFe-300 and MFe-400 were consistent with that of Fe2O3(PDF No.33-0664),indicating the complete decomposition of MFe at high temperatures.

    Fig.1 (a)PXRD patterns of MFe and MFe-T;(b)FTIR spectra of MFe and MFe-T

    At 100℃,the loss of adsorbed water molecules occurred,whereas at 200℃,the loss of coordinated water molecules commenced.At 250℃,Fe—O sites are exposed by the loss of organic ligands as CO2,while at temperatures above 300℃,MFe structure began to collapse.Hence,MFe structure is only retained below a certain temperature.To confirm this,TG analysis of MFe was carried out by heating the sample from 25 to 700℃in the air(thermal calcination;Fig.S1,Supporting information).When the temperature reached 427℃,the weight decreased sharply by 60%,indicating that the original MOF structure was critically damaged.The removal of the organic ligand terephthalic acid occurs at such temperatures,resulting in the exposure of widely distributed Fe—O active sites.As the temperature approached 700℃,the weight dropped further by approximately 10%,suggesting the complete degradation of the MOF skeleton and the substantial oxidation of the iron to Fe2O3.These results show that TG analysis was a suitable method for sample analysis in this study.

    To further confirm the presence of organic ligands in MFe-100,MFe-200,and MFe-250,FTIR spectra of MFe-T samples was compared to that of MFe sample(Fig.1b).The FTIR spectra of MFe-100,MFe-200,and MFe-250 were very similar to that of MFe,suggesting that MFe structure was largely retained.Conversely,pyrolysis at 300℃led to the disappearance of the peaks at 1 650-1 300 cm-1(carboxylate groups),indicating the partial decomposition of MFe structure.The temperature at which most significant degradation of MFe structure occurred was 400℃.

    Next,UV-Vis DRS was conducted.The spectra for MFe and MFe-T are shown in Fig.S2a.As the literature described[39],MFe absorbs visible light in the rededge region(approximately 650 nm).For MFe-T samples,the initial increase in Fe2O3(at temperatures below 300℃)led to a redshift(shift of the absorption edge towards higher wavelengths/lower energy),thereby enhancing light absorption.Consequently,the band gaps of MFe decreased from 2.50 to 2.15 eV(MFe-200).Hence,thermally treated MFe-T potentially exhibits photocatalytic properties.

    Fig.S3 shows the nitrogen(N2)adsorption-desorption isotherms of MFe-T samples.The N2adsorptiondesorption isotherms of the samples pyrolyzed at 100 and 200℃were the same,indicating that MFe porosity was preserved.MFe-300 and MFe-400 exhibited slightly increase in the surface area,whereas their porosity was more or less maintained.Furthermore,the Horvath-Kawazoe(H-K)micropore size distributions of MFe and MFe-T were very similar(Fig.S4),although MFe crystals shattered upon heat treatment(Fig.S5).These results indicate that the integrity of MFe structure was maintained in MFe-T,because it retained numerous Fe—O active sites.

    XPS was employed to determine the surface composition and element valence of the samples(Fig.2).The XPS survey spectra for both MFe and MFe-250 confirmed the presence of Fe,O,and C atoms,and did not contain peaks corresponding to any distinct impurities(Fig.2a).The results indicate a similarity in the composition and structure of MFe and MFe-250.The Fe2p3/2and Fe2p1/2XPS peaks for MFe were located at 711.39 and 725.09 eV,respectively[35],whereas those of MFe-250 were located at 711.34 and 724.84 eV,respectively(Fig.2b).The close similarity between these values indicates that MFe-250 structure did not collapse.In the XPS O1s spectrum of MFe(Fig.2c),the main peak corresponding to the carboxyl group of the terephthalic acid(H2BDC)linkers and the Fe—O bonds was located at 531.40 eV[40].In contrast,the corresponding O1s peak for MFe-250 shifted to 531.48 eV because some Fe—O bonds remain after decarboxylation[40].The high-resolution C1s XPS spectrum of MFe(Fig.2d)exhibited two peaks with binding energies of 288.43 and 284.50 eV,corresponding to the Fecarboxylate moiety and benzoic acid linker,respectively[39].The decrease in the intensity of the C1s peak in the spectrum for MFe-250 further indicates the heatinduced loss of organic ligands.Hence,the thermal treatment led to MFe decarboxylation and the corresponding generation of metal oxides,as revealed by the changes in the XPS peak intensity and position.

    Fig.2 XPS spectra of MFe and MFe-250:(a)survey,(b)Fe2p,(c)O1s,and(d)C1s

    2.2 Photocatalytic activities

    The MB degradation activities of MFe-T catalysts were evaluated at 25℃in a jacketed glass reactor containing photocatalyst,H2O2,and MB in aqueous under visible light irradiation.Fig.3a shows the photodegradation rate of MFe,MFe-100,MFe-200,MFe-250,MFe-300,and MFe-400;all samples exhibited catalytic activities towards MB degradation.Under the same conditions,non-calcined MFe showed a more general cata-lytic performance,degrading 88% of the MB within 90 min.The photocatalytic activity of the sample increased when the calcination temperature was raised from 100 to 250℃owing to the generation of more structural defects.Hence,MFe-200 and MFe-250 photodegraded 97% and 99% of MB,respectively,within 90 min,suggesting that the Fe—O sites play a critical role in the process.Among the tested catalysts,MFe-250 exhibited the highest photodegradation rate(99% within 90 min),suggesting that it is a novel and effective photocatalyst for the degradation of MB under visible light.In contrast,MFe-300 and MFe-400 photodegraded 23% and 16% of MB,respectively,within the same 90 min(Fig.3a).Therefore,it can be said that the photocatalytic activity is proportional to the number of Fe—O sites,and reaches a maximum for MFe-250.As the pyrolysis temperature increased further,conversion of MFe structure to Fe2O3was accompanied by a decrease in the catalytic activity.A further increase in the calcination temperature causes the collapse of MFe framework[41].In the cases studied,Fe2O3photocatalysts exhibited significantly lower MB degradation activity compared to pristine MFe.Hence,the MFe framework is necessary for a high photocatalytic MB degradation performance.

    Fig.3 (a)Photocatalytic degradation of MB under visible-light irradiation over different samples;(b)Degradation rate of MFe-250 on MB under different conditions;(c)MB removal in the repeated tests over as-prepared MFe-250;(d)Photocatalytic degradation of MB over MFe-250 under visible light irradiation in the presence of different scavengers

    Control experiments were conducted to verify the photocatalytic degradation properties of MFe-250.Fig.3b shows the concentration(c/c0)of MB in different photocatalytic degradation systems.In the absence of catalyst and H2O2,no degradation of MB under irradiation was observed[42].The addition of H2O2to the MB solutions led to 27% degradation within 90 min of visible-light irradiation.This resulted from the lightinduced formation of·OH upon the irradiation of H2O2.When only MFe-250 and visible light alone was employed,8% MB was degraded.This suggested an H2O2-dependence of the photoactivity of the catalyst.In the dark,a mixture of MFe-250 and H2O2only led to a degradation rate of 9% MB within 90 min.Furthermore,99% MB was degraded by using MFe-250 and H2O2under visible light irradiation.Additionally,the changes in the UV-visible spectra of MB solution containing MFe-250 and H2O2under visible-light irradiation(Fig.S6)corroborate the high catalytic performance of MFe-250 in the presence of H2O2.

    Catalyst stability is pivotal to the choice of practical applications in photocatalysis.The stability of MFe-250 was assessed by recycling it during several experiments.After each reaction,the recovered catalyst was washed with H2O and EtOH to remove adsorbed impurities,after which it was dried at 60℃.The same amount of sample was then added to the next experiment,which was conducted under the same conditions as the previous one.As shown in Fig.3c,nearly no loss of activity was observed in MFe-250,even over three cycles.The stability of MFe-250 was confirmed by PXRD analysis,where the same results were obtained for both,the as-prepared and the recovered catalysts(Fig.S7).Hence,MFe-250 catalyst is both recyclable and stable under photocatalytic reaction conditions.

    The origin of the excellent photocatalytic activity of MFe-250 was obtained from the photocurrent and EIS results.The photocurrent intensity of MFe-250 was almost twice that of MFe(Fig.4a).Meanwhile,EIS,which reflects the charge separation capability of a photocatalyst,revealed a higher light-induced charge separation rate in MFe-250 than in MFe.The Nyquist arc radius of MFe-250 was smaller than that of MFe(Fig.4b),indicating a corresponding smaller charge/electron transfer resistance in MFe-250 compared to that in MFe[2].Therefore,the high charge separation efficiency of MFe-250 can be attributed to its low electron transfer resistance.Thus,the thermal treatment improved the charge separation efficiency of MFe and ultimately enhanced its photocatalytic performance.

    Fig.4 (a)Photocurrent responses and(b)EIS spectra of MFe and MFe-250

    2.3 Mechanism of MB photodegradation using MFe-250/visible-light/H2O2system

    Hydroxyl radicals(·OH)play an important role in the photocatalytic degradation of MB[42].Isopropanol(IPA)was used as a scavenger to detect·OH generated at the surface of MFe-250[43].To gain a deeper understanding of the reaction mechanism,other scavengers such as EDTA-2Na[44-45]and VC[46]were used to detect the formation of photoexcited holes(h+)and superoxide radicals(·O2-)during the MB degradation experiments.Fig.3d reveals a decrease in the MB photodegradation rate of MFe-250 from 99% to 96% following the addition of EDTA-2Na.When VC was added,the photodegradation rate was 98%,whereas the addition of IPA significantly decreased the photodegradation rate to 31%,indicating that IPA greatly influences the degradation reaction.Hence,·OH plays a crucial role in the photocatalytic degradation of MB,whereas h+and·O2-are less important.Based on these results,a plausible mechanism for the photocatalytic degradation of MB was proposed(Fig.5).

    Fig.5 Possible mechanism for the photocatalytic degradation of MB and the charge transfer process

    3 Conclusions

    MFe-based quasi-MOF materials were synthesized by the solvothermal method to investigate the effect of the calcination temperature on their photocatalytic activity towards MB degradation.Among the tested samples,MFe-250 showed the best efficiency in the photocatalytic degradation of MB.Furthermore,it exhibited high chemical stability.To study the reaction mechanisms involved in the process,a series of control experiments were conducted.MFe was synthesized and calcined at different temperatures in air.The results showed that most of MFe porous structure remained intact in MFe-250,which exhibited the best photocatalytic degradation efficiency on MB among all tested materials.According to the photocurrent and EIS results,the electronic transmission capability of MFe-250 exceeded that of MFe.The improvement in the photocatalytic performance stems from the enhanced exposure of active sites and preservation of the framework.The porous structure favours the absorption of MB molecules,whereas the exposed active sites promote photocatalytic activity.In addition,scavenging experiments revealed that hydroxyl radicals are the main active species,whereas photoexcited holes and superoxide radicals are far less important.This study will likely inspire future designs and preparation methods of environmentally friendly photocatalysts.

    Supporting information is available at http://www.wjhxxb.cn

    Acknowledgments:This work was supported by the Natural Science Foundation of Anhui Province (Grant No.1908085QB75),National Natural Science Foundation of China(Grants No.62104003,21976002 and 22004003).

    国产熟女欧美一区二区| 丰满乱子伦码专区| 亚洲精品自拍成人| 一级爰片在线观看| 毛片一级片免费看久久久久| 一本—道久久a久久精品蜜桃钙片| 永久免费av网站大全| 午夜免费男女啪啪视频观看| 999精品在线视频| av国产久精品久网站免费入址| 色吧在线观看| 人成视频在线观看免费观看| av视频免费观看在线观看| 激情视频va一区二区三区| 中文欧美无线码| 尾随美女入室| 韩国精品一区二区三区 | 亚洲,欧美,日韩| 婷婷成人精品国产| 毛片一级片免费看久久久久| 少妇的丰满在线观看| 男女啪啪激烈高潮av片| 人妻一区二区av| 伊人久久国产一区二区| 亚洲国产色片| 日韩成人av中文字幕在线观看| 日韩中字成人| 日本-黄色视频高清免费观看| 国产午夜精品一二区理论片| 久久久久久人人人人人| av不卡在线播放| 中国国产av一级| 免费播放大片免费观看视频在线观看| av.在线天堂| 欧美激情 高清一区二区三区| 内地一区二区视频在线| 久久久久网色| 欧美日韩视频高清一区二区三区二| 亚洲第一区二区三区不卡| 精品亚洲成a人片在线观看| 狂野欧美激情性bbbbbb| 久久久久久久精品精品| 中国三级夫妇交换| 国产免费福利视频在线观看| 国产欧美日韩一区二区三区在线| 大片免费播放器 马上看| 国产永久视频网站| 日韩视频在线欧美| 午夜91福利影院| 欧美精品av麻豆av| www.色视频.com| 午夜日本视频在线| 久久精品人人爽人人爽视色| 男人添女人高潮全过程视频| 婷婷成人精品国产| 2021少妇久久久久久久久久久| 免费大片18禁| 国产精品国产三级国产av玫瑰| 超色免费av| 插逼视频在线观看| 欧美老熟妇乱子伦牲交| 十八禁高潮呻吟视频| 欧美成人午夜精品| 最后的刺客免费高清国语| 狂野欧美激情性xxxx在线观看| 久久这里只有精品19| 成人毛片a级毛片在线播放| 在线天堂中文资源库| 国产精品久久久av美女十八| 青春草国产在线视频| 美国免费a级毛片| 国产综合精华液| 日韩大片免费观看网站| 超色免费av| 免费观看av网站的网址| 免费看光身美女| 亚洲三级黄色毛片| 91精品三级在线观看| 伦精品一区二区三区| 日本黄大片高清| 免费黄频网站在线观看国产| 热99国产精品久久久久久7| 国产精品一国产av| 久久女婷五月综合色啪小说| 又黄又爽又刺激的免费视频.| 又黄又粗又硬又大视频| 欧美日韩视频高清一区二区三区二| 各种免费的搞黄视频| 最新中文字幕久久久久| 91国产中文字幕| av网站免费在线观看视频| 国产精品.久久久| 国产又色又爽无遮挡免| 久久精品aⅴ一区二区三区四区 | 国产片内射在线| 秋霞伦理黄片| 天堂8中文在线网| 日韩中文字幕视频在线看片| 一区二区av电影网| 黄片无遮挡物在线观看| 美女大奶头黄色视频| 国产熟女欧美一区二区| 性高湖久久久久久久久免费观看| 亚洲欧美成人精品一区二区| 精品一品国产午夜福利视频| tube8黄色片| 日韩制服丝袜自拍偷拍| 亚洲成人一二三区av| 一级黄片播放器| 精品一区二区三区视频在线| av电影中文网址| 美女内射精品一级片tv| 天美传媒精品一区二区| 精品一区在线观看国产| 一边亲一边摸免费视频| 精品国产一区二区久久| 国产精品无大码| 欧美+日韩+精品| kizo精华| kizo精华| 蜜桃在线观看..| 久久久精品免费免费高清| 巨乳人妻的诱惑在线观看| 国产高清三级在线| 亚洲少妇的诱惑av| 久久精品国产鲁丝片午夜精品| 九九爱精品视频在线观看| 欧美成人精品欧美一级黄| 国产精品一二三区在线看| 麻豆乱淫一区二区| 欧美成人午夜精品| 久久人人爽人人片av| 久久久久网色| 男人爽女人下面视频在线观看| 久久国内精品自在自线图片| 99九九在线精品视频| 久久 成人 亚洲| 免费观看无遮挡的男女| 亚洲 欧美一区二区三区| 久久青草综合色| 亚洲欧美日韩卡通动漫| 91在线精品国自产拍蜜月| 91在线精品国自产拍蜜月| av在线播放精品| 久久国产亚洲av麻豆专区| 久久99热这里只频精品6学生| 久久99热这里只频精品6学生| 免费观看性生交大片5| 亚洲欧美日韩卡通动漫| 啦啦啦视频在线资源免费观看| 一二三四中文在线观看免费高清| 亚洲色图综合在线观看| 91精品国产国语对白视频| 高清不卡的av网站| 丝袜美足系列| 99九九在线精品视频| 亚洲精品国产av成人精品| 2021少妇久久久久久久久久久| 色婷婷久久久亚洲欧美| 亚洲欧美一区二区三区国产| 亚洲人与动物交配视频| 一边摸一边做爽爽视频免费| 欧美丝袜亚洲另类| 欧美日韩亚洲高清精品| 欧美成人午夜免费资源| 精品亚洲乱码少妇综合久久| 日本91视频免费播放| 久久久久久久亚洲中文字幕| 亚洲第一av免费看| 日韩精品免费视频一区二区三区 | 边亲边吃奶的免费视频| 亚洲激情五月婷婷啪啪| 一区二区三区精品91| 亚洲天堂av无毛| 99热国产这里只有精品6| 日本wwww免费看| 女人精品久久久久毛片| 成人国语在线视频| 在线观看三级黄色| 男女国产视频网站| 日韩成人av中文字幕在线观看| 啦啦啦视频在线资源免费观看| 成人无遮挡网站| 国产在视频线精品| 老司机影院成人| 水蜜桃什么品种好| 激情视频va一区二区三区| 纯流量卡能插随身wifi吗| 亚洲国产精品国产精品| 国产成人精品一,二区| 欧美97在线视频| 18禁国产床啪视频网站| 免费大片黄手机在线观看| 美女脱内裤让男人舔精品视频| 久久99一区二区三区| 欧美日韩成人在线一区二区| 国产欧美日韩综合在线一区二区| 久久99热6这里只有精品| 日韩一区二区三区影片| 99热这里只有是精品在线观看| 亚洲成人一二三区av| 亚洲国产精品国产精品| 午夜免费观看性视频| 久久精品国产亚洲av涩爱| 一级片免费观看大全| 亚洲国产av影院在线观看| 美国免费a级毛片| 久久久国产欧美日韩av| 满18在线观看网站| 亚洲色图 男人天堂 中文字幕 | 久久 成人 亚洲| 国内精品宾馆在线| 国产乱来视频区| 久久精品国产a三级三级三级| 日本欧美视频一区| 亚洲欧美成人精品一区二区| 国产精品.久久久| 久久99一区二区三区| 两性夫妻黄色片 | av国产久精品久网站免费入址| 成年人午夜在线观看视频| 久久99热6这里只有精品| 久久精品国产a三级三级三级| 国产xxxxx性猛交| 高清视频免费观看一区二区| 亚洲成人av在线免费| 亚洲一区二区三区欧美精品| 免费播放大片免费观看视频在线观看| 精品午夜福利在线看| 国产日韩一区二区三区精品不卡| 成年人午夜在线观看视频| 午夜精品国产一区二区电影| 晚上一个人看的免费电影| 啦啦啦啦在线视频资源| 极品少妇高潮喷水抽搐| 80岁老熟妇乱子伦牲交| 一级毛片黄色毛片免费观看视频| 亚洲美女黄色视频免费看| 国产国拍精品亚洲av在线观看| 9191精品国产免费久久| 国产一级毛片在线| 一级爰片在线观看| 一区二区日韩欧美中文字幕 | 美女脱内裤让男人舔精品视频| 久久久国产精品麻豆| 伦理电影大哥的女人| 日韩,欧美,国产一区二区三区| 亚洲精品美女久久av网站| 捣出白浆h1v1| 国产欧美亚洲国产| www.av在线官网国产| 黄片播放在线免费| 黄色视频在线播放观看不卡| 女人被躁到高潮嗷嗷叫费观| 久久久精品区二区三区| 国产无遮挡羞羞视频在线观看| 国产亚洲一区二区精品| 国产日韩欧美视频二区| 性色av一级| 亚洲国产欧美日韩在线播放| 国产精品久久久久久久久免| 国产成人欧美| 欧美成人午夜免费资源| av黄色大香蕉| 少妇精品久久久久久久| 日韩电影二区| 18禁国产床啪视频网站| 亚洲在久久综合| 捣出白浆h1v1| 成人亚洲精品一区在线观看| 国产av精品麻豆| 亚洲欧美一区二区三区黑人 | 插逼视频在线观看| 国产黄频视频在线观看| 色婷婷av一区二区三区视频| 制服人妻中文乱码| 中文字幕精品免费在线观看视频 | 满18在线观看网站| 中文字幕人妻熟女乱码| 亚洲综合色网址| 日日爽夜夜爽网站| 久久精品夜色国产| 久久毛片免费看一区二区三区| 国产成人精品无人区| 亚洲伊人久久精品综合| 亚洲av免费高清在线观看| 亚洲国产成人一精品久久久| tube8黄色片| a级片在线免费高清观看视频| 欧美日本中文国产一区发布| 肉色欧美久久久久久久蜜桃| av播播在线观看一区| 亚洲成国产人片在线观看| 国产av国产精品国产| 中文字幕精品免费在线观看视频 | 国产黄色免费在线视频| 一区二区av电影网| 国产精品一区二区在线不卡| 高清欧美精品videossex| 97精品久久久久久久久久精品| 女人被躁到高潮嗷嗷叫费观| 黄网站色视频无遮挡免费观看| 日韩 亚洲 欧美在线| 久久久久久人人人人人| 国产xxxxx性猛交| 亚洲在久久综合| 日本免费在线观看一区| 亚洲激情五月婷婷啪啪| 亚洲国产av新网站| 亚洲av福利一区| 日日摸夜夜添夜夜爱| 欧美xxxx性猛交bbbb| 九九爱精品视频在线观看| 80岁老熟妇乱子伦牲交| av有码第一页| 日韩av不卡免费在线播放| 1024视频免费在线观看| 99香蕉大伊视频| 日韩av不卡免费在线播放| 婷婷色麻豆天堂久久| 亚洲人成77777在线视频| 成年美女黄网站色视频大全免费| 黄片无遮挡物在线观看| 成人国语在线视频| 日本av手机在线免费观看| 色婷婷久久久亚洲欧美| 久久久久久人人人人人| 成年动漫av网址| 亚洲成色77777| 亚洲精品日韩在线中文字幕| 最近最新中文字幕免费大全7| 人人澡人人妻人| 亚洲国产色片| 十八禁高潮呻吟视频| 国产毛片在线视频| 满18在线观看网站| 亚洲欧美成人综合另类久久久| 精品一区在线观看国产| 午夜福利影视在线免费观看| 国产一级毛片在线| 一区二区日韩欧美中文字幕 | 母亲3免费完整高清在线观看 | 少妇的逼水好多| 中文字幕另类日韩欧美亚洲嫩草| 国产精品成人在线| 国产国拍精品亚洲av在线观看| 咕卡用的链子| 免费黄网站久久成人精品| 欧美人与善性xxx| 国产成人精品无人区| 我的女老师完整版在线观看| 91精品国产国语对白视频| 婷婷色av中文字幕| 日韩欧美一区视频在线观看| 国产免费福利视频在线观看| 日日撸夜夜添| 91精品伊人久久大香线蕉| 999精品在线视频| 免费在线观看完整版高清| 亚洲一区二区三区欧美精品| 亚洲内射少妇av| 一本大道久久a久久精品| 狠狠精品人妻久久久久久综合| 91精品三级在线观看| 国产熟女午夜一区二区三区| 啦啦啦中文免费视频观看日本| 欧美成人精品欧美一级黄| 免费大片黄手机在线观看| 欧美bdsm另类| 日日摸夜夜添夜夜爱| 中文字幕亚洲精品专区| 亚洲经典国产精华液单| 日韩伦理黄色片| 嫩草影院入口| 久久精品国产亚洲av天美| 黑丝袜美女国产一区| 日本vs欧美在线观看视频| 婷婷色综合www| 久久狼人影院| 1024视频免费在线观看| 久久影院123| 国产成人欧美| 伦理电影大哥的女人| 精品久久久久久电影网| 久久精品国产综合久久久 | 国产一区亚洲一区在线观看| 久久精品久久久久久久性| 大陆偷拍与自拍| 亚洲国产精品一区三区| 老女人水多毛片| 一级毛片黄色毛片免费观看视频| 久久久久视频综合| 下体分泌物呈黄色| 18+在线观看网站| 街头女战士在线观看网站| 免费大片18禁| 少妇精品久久久久久久| 91国产中文字幕| 午夜老司机福利剧场| a级片在线免费高清观看视频| 国产成人91sexporn| 麻豆精品久久久久久蜜桃| 99视频精品全部免费 在线| √禁漫天堂资源中文www| 国产成人欧美| 欧美激情极品国产一区二区三区 | 久久久久久久国产电影| 一级毛片黄色毛片免费观看视频| 久久午夜综合久久蜜桃| av在线app专区| 汤姆久久久久久久影院中文字幕| 在线观看免费高清a一片| av在线老鸭窝| 男的添女的下面高潮视频| 丰满乱子伦码专区| 亚洲成人一二三区av| 亚洲,欧美,日韩| 一区二区av电影网| 2021少妇久久久久久久久久久| 青春草视频在线免费观看| 亚洲一区二区三区欧美精品| 人人澡人人妻人| 久久精品国产亚洲av天美| 中文字幕人妻丝袜制服| 丰满乱子伦码专区| 如何舔出高潮| 大陆偷拍与自拍| 欧美日韩亚洲高清精品| 一级,二级,三级黄色视频| 啦啦啦视频在线资源免费观看| 午夜福利视频在线观看免费| a级毛片在线看网站| 热re99久久国产66热| 另类亚洲欧美激情| 亚洲欧洲国产日韩| 9热在线视频观看99| 九草在线视频观看| 国产激情久久老熟女| 18禁动态无遮挡网站| 欧美精品一区二区大全| 91精品伊人久久大香线蕉| 少妇的逼水好多| 色婷婷av一区二区三区视频| 51国产日韩欧美| 精品国产露脸久久av麻豆| 亚洲av电影在线观看一区二区三区| 午夜影院在线不卡| 十分钟在线观看高清视频www| 久久精品国产鲁丝片午夜精品| 肉色欧美久久久久久久蜜桃| 美女主播在线视频| 美女国产视频在线观看| 春色校园在线视频观看| 在线精品无人区一区二区三| 一区二区av电影网| 免费黄色在线免费观看| 欧美最新免费一区二区三区| 国产亚洲最大av| 亚洲少妇的诱惑av| 欧美日韩成人在线一区二区| 亚洲综合精品二区| 人妻一区二区av| 十分钟在线观看高清视频www| 少妇熟女欧美另类| 亚洲成人av在线免费| 成人18禁高潮啪啪吃奶动态图| 在线观看人妻少妇| 一区在线观看完整版| 一级黄片播放器| 在线看a的网站| 久久午夜福利片| 久久久久国产网址| 啦啦啦视频在线资源免费观看| 国产一级毛片在线| 免费在线观看完整版高清| 亚洲精品乱久久久久久| 欧美亚洲日本最大视频资源| 狠狠婷婷综合久久久久久88av| 丰满迷人的少妇在线观看| 亚洲欧美色中文字幕在线| 日本午夜av视频| 人妻少妇偷人精品九色| 亚洲av电影在线进入| 亚洲国产精品一区三区| 免费少妇av软件| 又大又黄又爽视频免费| 一边摸一边做爽爽视频免费| 欧美日韩一区二区视频在线观看视频在线| 综合色丁香网| 秋霞伦理黄片| 少妇人妻久久综合中文| 亚洲精品中文字幕在线视频| av网站免费在线观看视频| 亚洲国产最新在线播放| 亚洲成av片中文字幕在线观看 | 日本黄大片高清| 热re99久久国产66热| 免费在线观看完整版高清| 午夜激情久久久久久久| 亚洲av在线观看美女高潮| 国产精品一国产av| 最近2019中文字幕mv第一页| 欧美日韩一区二区视频在线观看视频在线| 黄色怎么调成土黄色| av视频免费观看在线观看| 日韩三级伦理在线观看| 丝瓜视频免费看黄片| 如日韩欧美国产精品一区二区三区| 欧美日韩av久久| 插逼视频在线观看| 国产精品一区二区在线观看99| 2018国产大陆天天弄谢| 纯流量卡能插随身wifi吗| 人成视频在线观看免费观看| 国产1区2区3区精品| 国产色婷婷99| 免费在线观看黄色视频的| 日本欧美国产在线视频| 天堂中文最新版在线下载| 久久国产亚洲av麻豆专区| 90打野战视频偷拍视频| 夜夜骑夜夜射夜夜干| 满18在线观看网站| 午夜激情av网站| 国产永久视频网站| 夜夜骑夜夜射夜夜干| 中文字幕另类日韩欧美亚洲嫩草| videossex国产| 九九在线视频观看精品| 王馨瑶露胸无遮挡在线观看| 国产在线视频一区二区| 午夜免费鲁丝| 80岁老熟妇乱子伦牲交| 99精国产麻豆久久婷婷| 免费人妻精品一区二区三区视频| 男女边吃奶边做爰视频| h视频一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 乱码一卡2卡4卡精品| 色婷婷av一区二区三区视频| 欧美97在线视频| 18禁裸乳无遮挡动漫免费视频| 日本91视频免费播放| 美女国产视频在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲内射少妇av| h视频一区二区三区| 成人国语在线视频| 日本欧美视频一区| av又黄又爽大尺度在线免费看| 免费看不卡的av| 亚洲av电影在线观看一区二区三区| 高清视频免费观看一区二区| 亚洲色图综合在线观看| 日韩熟女老妇一区二区性免费视频| av卡一久久| 高清黄色对白视频在线免费看| 国产日韩欧美视频二区| 日韩av在线免费看完整版不卡| 国产日韩欧美视频二区| 日韩中字成人| 日日啪夜夜爽| 一本—道久久a久久精品蜜桃钙片| 男女午夜视频在线观看 | 午夜影院在线不卡| 亚洲内射少妇av| 亚洲三级黄色毛片| 成人漫画全彩无遮挡| 久久这里有精品视频免费| 激情五月婷婷亚洲| 亚洲精品美女久久久久99蜜臀 | 欧美人与性动交α欧美软件 | 亚洲四区av| 亚洲一码二码三码区别大吗| 一边摸一边做爽爽视频免费| 日韩伦理黄色片| av黄色大香蕉| 日本午夜av视频| 如何舔出高潮| 成人国产麻豆网| 又黄又爽又刺激的免费视频.| 欧美人与性动交α欧美精品济南到 | 亚洲美女视频黄频| 久久久久久人人人人人| 一级毛片 在线播放| 国产又爽黄色视频| 伦理电影免费视频| 伦精品一区二区三区| 亚洲欧美日韩卡通动漫| 在线天堂中文资源库| 久久精品国产综合久久久 | 午夜91福利影院| 九九在线视频观看精品| 水蜜桃什么品种好| 少妇被粗大猛烈的视频| 国产日韩欧美在线精品| www.熟女人妻精品国产 | 国精品久久久久久国模美| 久久女婷五月综合色啪小说| av不卡在线播放| 国产精品成人在线| 伊人久久国产一区二区| 多毛熟女@视频| videosex国产| 王馨瑶露胸无遮挡在线观看| 纵有疾风起免费观看全集完整版| 国产亚洲一区二区精品| 精品国产一区二区久久| 人妻 亚洲 视频| 一区二区三区四区激情视频| 九九在线视频观看精品| 狂野欧美激情性bbbbbb| 观看av在线不卡| 国产色爽女视频免费观看| 久久久国产一区二区|