• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis,Structure and Properties of Three Copper(Ⅱ)Complexes Based on a Bifunctional Ligand 2,2′∶6′2″-Terpyridine-4′-carboxylic Acid

    2021-12-09 07:21:58HEChunYuYANGXiaoQingZHANGYanHong2JIANGShuang

    HE Chun-YuYANG Xiao-QingZHANG Yan-Hong*,,2JIANG Shuang

    (1College of Chemistry and Environment Science,Key Laboratory of Excitonic Materials Chemistry&Devices,Inner Mongolia Normal University,Hohhot 010022,China)

    (2Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education),Nankai University,Tianjin 300071,China)

    Abstract:Two copper binuclear complexes[Cu(tpyc)(H2btc)]2(1),[Cu2(tpyc)2(suc)(H2O)2](2)and one coordination polymer{[Cu3(tpyc)3(OH)2(H2O)2]ClO4}n(3)(H3btc=1,3,5-benzenetricarboxylicacid,H2suc=succinicacid,Htpyc=2,2′∶6′2″-terpyridine-4′-carboxylic acid)have been synthesized under solvothermal conditions and characterized by elemental analysis,FT-IR spectroscopy,single-crystal X-ray diffraction,powder X-ray diffraction,thermogravimetric analysis and magnetic analysis.Structural analysis suggests that complexes 1-3 display 3D supramolecular networks by multiple hydrogen-bonding interactions.Magnetic studies show that ferromagnetic coupling exists between Cu(Ⅱ)ions in complex 1,while antiferromagnetic interaction exists between Cu(Ⅱ) ions in complex 2.CCDC:1950190,1;1950191,2;1950202,3.

    Keywords:binuclear complex;coordination polymer;crystal structure;magnetic property

    The design and construction of coordination polymers(CPs)have attracted tremendous interest due to their fascinating structures and intriguing topologies,as well as their potential applications in gas storage and separation,molecular recognition,luminescence,drug delivery,catalysis and magnetism[1-7].Although great progress and developments have been made in the construction of diverse architectures,it remains a considerable challenge to rationally design and synthesize the desired coordination polymers with exact structures,because the structural diversity of such solid materials is deeply influenced by many factors,such as temperature,solvent,pH values,coordination geometry of metal ions,connectivity of organic ligand and molar ratio of reactants,as well as the nature of auxiliary ligand involved[8-15].It is well known that the judicious choice of organic bridging ligands,such as flexibility,symmetry,length,substituent group plays a vital role to tune the structures and functions of the target polymer.Among all the extensively studied ligands,the polycarboxylate and the N-heterocyclic ligands are two types of excellent candidates for constructing CPs with interesting topologies and properties because they usually have good ligating ability to metal ions and readily adopt adjustable geometry[16-19].

    Although a substantial number of coordination polymers incorporating various kinds of the abovementioned ligands have been reported,the examples constructed from the bifunctional organic ligands,which contain both carboxyl group and pyridine ring,are comparatively rare.This is mainly due to the distinct selectivity and competition of the N/O donors coordinated to the specific metal centers.Up to now,only limited bifunctional organic linkers have been extensively studied,such as isonicotinic acid[20-21],pyridine-polycarboxylic acid[22-26],bipyridine-dicarboxylic acid[27-28],pyrazine carboxylic acid[29-30]and azole-containing carboxylic acid[31-33].In this work,an asymmetricalrigid ligand 2,2′∶6′2″-terpyridine-4′-carboxylic acid(Htpyc)has been tentatively employed.The carboxylate groups may rotate around the C—C single bond,and the potential hydrogen-bonding,as well as the π-interactions generators can result in materials with good thermal stabilities and functionalization.The strong coordinating ability of the pyridine ring can not only facilitate the binding to metal centers,but also afford considerable structural complexity and diversity of CPs.

    On the other hand,copper(Ⅱ)coordination polymers have been received considerable attention during the past decade.This is mainly due to their distinguished magnetic properties because Cu(Ⅱ)ion is paramagnetic and can readily take on a great variety of coordination spheres[34-35].The flexibility of the coordination mode,in combination with steric and crystal packing forces,leads to structural diversity and in turn,allows for a detailed investigation of their magnetostructural relationships and the further potential applications.

    Taking inspiration from the above contexts,we have prepared two copper binuclear complexes[Cu(tpyc)(H2btc)]2(1),[Cu2(tpyc)2(suc)(H2O)2](2)and one coordination polymer{[Cu3(tpyc)3(OH)2(H2O)2]ClO4}n(3)(H3btc=1,3,5-benzenetricarboxylic acid,H2suc=succinic acid).Their crystal structures and thermal stabilities have been studied.Meanwhile,the magnetic properties of complexes 1 and 2 have also been investigated.

    1 Experimental

    1.1 Materials and physical measurements

    All reagents used in the syntheses were commercially available and used as purchased.Elemental analyses for C,H,N were performed on a Perkin Elmer 2400 Elemental Analyzer.FT-IR spectra were recorded using a KBr pellet on a Nicolet 6700 FTIR in the 4 000-600 cm-1region.The powder X-ray diffraction(PXRD)data were collected on a Bruker D2 Phaser at room temperature with Cu Kα radiation(λ =0.154 06 nm)in a range of 7°≤2θ≤50°,operated at 30 kV and 10 mA.Thermogravimetric analyses(TGA)were performed on an SDT Q600 V20.9 Build 20 analyzer under a nitrogen atmosphere at a heating rate of 10℃·min-1in a range of 30-800℃.The variable temperature magnetic susceptibility data were collected on a Quantum Design MPMSXL-7 SQUID magnetometer.

    1.2 Synthesis of[Cu(tpyc)(H2btc)]2(1)

    A mixture of Htpyc(27 mg,0.10 mmol)and H3btc(21 mg,0.10 mmol)was dissolved in DMF(4 mL)in a 15 mL glass vial,then a solution of Cu(ClO4)2·6H2O(44.5 mg,0.12 mmol)in 2 mL H2O was added dropwise into the above solution.After ultrasonication for about 30 min,the resulting solution was placed in an autoclave and heated at 90°C for 4 d.Blue block crystals were isolated after the reaction system was slowly cooled to room temperature.Yield:36 mg(54% based on Cu).Anal.Calcd.for C50H30Cu2N6O16(%):C,54.70;H,2.75;N,7.65.Found(%):C,54.77;H,2.69;N,7.73.FT-IR(KBr pellet,cm-1):3 064(w),1 855(w),1 694(m),1 608(m),1 583(m),1 563(m),1 479(w),1 382(m),1 246(m),1 174(m),1 090(w),1 057(w),1 018(m),973(w),927(w),902(w),805(w),772(m),753(m),694(m).

    1.3 Synthesis of[Cu2(tpyc)2(suc)(H2O)2](2)

    Htpyc(27 mg,0.10 mmol),H2suc(12 mg,0.10 mmol)and Cu(ClO4)2·6H2O(44.5 mg,0.12 mmol)were dispersed in 6 mL DMF/H2O(2∶1,V/V)and sealed into a 15 mL glass vial and stirred for 30 min,then heated to 100℃for 3 d.After slow cooling to the room temperature,green block crystals of the complex 2 were obtained,washed with DMF and dried in air.Yield:22 mg(42% based on Cu).Anal.Calcd.for C36H28Cu2N6O10(%):C,51.99;H,3.39;N,10.10.Found(%):C,52.34;H,3.01;N,10.37.FT-IR(KBr pellet,cm-1):3 389(w),3 032(w),1 610(s),1 551(s),1 471(m),1 398(s),1 318(s),1 226(m),1 167(w),1 048(w),1 021(w),909(w),790(m),730(m),684(m).

    1.4 Synthesis of{[Cu3(tpyc)3(OH)2(H2O)2]ClO4}n(3)

    Htpyc(27 mg,0.10 mmol),4,4′-bipyridine(16 mg,0.10 mmol)and Cu(ClO4)2·6H2O(44.5 mg,0.12 mmol)were dissolved in 5 mL DMF/H2O(4∶1,V/V)in a 15 mL glass vial.After ultrasonication for about 30 min,the resulting solution was placed in an autoclave and heated at 90℃for 3 d and then slowly cooled to room temperature.Green block crystals of 3 were collected by filtration,washed with DMF and then dried in air.Yield:23 mg(48% based on Cu).Anal.Calcd.for C48H36ClCu3N9O14(%):C,48.49;H,3.05;N,10.60.Found(%):C,48.61;H,3.01;N,10.47.FT-IR(KBr pellet,cm-1):3 090(w),1 615(s),1 563(m),1 472(m),1 395(m),1 330(m),1 246(m),1 174(w),1 070(vs),895(m),850(w),778(m),740(m),681(m),649(m).

    1.5 Crystal structure determination and refinement

    Single crystals of complexes 1 and 3 were mounted on a Bruker Smart Apex CCD diffractometer with graphite-monochromatized MoKαradiation (λ=0.071 073 nm)by using theωscan technique at 193 K.Diffraction data of 2 were collected on an XtaLAB AFC12(RINC):Kappa single diffractometer with CuKαradiation(λ=0.154 178 nm)at 120 K.Empirical absorption corrections were applied by using the SADABS program[36].The structures were solved by direct methods and refined by the full-matrix leastsquares onF2using the SHELXTL-2014 software package for 1 and 3 and Olex 2 for 2[37-39].All nonhydrogen atoms were refined with anisotropic displacement parameters.The positions of hydrogen atoms attached to carbon atoms were generated geometrically and refined with isotropic thermal parameters.Detailed crystallographic data and structure refinement parameters for complexes 1-3 are listed in Table 1.Selected bond lengths and bond angles are listed in Table 2.The hydrogen bond parameters are listed in Table 3.

    Table 1 Crystal data and structure refinement for complexes 1-3

    Table 2 Selected bond lengths(nm)and angles(°)for complexes 1-3

    Table 3 Hydrogen bond parameters for complexes 1-3

    CCDC:1950190,1;1950191,2;1950202,3.

    Continued Table 1

    Continued Table 2

    2 Results and discussion

    2.1 Structure description of 1

    Single-crystal X-ray analysis reveals that complex 1 crystallizes in the monoclinic space groupP21/c.There are one crystallographically independent Cu(Ⅱ)ion,one tpyc-ligand,as well as one partially deprotonated H2btc-moiety in the asymmetric unit.As illustrated in Fig.1a,the Cu(Ⅱ)center is in a five-coordinated environment.In a five-coordinated complex,the structural index parameterτcan be applicable to describe the degree of trigonality between trigonal bipyramid(τ=1)and square pyramid(τ=0)[40].In complex 1,theτvalue is 0.012 and thus the coordination polyhedron around Cu(Ⅱ)ion can be regarded as a slightly distorted square pyramidal geometry.The basal plane consists of three nitrogen atoms(N1,N2,N3)from the same tpycligand and one oxygen atom(O1)from one H2btcligand with the bond length ranging from 0.192 3(5)nm(Cu1—O1)to 0.205 2(3)nm(Cu1—N3).The four donor atoms deviate from their mean plane by 0.012 nm(N1),-0.009 nm(N2),-0.011 nm(N3)and 0.008 nm(O1),and the Cu(Ⅱ)ion is-0.021 nm out of the plane.The apical position is occupied by the O2 atom from the other coordinated H2btc-ligand at a distance of 0.224 8(1)nm.The bond angles around the Cu(Ⅱ)center are lying in a range of 79.26(5)°-159.45(5)°.In H2btc-anion,only one carboxylic group takes part in coordination and adopts a bridging bidentate modeμ2-η1∶η1to connect two Cu (Ⅱ) ions,forming[Cu2(CO2)2]secondary building units(SBUs)with a Cu1…Cu1iseparation of 0.464 94 nm.

    In the crystalline state,there are two kinds of O—H…O hydrogen bonds(Table 3)involving the free—COOH groups of H2btc-ligand and the oxygen atoms of tpyc-backbone.The neighboring[Cu2(CO2)2]SBUs are associated to form a 1D loop chain by hydrogen-bonding interaction of O3—H3O…O7ii(Fig.1b).The adjacent 1D chains are conjoined into a 2D layer network running parallel to theabplane through O5—H5O…O8iii(Fig.1c).These 2D layers are further interlinked via intermolecular interaction(O3—H3O…O7ii)to form a 3D supramolecular framework(Fig.1d).

    Fig.1 (a)Coordination environment of Cu(Ⅱ)in 1,where hydrogen atoms are omitted for clarity;(b)View of 1D loop chain of 1;(c)View of 2D layer of 1;(d)3D supermolecular framework of 1

    2.2 Structure description of 2

    Complex 2 crystallizes in the triclinic system,with the P1 space group.The asymmetric unit contains one crystallographically independent Cu(Ⅱ)ion,one tpyc-ligand,and half a fully deprotonated suc2-linker,as well as one coordinated water molecule.As shown in Fig.2a,the Cu(Ⅱ)center is five-coordinated to three nitrogen atoms(N1,N2,N3)from the same tpycligand,one oxygen atom(O3)from one suc2-ligand,and one oxygen atom(O1)from the coordinated water molecule,forming a distorted square pyramidal geometry with τ value of 0.063.The equatorial plane is made up of N1,N2,N3,O3 and the bond lengths of Cu—N/O fall in a range of 0.193 2(2)-0.203 5(2)nm.The axial position is occupied by O1 and the bond length of Cu—O1 is 0.218 6(2)nm.The suc2-anion adopts a bridging coordination mode μ2-η1∶η0∶η1∶η0to connect two neighboring Cu(Ⅱ)ions,forming[Cu2C2H2(CO2)2]SBUs with a Cu1…Cu1idistance of 0.910 46 nm.There are two different kinds of hydrogen bonds:O1—H1A…O2iioriginates from the coordinated water molecule and suc2-ligand;O1—H1B…O5iiicomes from the coordinated water molecule and the free oxygen atoms of tpyc-ligand.As depicted in Fig.2b,the neighboring[Cu2C2H2(CO2)2]SBUs are joined together by hydrogen bonds of O1—H1A…O2iito give an infinite 1D doublechain.Then the adjacent ladder chains are further extended into a 3D network through hydrogen bonds of O1—H1B…O5iii(Fig.2c).

    Fig.2 (a)Coordination environment of Cu(Ⅱ)in 2,where hydrogen atoms are omitted for clarity;(b)View of 1D double-chain of 2;(c)View of 3D network of 2

    2.3 Structure description of 3

    Complex 3 crystallizes in the orthorhombic Pccn space group.The asymmetric unit of 3 consists of one and a half Cu(Ⅱ)ions,one and a half tpyc-ligands and one coordinated water molecule,as well as one coordinated OH-and half a free ClO4-.As shown in Fig.3a,there are two kinds of Cu(Ⅱ)coordination environments.Cu1 is located in a distorted{CuN3O2}square pyramidal geometry(τ=0.119)and ligated by three nitrogen atoms(N1,N2,N3)from the same tpyc-ligand,one coordinated water molecule(O4)and one OH-anion(O3).The equatorial plane is defined by atoms N1,N2,N3 and O3(the mean deviation from the plane is 0.012 4 nm),and the axial position is occupied by O4.The bond lengths of Cu1—N/O are measured in a range of 0.188 8(4)-0.242 4(6)nm.Cu2 is seven-coordinated with a distorted{CuN3O4}pentagonal bipyramid coordination geometry.The equatorial plane is made up of three nitrogen atoms(N4,N4i,N5)from the same tpycligand,two carboxylate oxygen atoms from another tpyc-ligand(O5ii,O5iii).The apical positions are occupied by the coordinated OH-(O3 and O3i)with a trans angle of 178.06(9)°.The Cu2—N/O distances range from 0.195 4(8)to 0.229(1)nm.The angles around Cu2 vary from 55.45(13)°to 178.06(9)°.The coordinated hydroxyl ions reside in the opposite position of the tpyc-ligand plane connecting three copper ions(Cu1,Cu1iand Cu2)to form a trinuclear[Cu3(tpyc)3(OH)2(H2O)2]subunit.The adjacent discrete trinuclear subunits are interconnected by the carboxylate oxygen atoms from tpyc-ligand and the hydrogen bonds(O4—H42…O1vi)to form an infinite 1D chain along the c axis.The distance of Cu…Cu is 0.332 2(7)nm for Cu1…Cu2 and 0.5846(5)nm for Cu1…Cu1i(Fig.3b).These 1D chains are further linked together to afford a 3D supramolecular architecture through the intermolecular hydrogen interaction of O4—H41…O2vii(the distance of H41…O2viiis 0.188(3)nm and the angle of O4—H41…O2viiis 178.3°)between the coordinated water molecules and free carboxylate oxygen atoms of tpycligands(Fig.3c).

    Fig.3 (a)Coordination environment of Cu(Ⅱ)in 3,where hydrogen atoms are omitted for clarity;(b)View of 1D chain of 3;(c)3D supramolecular architecture of 3

    2.4 Structural diversities of complexes 1-3

    In this work,the same main ligand Htpyc and metal salt Cu(ClO4)2·6H2O as well as similar reaction conditions have been adopted to synthesize the three complexes.However,changes in the auxiliary ligands lead to different dimensionality in the final structures.In complex 1,we have selected the tricarboxylate H3btc to expect the high dimensional framework.However,the carboxylic groups of H3btc are partially deprotonated and only one carboxylic group takes part in coordination.Meanwhile,the carboxyl oxygen atoms of Htpyc ligand did not participate in the coordination,which makes the structure not further extended,showing a dimer structure.And then the adjacent dimer units are associated by multiple hydrogen bonding interactions resulting in a 3D network structure.In complex 2,when the liner H2suc coligand was introduced into the reaction system,the two carboxylic groups are completely deprotonated and the suc2-anion bridges the two adjacent Cu(Ⅱ)ions in a bridging mode to yield a binuclear structure.The neighboring binuclear units are further interlinked by the hydrogen-bonding interactions into a 3D network.In complex 3,4,4′-bipyridine was employed as the auxiliary ligand to adjust the structure of the complex,however,an unexpected 3D supramolecular architecture was obtained,in which 4,4′-bipyridine is not present.Although 4,4′-bipyridine does not exist in the final product,it might play an important role to regulate the pH value of the reaction system.The only poorly defined microcrystalline product can be obtained without it.From the structural descriptions above,it is evident that the coligands have a profound influence on the overall structure of the complexes.

    2.5 PXRD patterns and TGA

    PXRD experiments were carried out at room temperature to examine the purities and homogeneities of complexes 1-3.As shown in Fig.S1(Supporting information),the peak positions of the measured patterns agreed well with the simulated ones,indicative of the good purity of the complexes.

    To examine the thermal stabilities of complexes 1-3,TGA was performed on their single-crystal samples under an N2atmosphere.As shown in Fig.4,complex 1 was thermally stable up to 274℃and then displayed two steps of weight loss.The first weight loss of 50.2% between 274 and 308℃can be attributed to the release of tpyc-ligand(Calcd.49.2%).The second weight loss of 37.9% in a range of 308-380℃corresponds to the release of H2btc-ligand(Calcd.38.3%).The remaining residue is equivalent to the formation of CuO(Obsd.13.5%,Calcd.14.5%).The TGA curve of complex 2 showed three decomposition steps.The initial weight loss of 4.5% below 140℃can be assigned to the removal of two coordinated water molecules(Calcd.4.1%).The second abrupt weight loss of 58.1% between 220 and 290℃is due to the release of tpyc-ligand (Calcd.58.9%).Then suc2-ligand gradually broke down and the residual product of 23% corresponds to the component of CuO(Calcd.22.1%).For complex 3,the first weight loss was observed from 120 to 250℃,which can be attributed to the release of two coordinated H2O molecules and OH-anions,as well as the counter anions ClO4-.The weight loss of 15.6% is consistent with the calculated value(14.5%).Then the overall framework gradually collapsed until 580℃with a final residual mass of 17.2%,which is close to the calculated component of CuO(19.2%).

    Fig.4 TG curves for complexes 1-3

    2.6 Magnetic properties

    Variable temperature(2-300 K)magnetic susceptibility measurements were performed for polycrystalline samples of complexes 1 and 2 in an applied magnetic field of 1 000 Oe.Diamagnetic corrections were estimated with Pascal′s constants for all the constituent atoms[41].Fig.5 shows the magnetic behavior of 1 and 2 in the forms of χMand χMT versus T plots.At room temperature,the χMT value was 0.82 cm3·mol-1·K for complex 1,which was slightly higher than the spinonly value(0.75 cm3·mol-1·K)for two magnetically isolated Cu(Ⅱ) ions(S=1/2).On cooling,the χMT increased gradually at first to reach a maximum value(0.85 cm3·mol-1·K)at 20 K and then decreased obviously.These features are indicative of the predominance of ferromagnetic interactions in the binuclear Cu(Ⅱ)species as observed in similar complexes[42-43].The diminishing in χMT at low temperatures may be due to either intermolecular antiferromagnetic interactions and/or the effect of the zero-field splitting(ZFS)of the ground state(S=1).Magnetic analysis of complex 1 has been made using the Bleaney-Bowers equation(1)derived from the Heisenberg spin Hamiltonian and modified with ZFS[42].

    Fig.5 Plots of χMversus T(open circles)and χMT versus T(open triangles)for complexes 1(a)and 2(b)

    Where J is the exchange interaction parameter between the intrabinuclear Cu(Ⅱ)ions;D is the correction term for the ZFS and other symbols have their usual meanings.On this basis,the least-squares fitting of the experimental data led to J=26 cm-1,g=2.0 and D=-0.18 cm-1.These results indicate that ferromagnetic coupling interaction exists between the adjacent Cu(Ⅱ)ions within complex 1.

    For complex 2,the χMT value at 300 K was 0.84 cm3·mol-1·K,which was also slightly higher than the spin-only value for two uncoupled Cu(Ⅱ)ions(S=1/2).With the decrease of temperature,the χMT decreased smoothly over the entire temperature region,and reached a minimum value(0.32 cm3·mol-1·K)at 2 K.These behaviors are indicative of an overall weak antiferromagnetic coupling.The magnetic analysis was carried out by using the magnetic susceptibility expression(2)based on the isotropic Heisenberg model[43].

    The symbols in equation 2 have the same meaning as in equation 1.The best least-squares fit was obtained with the parameters J=-1.54 cm-1and g=2.1.The small negative J value demonstrates a weak antiferromagnetic exchange propagated between the two paramagnetic Cu(Ⅱ)ions within complex 2.The significant difference between the magnetic properties of complexes 1 and 2 may be due to the coordination mode diversities of metal centers or the different distances between metal ions.

    3 Conclusions

    In summary,three new copper complexes have been solvothermally synthesized based on the same Htpyc ligand and three different coligands.In complex 1,the coligand H3btc is partially deprotonated and acts as a bridging ligand to connect adjacent Cu(Ⅱ)ions to form[Cu2(CO2)2]SBUs,which are finally extended into a 3D framework by hydrogen bonding interactions.In complex 2,the Cu(Ⅱ)ions are bridged by a fully deprotonated H2suc ligand to form[Cu2C2H2(CO2)2]SBUs,which are further linked into a 3D network by hydrogen bond interactions.In complex 3,although the auxiliary ligand 4,4′-bipyridine is not incorporated in the complex,its existence is crucial to the growth of the crystalline product.Complex 3 finally displays a fascinating 3D supramolecular architecture.These results confirm that the selection of suitable coligand is a feasible way to construct new coordination polymers with diverse structures.Magnetic investigation indicates that complex 1 exhibits ferromagnetic exchange interaction,while complex 2 displays antiferromagnetic exchange interaction between adjacent Cu(Ⅱ)centers.

    Supporting information is available at http://www.wjhxxb.cn

    久久性视频一级片| 午夜福利欧美成人| 黄色女人牲交| 亚洲七黄色美女视频| 18禁黄网站禁片午夜丰满| 99热这里只有精品一区| 一本综合久久免费| 亚洲中文字幕一区二区三区有码在线看| av国产免费在线观看| 老汉色av国产亚洲站长工具| 真人一进一出gif抽搐免费| 久久精品国产99精品国产亚洲性色| 看免费av毛片| 岛国在线观看网站| 少妇丰满av| 嫩草影院精品99| 欧美成人a在线观看| 三级毛片av免费| 夜夜躁狠狠躁天天躁| 国产亚洲精品久久久久久毛片| 3wmmmm亚洲av在线观看| 免费看美女性在线毛片视频| 国产成人aa在线观看| 国产 一区 欧美 日韩| 亚洲欧美日韩东京热| 亚洲真实伦在线观看| 波多野结衣高清作品| 日韩av在线大香蕉| 国产v大片淫在线免费观看| 18+在线观看网站| 每晚都被弄得嗷嗷叫到高潮| 一二三四社区在线视频社区8| 最后的刺客免费高清国语| 欧美极品一区二区三区四区| 网址你懂的国产日韩在线| 亚洲国产精品999在线| 久久久精品欧美日韩精品| 欧美色视频一区免费| 高清在线国产一区| 中文亚洲av片在线观看爽| 国产蜜桃级精品一区二区三区| 久久6这里有精品| 国产精品亚洲av一区麻豆| 色综合婷婷激情| 中文字幕av成人在线电影| 亚洲精品国产精品久久久不卡| 真人一进一出gif抽搐免费| 国产成人av激情在线播放| 亚洲国产高清在线一区二区三| 久久这里只有精品中国| 亚洲精品色激情综合| 久久精品国产亚洲av香蕉五月| www国产在线视频色| 久久午夜亚洲精品久久| 俺也久久电影网| tocl精华| 熟女少妇亚洲综合色aaa.| 久久久久精品国产欧美久久久| 精品久久久久久久久久久久久| 国产在线精品亚洲第一网站| 久久香蕉精品热| 欧美最新免费一区二区三区 | 国产成人aa在线观看| 脱女人内裤的视频| 久久久久久人人人人人| 国产精品女同一区二区软件 | 日本一二三区视频观看| 一级毛片女人18水好多| 精品人妻1区二区| 极品教师在线免费播放| 色综合欧美亚洲国产小说| 伊人久久精品亚洲午夜| 国产精品久久久人人做人人爽| 国产精品久久视频播放| 最新美女视频免费是黄的| 成人特级黄色片久久久久久久| 国产精品,欧美在线| 俺也久久电影网| 精品久久久久久久久久免费视频| 欧美一区二区精品小视频在线| www.999成人在线观看| 久久久色成人| 韩国av一区二区三区四区| 最好的美女福利视频网| 俄罗斯特黄特色一大片| 99热这里只有精品一区| 麻豆成人av在线观看| 久久精品国产清高在天天线| 午夜福利视频1000在线观看| 一级毛片高清免费大全| 成人三级黄色视频| 18禁裸乳无遮挡免费网站照片| 欧美大码av| 亚洲一区二区三区色噜噜| 亚洲精品美女久久久久99蜜臀| 麻豆国产av国片精品| 国产精品电影一区二区三区| 无遮挡黄片免费观看| 国产精品女同一区二区软件 | 一级黄片播放器| netflix在线观看网站| 欧美日本亚洲视频在线播放| 欧美黑人巨大hd| 天堂影院成人在线观看| 我的老师免费观看完整版| 中文字幕人妻丝袜一区二区| 51国产日韩欧美| 免费av观看视频| 久久人人精品亚洲av| 国产伦人伦偷精品视频| 精品久久久久久成人av| 国语自产精品视频在线第100页| 欧美在线黄色| 免费观看的影片在线观看| 熟女少妇亚洲综合色aaa.| 国产视频一区二区在线看| 久久久久久久久久黄片| 中文字幕精品亚洲无线码一区| 韩国av一区二区三区四区| 少妇人妻一区二区三区视频| 日韩高清综合在线| 看免费av毛片| 在线视频色国产色| 99riav亚洲国产免费| 欧美一级a爱片免费观看看| 久久久久久九九精品二区国产| 90打野战视频偷拍视频| 欧美成人免费av一区二区三区| 亚洲av二区三区四区| 88av欧美| 可以在线观看的亚洲视频| 波多野结衣巨乳人妻| 悠悠久久av| 黄片小视频在线播放| 99在线视频只有这里精品首页| 少妇的逼水好多| 18禁黄网站禁片免费观看直播| 久久亚洲真实| 免费在线观看日本一区| 91av网一区二区| 在线观看午夜福利视频| 麻豆一二三区av精品| 精品人妻偷拍中文字幕| 欧美黑人巨大hd| 夜夜躁狠狠躁天天躁| 麻豆久久精品国产亚洲av| 91麻豆精品激情在线观看国产| 欧美成狂野欧美在线观看| 亚洲av中文字字幕乱码综合| 午夜免费激情av| 国产成人a区在线观看| 精品电影一区二区在线| 国产高清有码在线观看视频| 免费观看精品视频网站| 97人妻精品一区二区三区麻豆| 色播亚洲综合网| 久久久精品大字幕| 丁香欧美五月| 精品欧美国产一区二区三| 91九色精品人成在线观看| 久久亚洲精品不卡| 狂野欧美白嫩少妇大欣赏| 国产精品乱码一区二三区的特点| 床上黄色一级片| 久久久国产成人精品二区| 少妇高潮的动态图| 麻豆国产97在线/欧美| e午夜精品久久久久久久| 手机成人av网站| 日韩欧美三级三区| 精品日产1卡2卡| 亚洲电影在线观看av| 欧美性猛交黑人性爽| 国产v大片淫在线免费观看| 夜夜看夜夜爽夜夜摸| 丰满乱子伦码专区| 尤物成人国产欧美一区二区三区| 午夜免费成人在线视频| 日韩高清综合在线| 免费看光身美女| 深夜精品福利| 51国产日韩欧美| 精品久久久久久久人妻蜜臀av| 欧美最新免费一区二区三区 | 搡老熟女国产l中国老女人| 人妻夜夜爽99麻豆av| 在线观看一区二区三区| 在线观看美女被高潮喷水网站 | 99久久无色码亚洲精品果冻| www国产在线视频色| 好看av亚洲va欧美ⅴa在| 麻豆久久精品国产亚洲av| 亚洲avbb在线观看| 老熟妇乱子伦视频在线观看| 午夜福利欧美成人| 久久久色成人| av福利片在线观看| 免费看美女性在线毛片视频| 免费看日本二区| 91在线观看av| 一级黄色大片毛片| 久久这里只有精品中国| 国产亚洲av嫩草精品影院| 国内精品久久久久精免费| 好男人电影高清在线观看| 国产在线精品亚洲第一网站| 午夜福利在线观看免费完整高清在 | 亚洲性夜色夜夜综合| 亚洲国产色片| 欧美一级a爱片免费观看看| 亚洲专区国产一区二区| 在线观看一区二区三区| 99久久无色码亚洲精品果冻| 欧美中文综合在线视频| 欧美激情久久久久久爽电影| 国产真人三级小视频在线观看| 在线观看美女被高潮喷水网站 | 久久久久久大精品| 国产成人av教育| 韩国av一区二区三区四区| 亚洲自拍偷在线| а√天堂www在线а√下载| 精品日产1卡2卡| 成人特级黄色片久久久久久久| 村上凉子中文字幕在线| 国产aⅴ精品一区二区三区波| 九色国产91popny在线| 国产精品国产高清国产av| 五月伊人婷婷丁香| 在线观看日韩欧美| 亚洲av二区三区四区| 成年女人永久免费观看视频| 国产又黄又爽又无遮挡在线| 色噜噜av男人的天堂激情| 操出白浆在线播放| 不卡一级毛片| 天天躁日日操中文字幕| 99国产精品一区二区三区| 九色成人免费人妻av| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美 国产精品| 久久6这里有精品| av专区在线播放| 国产不卡一卡二| 欧美日韩一级在线毛片| 成年版毛片免费区| 欧美日韩乱码在线| 人人妻人人看人人澡| 亚洲激情在线av| 日本撒尿小便嘘嘘汇集6| 久久香蕉精品热| 18禁美女被吸乳视频| 99热精品在线国产| 国产精品免费一区二区三区在线| 欧美另类亚洲清纯唯美| 97碰自拍视频| 给我免费播放毛片高清在线观看| 波野结衣二区三区在线 | 国产中年淑女户外野战色| 99视频精品全部免费 在线| 噜噜噜噜噜久久久久久91| 最新美女视频免费是黄的| 亚洲国产精品sss在线观看| 成人av在线播放网站| 波野结衣二区三区在线 | 国产探花在线观看一区二区| 久久精品国产清高在天天线| 成人亚洲精品av一区二区| 午夜免费成人在线视频| 十八禁人妻一区二区| 久久精品国产亚洲av涩爱 | 亚洲人与动物交配视频| 身体一侧抽搐| 高清毛片免费观看视频网站| 老司机在亚洲福利影院| 国产一区二区三区在线臀色熟女| 麻豆一二三区av精品| 欧美黄色片欧美黄色片| 成人18禁在线播放| eeuss影院久久| 无人区码免费观看不卡| 精品一区二区三区人妻视频| 91久久精品国产一区二区成人 | 国产三级黄色录像| 国产高清三级在线| 91麻豆精品激情在线观看国产| 特大巨黑吊av在线直播| 亚洲成人中文字幕在线播放| 久久久久性生活片| 好男人电影高清在线观看| a在线观看视频网站| 国产精品一区二区三区四区免费观看 | 日韩欧美在线二视频| 无遮挡黄片免费观看| 三级毛片av免费| 身体一侧抽搐| 亚洲欧美日韩高清专用| 变态另类成人亚洲欧美熟女| 精品久久久久久久末码| 激情在线观看视频在线高清| 日韩欧美免费精品| 99久久精品一区二区三区| 色吧在线观看| av黄色大香蕉| 久久久成人免费电影| 国产69精品久久久久777片| 一进一出抽搐gif免费好疼| 一边摸一边抽搐一进一小说| 日韩精品中文字幕看吧| 亚洲七黄色美女视频| 在线观看舔阴道视频| 久久精品综合一区二区三区| 窝窝影院91人妻| 国产精品,欧美在线| 日本三级黄在线观看| 午夜福利18| 99热6这里只有精品| 精品国产超薄肉色丝袜足j| 日韩欧美免费精品| 国产aⅴ精品一区二区三区波| 婷婷精品国产亚洲av| 国产aⅴ精品一区二区三区波| 国产精品亚洲美女久久久| 日韩欧美精品v在线| 国产精品 国内视频| 国产精品野战在线观看| 国产男靠女视频免费网站| 香蕉丝袜av| 日韩欧美国产在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲内射少妇av| 少妇的丰满在线观看| 又黄又爽又免费观看的视频| 欧美成人免费av一区二区三区| 夜夜看夜夜爽夜夜摸| 极品教师在线免费播放| 久久伊人香网站| 国产一区二区三区视频了| 老鸭窝网址在线观看| 日日摸夜夜添夜夜添小说| 欧美bdsm另类| 午夜激情福利司机影院| ponron亚洲| 青草久久国产| 欧美不卡视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 欧美乱色亚洲激情| 午夜亚洲福利在线播放| 欧美激情久久久久久爽电影| 母亲3免费完整高清在线观看| 欧美日韩瑟瑟在线播放| 欧美成人a在线观看| h日本视频在线播放| 最近最新中文字幕大全免费视频| 亚洲色图av天堂| 国产精品女同一区二区软件 | 97人妻精品一区二区三区麻豆| 国模一区二区三区四区视频| 中文字幕高清在线视频| 久久久成人免费电影| 国产69精品久久久久777片| 夜夜看夜夜爽夜夜摸| 国内毛片毛片毛片毛片毛片| 制服人妻中文乱码| 国产一区二区三区视频了| 琪琪午夜伦伦电影理论片6080| 成年免费大片在线观看| 黄色成人免费大全| 久久香蕉国产精品| 午夜福利成人在线免费观看| 麻豆久久精品国产亚洲av| 91久久精品国产一区二区成人 | 久久久久久人人人人人| 国产精品久久久久久人妻精品电影| 午夜免费男女啪啪视频观看 | 欧美成人a在线观看| 18+在线观看网站| 欧美午夜高清在线| 亚洲欧美激情综合另类| 又黄又粗又硬又大视频| 亚洲人成伊人成综合网2020| 一区二区三区国产精品乱码| 欧美日本亚洲视频在线播放| 一本久久中文字幕| 国产亚洲精品一区二区www| www.色视频.com| 亚洲人成伊人成综合网2020| 午夜两性在线视频| 日本a在线网址| 亚洲在线自拍视频| 久久国产乱子伦精品免费另类| 午夜老司机福利剧场| 久久久久久久久中文| 国产私拍福利视频在线观看| 国产69精品久久久久777片| 国产一区二区三区视频了| 一个人观看的视频www高清免费观看| 最新美女视频免费是黄的| 精品国产美女av久久久久小说| 亚洲久久久久久中文字幕| 久久人人精品亚洲av| 免费在线观看亚洲国产| 啦啦啦免费观看视频1| 色av中文字幕| 久久中文看片网| 两个人看的免费小视频| 久久香蕉国产精品| 国产伦在线观看视频一区| 狠狠狠狠99中文字幕| 国产黄片美女视频| 欧美乱妇无乱码| 国产高清视频在线播放一区| 成年免费大片在线观看| 国内揄拍国产精品人妻在线| 亚洲天堂国产精品一区在线| 免费高清视频大片| 一区二区三区国产精品乱码| 一夜夜www| 国产精品乱码一区二三区的特点| 嫩草影院入口| 三级国产精品欧美在线观看| 久99久视频精品免费| ponron亚洲| 日本撒尿小便嘘嘘汇集6| 国产三级在线视频| 法律面前人人平等表现在哪些方面| 一区福利在线观看| 欧美日韩亚洲国产一区二区在线观看| 久久这里只有精品中国| 高潮久久久久久久久久久不卡| 国产一区二区亚洲精品在线观看| 熟妇人妻久久中文字幕3abv| 一个人观看的视频www高清免费观看| 亚洲人成网站在线播放欧美日韩| 别揉我奶头~嗯~啊~动态视频| 午夜福利在线在线| 99热这里只有精品一区| 国产精品免费一区二区三区在线| 国产激情偷乱视频一区二区| 免费大片18禁| 精品福利观看| 国产欧美日韩一区二区精品| 又粗又爽又猛毛片免费看| 国产成人欧美在线观看| 最新中文字幕久久久久| 午夜精品一区二区三区免费看| 成人特级av手机在线观看| 窝窝影院91人妻| 亚洲色图av天堂| 一个人免费在线观看的高清视频| 熟妇人妻久久中文字幕3abv| 午夜老司机福利剧场| 不卡一级毛片| 成年免费大片在线观看| 久久久成人免费电影| 真实男女啪啪啪动态图| 成年女人永久免费观看视频| 国产精品乱码一区二三区的特点| 18禁裸乳无遮挡免费网站照片| 一区二区三区高清视频在线| 日韩有码中文字幕| 精华霜和精华液先用哪个| 午夜福利成人在线免费观看| 中文字幕人妻丝袜一区二区| 一本综合久久免费| 最后的刺客免费高清国语| 国内少妇人妻偷人精品xxx网站| e午夜精品久久久久久久| 男女下面进入的视频免费午夜| 国产色爽女视频免费观看| 丰满乱子伦码专区| 白带黄色成豆腐渣| 别揉我奶头~嗯~啊~动态视频| 午夜福利18| 黄色丝袜av网址大全| 19禁男女啪啪无遮挡网站| 无限看片的www在线观看| 欧美成人a在线观看| 人妻夜夜爽99麻豆av| 两人在一起打扑克的视频| 国产真实伦视频高清在线观看 | 一级黄片播放器| 九九在线视频观看精品| 99国产精品一区二区蜜桃av| 亚洲无线观看免费| 欧美日韩中文字幕国产精品一区二区三区| 99热这里只有是精品50| 男女做爰动态图高潮gif福利片| 色综合欧美亚洲国产小说| 91av网一区二区| 中文字幕精品亚洲无线码一区| 91字幕亚洲| 三级毛片av免费| 又粗又爽又猛毛片免费看| 亚洲成人久久爱视频| 91久久精品电影网| 亚洲人成电影免费在线| 变态另类成人亚洲欧美熟女| 在线观看美女被高潮喷水网站 | svipshipincom国产片| 亚洲国产精品sss在线观看| 又爽又黄无遮挡网站| 亚洲自拍偷在线| 亚洲成a人片在线一区二区| 无遮挡黄片免费观看| 特大巨黑吊av在线直播| 久久久成人免费电影| 久久久久久久亚洲中文字幕 | av在线天堂中文字幕| 中文字幕高清在线视频| 欧美成人a在线观看| 日韩免费av在线播放| 色av中文字幕| 国产黄a三级三级三级人| 特级一级黄色大片| 一本久久中文字幕| 亚洲美女黄片视频| 国产色爽女视频免费观看| 中文字幕熟女人妻在线| 国产视频一区二区在线看| 中文字幕精品亚洲无线码一区| 一区福利在线观看| 麻豆一二三区av精品| 久久亚洲真实| 国产三级中文精品| 精品99又大又爽又粗少妇毛片 | 国产91精品成人一区二区三区| 亚洲av中文字字幕乱码综合| 国产精品 国内视频| 中文字幕av成人在线电影| 法律面前人人平等表现在哪些方面| 国产黄a三级三级三级人| 日韩精品中文字幕看吧| 久99久视频精品免费| 久久精品夜夜夜夜夜久久蜜豆| 怎么达到女性高潮| 亚洲aⅴ乱码一区二区在线播放| 一区二区三区高清视频在线| 精品久久久久久成人av| 欧美日韩中文字幕国产精品一区二区三区| 婷婷精品国产亚洲av| 热99re8久久精品国产| 久久亚洲精品不卡| 免费av观看视频| 日韩高清综合在线| av天堂在线播放| 最近最新中文字幕大全电影3| 一个人免费在线观看的高清视频| 麻豆成人av在线观看| 亚洲成a人片在线一区二区| 色吧在线观看| 国产探花极品一区二区| 一级作爱视频免费观看| 国产主播在线观看一区二区| 午夜日韩欧美国产| 欧美一区二区亚洲| 激情在线观看视频在线高清| 国产成人影院久久av| xxxwww97欧美| 亚洲精品在线美女| 毛片女人毛片| 成年女人看的毛片在线观看| 1024手机看黄色片| 精品一区二区三区人妻视频| 久久久国产成人免费| 日本免费一区二区三区高清不卡| 女警被强在线播放| 亚洲精品在线观看二区| 国产欧美日韩一区二区精品| 欧美不卡视频在线免费观看| 一个人观看的视频www高清免费观看| 欧美最新免费一区二区三区 | 久久香蕉精品热| 国产真实乱freesex| 日本与韩国留学比较| 亚洲欧美精品综合久久99| 亚洲美女视频黄频| 欧美大码av| 国产三级黄色录像| 国产精品99久久久久久久久| 母亲3免费完整高清在线观看| 亚洲中文字幕一区二区三区有码在线看| 三级毛片av免费| 亚洲成人中文字幕在线播放| www.熟女人妻精品国产| www.色视频.com| 亚洲一区二区三区不卡视频| 久久久国产成人免费| 男女做爰动态图高潮gif福利片| 搡老熟女国产l中国老女人| 国产精品嫩草影院av在线观看 | 婷婷精品国产亚洲av| 亚洲成a人片在线一区二区| 亚洲av成人av| 欧美不卡视频在线免费观看| 欧美色欧美亚洲另类二区| 亚洲精品美女久久久久99蜜臀| 国产黄片美女视频| 欧美丝袜亚洲另类 | 日韩 欧美 亚洲 中文字幕| 在线国产一区二区在线| 嫁个100分男人电影在线观看| 亚洲欧美日韩无卡精品| 免费一级毛片在线播放高清视频| a在线观看视频网站| eeuss影院久久| 国产亚洲精品综合一区在线观看| 男人和女人高潮做爰伦理| 五月伊人婷婷丁香| 免费av观看视频| 国产欧美日韩一区二区精品| 国产蜜桃级精品一区二区三区| 国产免费男女视频| 在线观看免费午夜福利视频| 国产精品,欧美在线|