• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of Porous CuO Based on an Etching Strategy and Application in Electrochemical Glucose Sensing

    2021-12-09 07:21:50ZHANGChenZHANGJingRuiHANChaoZHANGYuHangYANGShanHouMENGWei
    無機化學學報 2021年12期

    ZHANG ChenZHANG Jing-RuiHAN ChaoZHANG Yu-HangYANG Shan-HouMENG Wei*,

    (1College of Chemical Engineering,North China University of Science and Technology,Tangshan,Hebei 063210,China)

    (2Tangshan Sanyou Group Co.,Ltd.,Tangshan,Hebei 063305,China)

    Abstract:Based on an etching strategy of treating a Cu-organic framework with tannic acid,a loose and porous CuO(denoted as E-CuO)was obtained.E-CuO modified glassy carbon electrode(E-CuO/GCE)was applied in the electrochemical sensing of glucose.E-CuO/GCE showed a high sensitivity of 0.273 μA·μL·mol-1·cm-2in the glucose concentration range of 0.25-2 000 μmol·L-1,as well as good anti-interference performance,repeatability and stability.In the analysis of practical samples,E-CuO/GCE performed well in the experiment of spiked recoveries of honey and fruit sugar,and E-CuO/GCE could be used in glucose detection in glucose injection.

    Keywords:chemical etching;metal-organic framework;porous CuO;glucose oxidation

    0 Introduction

    The rapid and effective detection of glucose is of great significance in disease diagnosis and control,food analysis and drug regulation[1-2].The enzyme-free electrochemical sensors have attracted people′s great attention due to the advantages of high sensitivity as well as good stability,selectivity and reproducibility[3].In addition,the electrocatalytic activities of enzymefree electrochemical sensors are not easily affected by temperature,pH,humidity,toxic chemicals and other factors[1,4].As we know,the sensing behaviors of enzyme-free sensors greatly depend on the electrode materials[5].Many materials,including precious metals,transition metals and their oxides,carbon materials and other composites have been designed and fabricated to be used in glucose oxidation[1].Among all kinds of metal oxides,CuO is favored by people due to its excellent catalytic activity,good conductivity and well biocompatibility.The CuO-based electrochemical sensors exhibit high electrocatalytic activity for glucose oxidation,as well as good sensing behaviors in glucose detection[1,6-8].To further meet the requirements for glucose detection,it is a long-term work to continuously explore and develop diverse electrode materials with excellent performance.

    Metal-organic frameworks(MOFs)are widely used in gas storage,light-emitting,separation and sensing due to their advantages of highly dispersed metal sites,large surface area and adjustable structure[9-11].In recent years,taking MOFs as precursors to prepare metal oxides is becoming a promising strategy[12-13].The metal oxides obtained by this method maintain many characteristics of MOFs,and exhibit great advantages in many fields,especially in the electrochemical field,such as lithium-ion batteries[14-15],supercapacitors[16-17]and electrochemical sensing[18-19].

    To further enhance the electrochemical performances of metal oxides obtained from MOFs,the design and fabrication of oxide-based multi-component composites have become a research hotspot.Many composites,such as metal/metal oxides[20](e.g.Cu/Cu2O),metal oxide/carbon[21](e.g.Fe3O4@C)and metal oxide/metal oxide[22](e.g.CuO@NiO)are obtained.However,the preparation process of such composites is relatively complicated,and some procedures are often difficult to control.

    Chemical etching to MOFs is a practical and simple strategy to enhance the material′s behaviors[23-26].In this method,some etchants,such as weak organic acid[23-24](e.g.tannic acid,glacial acetic acid and camphoric acid)are selected to corrode the parental materials under certain conditions,forming many pores on the surface and leading to the higher surface area.For example,Qi et al.[27]selected glacial acetic acid to etch MIL-101 to provide more adsorption sites for I2.Khan et al.[22]adopted a top-down etching strategy to ZIF-67 by using tannic acid,and obtained a hollow HCo3O4/C by calcining the etched ZIF-67.Compared with Co3O4/C directlyobtainedfrom ZIF-67,thecatalytic efficiency for peroxymonosulfate activation of HCo3O4/C is more than two times higher.

    In this paper,based on the above consideration,by etching and calcining a Cu-MOF with tannic acid as the etchant,a porous copper oxide(denoted as E-CuO)was obtained.E-CuO was taken as the electrode material to modify the glassy carbon electrode(E-CuO/GCE)for glucose oxidation(Scheme 1).The electrocatalytic activity of E-CuO/GCE was greatly enhanced,and it also exhibited excellent sensing behavior for glucose detection.

    1 Experimental

    1.1 Apparatus

    Scheme 1 Synthetic diagram of E-CuO as well as the electrooxidation of E-CuO/GCE towards glucose

    Scanning electron microscope(SEM,JEOL JSM-IT100)was used to characterize the morphology and microstructure of the products(operating voltage:20.0 kV). X-ray photoelectron spectroscopy (XPS,ESCALab250xi)was used to observe the composition of the sample.X-ray diffraction(XRD,D/MAX2500PC and d8 advance,Rigaku)equipped with Cu Kα radiation(λ=0.154 18 nm)was conducted at 40 kV and 40 mA,and the 2θ was recorded from 5°to 90°.An electrochemical workstation(CHI-660C)was used for the electrochemical test.The workstation was equipped with three electrodes,including a GCE(glassy carbon electrode,φ 3 mm)as the modified working electrode.A three-electrode system was constructed with E-CuO/GCE as the working electrode,platinum electrode as the auxiliary electrode and calomel electrode as the reference electrode for the measurement of glucose sensing.

    1.2 Synthesis of Cu-MOF and E-Cu-MOF

    According to the literature[28],4.9 g Cu(NO3)2·3H2O was dissolved in 60 mL water-DMF(1∶1,V/V,DMF=N,N-dimethylformamide),and 2.4 g 1,3,5-benzenetricarboxylic acid(H3BTC)was dissolved in 30 mL ethanol.Then,Cu(NO3)2solution,120 mL glacial acetic acid and H3BTC solution were mixed,which was then placed in a heating oven at 550℃for 72 h.Finally,the blue Cu-MOF crystals were obtained.

    According to the literature[22],the etching method was used for getting E-Cu-MOF.The prepared Cu-MOF was etched by tannic acid for two minutes with the concentrations of 0.002,0.004,0.006,0.008,0.010 mol·L-1,respectively.Then E-Cu-MOF was washed three times by ethanol.

    1.3 Synthesis of E-CuO and CuO

    The combustion boats with the prepared E-Cu-MOF crystals were directly placed in a tubular furnace.The temperature in the furnace gradually was risen from room temperature to 550℃and kept for 3 h to obtain E-CuO.CuO was obtained by the same method except that E-Cu-MOF was instead by Cu-MOF.

    1.4 Fabrication of E-CuO/GCE

    GCE was pre-treated.Under the action of ultrasound,10 mg E-CuO was dispersed in 200 μL ethanol solution for 30 minutes to obtain a uniform suspension.Then 40 μL suspension and 2 μL Nafion(mass fraction of 0.05%)solution were successively dropped on the GCE surface to obtain E-CuO/GCE.

    1.5 Treatment and detection of honey,fruit sugar and glucose injection samples

    The treatment of honey and fruit sugar:0.564 4 g honey was accurately weighed,diluted by 0.1 mol·L-1NaOH solution,and then put into a 25.00 mL volumetric flask to get the honey diluent.5.095 3 g fruit sugar was weighed,dissolved by distilled water,and then transferred into a 50.00 mL volumetric flask to get the fruit sugar solution.A fruit sugar solution(4.10 mL)was further diluted by 0.1 mol·L-1NaOH and transferred into a 25.00 mL volumetric flask to obtain the fruit sugar diluent.

    The electrochemical detections of honey and fruit sugar were conducted as follows.Taking the honey detection for example:in 80.00 mL 0.1 mol·L-1NaOH electrolyte solution,80 μL honey diluent was first added,and then 80 μL glucose standard solution(0.1 mol·L-1)was added for three consecutive times,respectively.The corresponding response current was recorded by the current-time(I-t)curve at 0.55 V potential.

    The treatment and detection of glucose injection:991 μL glucose injection(0.5 g·mL-1)was diluted by 0.1 mol·L-1NaOH solution,and transferred into a 25.00 mL volumetric flask.In 80.00 mL 0.1 mol·L-1NaOH electrolyte solution,40 μL glucose injection diluent was added seven times,respectively.The corresponding response current was recorded by the I-t curve at 0.55 V potential(Fig.S1,Supporting information).

    2 Results and discussion

    2.1 Characterizations

    Scheme 1 depicts the fabrication of E-CuO.Tannic acid was selected as an etchant to etch Cu-MOF,and then Cu-MOF was calcined to obtain E-CuO.The XRD patterns were used for the structural investigation.The locations of the peak for the synthesized Cu-MOF are consistent with those of the simulated one,confirming a pure phase of Cu-MOF(Fig.1)[29].When Cu-MOF was etched by 0.004 mol·L-1tannic acid,the peak positions were still unchanged,indicating that chemical etching did not damage the crystal structure of Cu-MOF(Fig.1A).When Cu-MOF was calcined at 550℃in the air for 3 h,the peak positions of the calcined product are consistent with CuO in the cubic system(PDF No.080-1917),suggesting the formation of pure CuO(Fig.1B).Also,the peak positions of E-CuO obtained from the etched Cu-MOF still consisted well with those of CuO.

    Fig.1 (A)XRD patterns of simulated Cu-MOF and Cu-MOFs etched by tannic acid or not;(B)XRD patterns of CuO and E-CuO

    To verify the element composition and bond structure of E-CuO composite,XPS analysis was carried out.The XPS survey spectra in Fig.2A confirms the existence of Cu and O.The Cu2p spectrum of E-CuO signed with Cu2p1and Cu2p3peaks are 952.8 and 932.8 eV,respectively.Moreover,the energy difference of 20 eV between the peaks of Cu2p1and Cu2p3is attributed CuO,corresponding to the presence of Cu2+in CuO(Fig.2B)[30].The O1s showed a strong peak at about 529.9 eV.A low-intensity lattice peak at about 531.5 eV belongs to the lattice oxygen of CuO[31].

    Fig.2 (A)Survey XPS spectrum,XPS spectra of(B)Cu2p and(C)O1s for E-CuO

    SEM was operated to check the morphological structure of Cu-MOF,CuO and E-CuO obtained from Cu-MOF etched by tannic acid with different concentrations(0,0.002,0.004,0.006,0.008,0.010 mol·L-1).As shown in Fig.3A and Fig.S2,most of Cu-MOF crystals exhibited irregular shape.However,it could still be observed that there were some regular Cu-MOF particles with the tetradecahedron morphology.After heating Cu-MOF at 550℃in air,the calcined product of CuO almostremained the parentalmorphology[28](Fig.3B).Differently,the surface of CuO became uneven,loose and porous due to the decomposition of organic skeleton as well as the release of small molecule gas[32].The SEM images of E-CuO obtained from Cu-MOF etched by tannic acid with different concentrations are shown in Fig.3C-3H.As the concentration of tannic acid increasing,more and more holes appeared on the surface of E-CuO.E-CuO obtained from Cu-MOF etched by 0.004 mol·L-1tannic acid showed more well-distributed pores.As shown in Fig.S3,from the SEM images with high resolution,the loose and porous structure of E-CuO could be clearly seen.The N2adsorption-desorption isotherms of CuO and E-CuO were carried out(Fig.S4).However,due to the existence of macropore in E-CuO,the Brunauer-Emmett-Teller(BET)surface area of E-CuO failed to be measured.

    Fig.3 SEM image of(A)Cu-MOF and(B)CuO;(C-H)SEM images of CuO and E-CuO obtained from Cu-MOF etched by tannic acid with different concentrations

    2.2 Electrochemical behaviors of E-CuO/GCE

    For CuO/GCE,as shown in Fig.4A,there was no obvious redox peak without glucose.After adding 3 mmol·L-1glucose,an obvious and wide oxidation peak appeared at the potential range of 0.4-0.6 V,and it is attributed to the conversion between Cu(Ⅱ) and Cu(Ⅲ),confirming the electrocatalytic activity of CuO/GCE for glucose oxidation;The sensing mechanism is concluded as the following aspects[33-36]:firstly,Cu(Ⅱ)is oxidized to Cu(Ⅲ)by the electrochemical reaction in NaOH solution(Eq.1);Secondly,a reduction reaction of Cu(Ⅲ)to Cu(Ⅱ)specie occurs,leading to the oxidation of glucose to gluconate(Eq.2).

    For E-CuO/GCE,after the addition of 3 mmol·L-1glucose,a more obvious oxidation peak with higher current intensity appeared at the potential range of 0.3-0.55 V[29].It can be seen that the oxidation potential significantly shifted to the left and a wider electrochemical window appeared.On the one hand,the loose and porous structure of E-CuO could make the active catalytic-sites increased and more catalytic-sites exposed to the electrode surface;On the other hand,the loose and porous structure of E-CuO is beneficial to the catalytic mass transfer process[37].As a result,the electrocatalytic activity of E-CuO/GCE towards glucose oxidation is enhanced and the oxidation process becomes easier,which leads to the oxidation potential shifting to the left.In addition,many references could also support this situation[20,37].

    The effect of tannic acid with different concentrations on the catalytic activity of E-CuO/GCE was also investigated(Fig.4B).As the tannic acid concentration was increased from 0 to 0.004 mol·L-1,the oxidation peak current gradually increased;however,as the con-centration of tannic acid further increased from 0.004 to 0.008 mol·L-1,the oxidation peak current gradually decreased;As the tannic acid concentration further increasing,although the peak current intensity slightly increased,an obvious oxygen evolution occurred.On overall consideration,the tannic acid concentration of 0.004 mol·L-1was selected as the best etching concentration for the following tests.Fig.4C shows the CVs of E-CuO/GCE upon successive addition of glucose from 0 to 5 mmol·L-1(0,0.1,0.2,0.3,0.4,0.5,1,2,3,4,5 mmol·L-1).The oxidation peak current increased with the glucose concentration increased,further affirming the electrocatalytic activity of E-CuO/GCE for glucose oxidation[37].

    Fig.4 (A)CVs of CuO/GCE and E-CuO/GCE in the presence of 3 mmol·L-1glucose or not in 0.1 mol·L-1NaOH;(B)CVs of E-CuO/GCE obtained from Cu-MOF etched by tannic acid with different concentrations in the presence of 3 mmol·L-1glucose in 0.1 mol·L-1NaOH;(C)CVs of E-CuO/GCE in glucose solution with different concentrations of 0-5 mmol·L-1in 0.1 mol·L-1NaOH(scan rate:50 mV·s-1)

    The improved catalytic activity of E-CuO may be attributed to the enhanced electron transport benefited from the loose and porous structure[38].The electrochemical impedance spectroscopy(EIS)of GCE,CuO/GCE and E-CuO/GCE were investigated to evidence this point.In Fig.5A,E-CuO/GCE shows the smallest semicircle,which indicates a fast electron transfer on E-CuO/GCE[39].Fig.S5A shows the CVs of E-CuO/GCE at different scan rates of 50-250 mV·s-1.The peak currentincreased with the scanning rate increased(Fig.5B).The peak current exhibited a linear dependence upon the scanning rate,indicating that this electrocatalytic oxidation of glucose is a surface-controlled process[40].

    Fig.5 (A)Nyquist plots of EIS for GCE,CuO/GCE and E-CuO/GCE in the presence of 0.1 mmol·L-1glucose in 0.1 mol·L-1NaOH;(B)Plots of peak current vs scan rate of E-CuO/GCE

    2.3 Glucose detection

    As the OH-participates in the electrooxidation of the glucose,the effect of OH-needs to be investigated.As shown in Fig.6A,the oxidation peak current increased with NaOH concentration increased from 0.01 to 0.1 mol·L-1at 0.55 V.After that,further increasing NaOH concentration from 0.1 to 0.5 mol·L-1,the oxidation peak current decreased.As a result,NaOH with 0.1 mol·L-1was the optimal selection[40].Different potentials(0.45,0.50,0.55,0.60 V)were explored to obtain the best potential for glucose detection(Fig.6B).The slope value of the response current at 0.55 V was the highest[41].Moreover,from the relationship between glucose concentration and ampere response at each potential,it could be seen that the sensitivity at 0.55 V was also the highest,further confirming the good selection of 0.55 V in the glucose detection.

    Fig.6 (A)Amperometric responses of E-CuO/GCE in NaOH solution with different concentrations of 0.01-0.5 mol·L-1 at 0.55 V;(B)Relationship between ampere response and glucose concentration at different potentials

    Fig.7A shows the current response curve of E-CuO/GCE when glucose with different concentrations were added continuously.The inset shows the amplification curve with low glucose concentration ranging from 0.25 to 1 μmol·L-1.It can be seen that E-CuO/GCE also had a response to such a low concentration[33,41-42].Fig.7B shows the calibration curve of the current response signal and glucose concentration[41].For the fitting part,a good linear relationship was obtained in the range of 0.25 to 2 000 μmol·L-1glucose,with a sensitivity of 0.273 μA·μL·mol-1·cm-2.In addition,the limit of detection(LOD)of E-CuO/GCE was calculated to be 0.20 μmol·L-1based on a signal-tonoise ratio of three(S/N=3).

    Fig.7 (A)Typical amperometric transient response with successive additions of glucose ranging from 0.25 to 13 000 μmol·L-1 for E-CuO/GCE at 0.55 V(Inset:an enlargement of the amperometric transient response with successive additions of glucose in the range of 0.25 to 1 μmol·L-1);(B)Relationships between glucose concentration and current signal of E-CuO/GCE at 0.55 V(Inset:the calibration curve for current versus glucose concentration)

    The sensing behaviors of E-CuO/GCE prepared were compared with those of other copper-based materials,as shown in Table S1.It can be seen that E-CuO/GCE has comparative advantages in the linear range,sensitivity and LOD.The good sensing performances of E-CuO/GCE could attribute to the highly uniform and distributed catalytic-site,as well as loose and porous morphology.

    2.4 Anti-interference,reproductivity and stability

    For enzyme-free glucose sensors,they are often used in the determination of glucose in serum and foods rich in glucose.The substances of NaCl,lactose,sucrose,fructose,maltose,acetaminophen(ACOP),ascorbic acid(AA),dopamine(DA)and uric acid(UA)were selected as coexistence species to investigate the anti-interference ability of E-CuO[29,35].Fig.8A and 8B show the response diagram of E-CuO/GCE to the substances of glucose(0.5 mmol·L-1),NaCl(0.05 mmol·L-1),lactose(0.05 mmol·L-1),sucrose(0.05 mmol·L-1),fructose(0.05 mmol·L-1),maltose(0.05 mmol·L-1),ACOP(0.05 mmol·L-1),AA(0.05 mmol·L-1),DA(0.05 mmol·L-1)and UA(0.05 mmol·L-1)[41-43].A significant current response was observed after adding glucose.However,the current responses had no obvious chang-es after adding a series of interfering substances.The fact shows that E-CuO/GCE has good selectivity for glucose detection in serum and foods rich in glucose.

    Fig.8 (A,B)I-t curves of E-CuO/GCE in the presence of 0.5 mmol·L-1glucose and 0.05 mmol·L-1different substances;(C)Reproductivity based on the same electrode of E-CuO/GCE;(D)Reproductivity based on different electrodes of E-CuO/GCE prepared with the same method;(E)Amperometric I-t curve of E-CuO/GCE in the presence of 0.4 mmol·L-1glucose in 0.1 mol·L-1NaOH over 4 000 consecutive seconds;(F)Current response of E-CuO/GCE upon 28 days in 0.1 mol·L-1NaOH(Potential:0.55 V)

    The repeatability ofE-CuO/GCE was also explored by using the same electrode to test five times,the maximum deviation was 5.16%(Fig.8C).Meanwhile,five electrodes made by the same methods were also used for the measurement to investigate the repeatability(Fig.8D),and the maximum deviation was 4.91%.The results above indicate that E-CuO/GCE has good repeatability.Furthermore,another batch of E-CuO was synthesized by the same method and the repeatability of E-CuO/GCE was also investigated.As shown in Fig.S6,E-CuO/GCE still shows good repeatability in glucose detection.

    The stability of E-CuO/GCE was measured by continuously recording theI-tcurve(Fig.8E).The current signal remained basically unchanged for a long time over 3 000 s,indicating good stability[40].Long-term measurement of the electrode was also investigated.After storing the electrode in the air for 28 days,the current only decreased by 9.58%,as shown in Fig.8F,which indicates that the sensor has good long-term stability[40].

    2.5 Application of glucose in the practical samples

    The application ability of E-CuO/GCE in the determination of glucose in honey and fruit sugar was investigated by the recovery experiment.As shown in Fig.S7,the current response signal was systematically increased when 80 μL glucose standard solution was added continuously.The glucose concentration added was calculated according to the response current and calibration curve.As shown in Table 1,the recoveries of glucose under the two conditions were in the ranges of 94.4%-101.7% and 93.5%-97.1%,respectively.The results showed that E-CuO/GCE has the application prospect in the detection of glucose in real samples.

    In addition,E-CuO/GCE was used to directly determine the content of glucose in glucose injection.The actual content of glucose in glucose injection was calculated according to the response current and calibration curve.As shown in Table 2,the recovery of glucose in glucose injection was in a range of 94.2%-102.0%,which was basically consistent with the standard concentration,indicating that E-CuO/GCE could be used for the detection of glucose in glucose injections.

    Table 1 Results of glucose determination in practical samples of honey and fruit sugar

    Table 2 Results of glucose determination in practical samples of glucose injection

    3 Conclusions

    By simply etching a Cu-MOF with tannic acid,a porous E-CuO was synthesized.E-CuO/GCE modified electrode showed enhanced sensing behaviors for glucose oxidation.To sum up,taking MOFs as precursors and adopting etching strategy provides a simple and effective way to fabricate porous metal oxides,and then contributes to the development of high-performance electrochemical sensors based on metal oxides.

    Supporting information is available at http://www.wjhxxb.cn

    久久久久久久大尺度免费视频| 秋霞伦理黄片| 综合色丁香网| 中国三级夫妇交换| www.av在线官网国产| 亚洲精品国产av蜜桃| 精品卡一卡二卡四卡免费| 中文精品一卡2卡3卡4更新| 亚洲av国产av综合av卡| 日韩,欧美,国产一区二区三区| 丁香六月天网| 国产成人aa在线观看| 国产亚洲午夜精品一区二区久久| 一级,二级,三级黄色视频| 九草在线视频观看| 丁香六月天网| 三级国产精品片| 青春草亚洲视频在线观看| 搡女人真爽免费视频火全软件| 亚洲欧美精品专区久久| 精品少妇黑人巨大在线播放| 亚洲av在线观看美女高潮| 丝袜脚勾引网站| 国产片特级美女逼逼视频| 日韩大片免费观看网站| 国产黄片美女视频| 欧美老熟妇乱子伦牲交| 最近2019中文字幕mv第一页| 一级毛片久久久久久久久女| 精品熟女少妇av免费看| 一个人看视频在线观看www免费| 中文字幕久久专区| 女的被弄到高潮叫床怎么办| 亚洲美女搞黄在线观看| 久久影院123| 日韩成人av中文字幕在线观看| 日本wwww免费看| av.在线天堂| 国产一区有黄有色的免费视频| 高清毛片免费看| 啦啦啦啦在线视频资源| 亚洲国产最新在线播放| 丰满乱子伦码专区| 99久久精品热视频| 一级毛片黄色毛片免费观看视频| 国产欧美日韩精品一区二区| 丰满饥渴人妻一区二区三| 好男人视频免费观看在线| 国产亚洲午夜精品一区二区久久| 国产极品粉嫩免费观看在线 | 啦啦啦中文免费视频观看日本| 一本—道久久a久久精品蜜桃钙片| 哪个播放器可以免费观看大片| 中文字幕人妻丝袜制服| 国产精品一区二区三区四区免费观看| 少妇高潮的动态图| 中文字幕久久专区| 亚洲人成网站在线播| 插阴视频在线观看视频| 久久6这里有精品| 国产一区亚洲一区在线观看| 日产精品乱码卡一卡2卡三| 精品国产露脸久久av麻豆| 免费大片黄手机在线观看| 久久久久国产网址| 女人久久www免费人成看片| 九九爱精品视频在线观看| 国产无遮挡羞羞视频在线观看| 国产在视频线精品| 一级片'在线观看视频| √禁漫天堂资源中文www| 精品久久久久久久久av| 亚洲一级一片aⅴ在线观看| 肉色欧美久久久久久久蜜桃| 久久精品熟女亚洲av麻豆精品| 国产成人免费无遮挡视频| 18禁裸乳无遮挡动漫免费视频| 97超视频在线观看视频| 国产欧美日韩综合在线一区二区 | 在线观看免费日韩欧美大片 | 你懂的网址亚洲精品在线观看| 欧美高清成人免费视频www| 精品亚洲成a人片在线观看| 国产精品久久久久久精品古装| 女性被躁到高潮视频| 午夜福利视频精品| 狂野欧美激情性xxxx在线观看| 亚洲精品乱久久久久久| 国产一区二区在线观看日韩| 午夜日本视频在线| 我的老师免费观看完整版| 老司机影院毛片| 成人免费观看视频高清| 成人亚洲精品一区在线观看| 免费看光身美女| 日韩视频在线欧美| 中文字幕亚洲精品专区| 热99国产精品久久久久久7| av不卡在线播放| 成人影院久久| 中文欧美无线码| 亚洲欧美精品自产自拍| 国产精品一区二区性色av| 久久免费观看电影| 日韩欧美 国产精品| 在线天堂最新版资源| 国产女主播在线喷水免费视频网站| 日韩熟女老妇一区二区性免费视频| 在线观看人妻少妇| 免费人成在线观看视频色| 国产精品99久久久久久久久| 高清视频免费观看一区二区| 日日啪夜夜爽| 亚洲av综合色区一区| 啦啦啦啦在线视频资源| 99久久人妻综合| 国产爽快片一区二区三区| 在线 av 中文字幕| 春色校园在线视频观看| 欧美日韩av久久| 性色avwww在线观看| 久久国产亚洲av麻豆专区| 热99国产精品久久久久久7| 国产精品成人在线| 男人舔奶头视频| 我的老师免费观看完整版| 国产熟女欧美一区二区| 老司机影院毛片| 三级经典国产精品| av有码第一页| 国产成人freesex在线| 亚洲性久久影院| 亚洲国产精品999| 18+在线观看网站| av视频免费观看在线观看| 大又大粗又爽又黄少妇毛片口| 老女人水多毛片| 新久久久久国产一级毛片| 十八禁高潮呻吟视频 | 插逼视频在线观看| 波野结衣二区三区在线| 亚洲中文av在线| 久久久久久久久久人人人人人人| 亚洲精品aⅴ在线观看| 插逼视频在线观看| 伊人久久精品亚洲午夜| 日韩在线高清观看一区二区三区| 久久久国产精品麻豆| 女性生殖器流出的白浆| 久久久欧美国产精品| 男人添女人高潮全过程视频| 在线观看免费视频网站a站| 国产在线视频一区二区| 久久人妻熟女aⅴ| 99精国产麻豆久久婷婷| 免费大片黄手机在线观看| 久久99一区二区三区| 亚洲av欧美aⅴ国产| 欧美xxⅹ黑人| 亚洲熟女精品中文字幕| 啦啦啦在线观看免费高清www| 日本av手机在线免费观看| 精品国产国语对白av| 久久久国产一区二区| 18禁裸乳无遮挡动漫免费视频| 国产一区亚洲一区在线观看| 亚洲欧洲精品一区二区精品久久久 | 乱人伦中国视频| 如何舔出高潮| 国产一区有黄有色的免费视频| 99久久人妻综合| 又爽又黄a免费视频| 亚洲av在线观看美女高潮| 涩涩av久久男人的天堂| 国产一区有黄有色的免费视频| 午夜影院在线不卡| 国产免费又黄又爽又色| 日韩欧美一区视频在线观看 | 成人国产av品久久久| 午夜av观看不卡| 精品久久久久久久久亚洲| 最黄视频免费看| 亚洲怡红院男人天堂| 一本色道久久久久久精品综合| 国产国拍精品亚洲av在线观看| 各种免费的搞黄视频| 大码成人一级视频| 国产av国产精品国产| 麻豆乱淫一区二区| 国产 精品1| 欧美丝袜亚洲另类| 国产无遮挡羞羞视频在线观看| 亚洲图色成人| 亚洲图色成人| 夜夜爽夜夜爽视频| 丁香六月天网| 另类亚洲欧美激情| 高清午夜精品一区二区三区| 国产精品成人在线| 免费久久久久久久精品成人欧美视频 | 亚洲精品视频女| 国产熟女午夜一区二区三区 | 亚洲美女视频黄频| 搡老乐熟女国产| 曰老女人黄片| 少妇人妻精品综合一区二区| 狂野欧美白嫩少妇大欣赏| 一区二区三区乱码不卡18| 国产片特级美女逼逼视频| 99久久人妻综合| a级一级毛片免费在线观看| 国产av一区二区精品久久| 免费看不卡的av| www.色视频.com| 又大又黄又爽视频免费| 精华霜和精华液先用哪个| 国产欧美日韩综合在线一区二区 | 日韩成人av中文字幕在线观看| 亚洲婷婷狠狠爱综合网| 成年人午夜在线观看视频| 黄色视频在线播放观看不卡| 超碰97精品在线观看| 久久精品国产鲁丝片午夜精品| 欧美97在线视频| 麻豆成人av视频| 免费av不卡在线播放| 两个人的视频大全免费| 日本av免费视频播放| 色吧在线观看| a级毛片免费高清观看在线播放| 亚洲欧美日韩卡通动漫| 一本一本综合久久| 天堂俺去俺来也www色官网| 欧美精品高潮呻吟av久久| 男女无遮挡免费网站观看| 不卡视频在线观看欧美| 黄色日韩在线| 日本av免费视频播放| 97在线视频观看| 天美传媒精品一区二区| 亚洲欧美日韩卡通动漫| 性色avwww在线观看| 亚洲av综合色区一区| 精品人妻一区二区三区麻豆| 丝袜喷水一区| 亚洲丝袜综合中文字幕| 久久久欧美国产精品| 免费观看在线日韩| 国产成人91sexporn| 精品少妇内射三级| 久久精品夜色国产| 欧美成人精品欧美一级黄| 午夜免费观看性视频| 久久鲁丝午夜福利片| 国产精品一区二区性色av| 桃花免费在线播放| 99久久综合免费| 国产精品蜜桃在线观看| 国产伦在线观看视频一区| 寂寞人妻少妇视频99o| 国产精品偷伦视频观看了| 如日韩欧美国产精品一区二区三区 | 国产精品一二三区在线看| 成年av动漫网址| 精品一品国产午夜福利视频| 成人亚洲精品一区在线观看| 日韩av在线免费看完整版不卡| 26uuu在线亚洲综合色| 国产欧美另类精品又又久久亚洲欧美| 亚洲婷婷狠狠爱综合网| 欧美日韩av久久| 熟妇人妻不卡中文字幕| 午夜免费观看性视频| 欧美最新免费一区二区三区| 蜜臀久久99精品久久宅男| 中国三级夫妇交换| 欧美日韩视频高清一区二区三区二| 99久久精品国产国产毛片| 亚洲精品456在线播放app| 国产淫语在线视频| 久久久国产精品麻豆| 日日啪夜夜撸| 中国三级夫妇交换| 免费观看性生交大片5| 国产美女午夜福利| 在线观看人妻少妇| 国产在线视频一区二区| 伊人亚洲综合成人网| 搡女人真爽免费视频火全软件| 国产高清国产精品国产三级| 美女cb高潮喷水在线观看| 国产精品久久久久久久久免| 精品视频人人做人人爽| 波野结衣二区三区在线| 亚洲美女黄色视频免费看| 又粗又硬又长又爽又黄的视频| 国产成人免费无遮挡视频| 少妇熟女欧美另类| 精品亚洲成国产av| 色94色欧美一区二区| 亚洲真实伦在线观看| 亚洲av中文av极速乱| 亚洲美女视频黄频| 综合色丁香网| 国产69精品久久久久777片| 免费看不卡的av| 亚洲精品久久久久久婷婷小说| 国产成人精品婷婷| 国产免费一区二区三区四区乱码| 免费看av在线观看网站| 日韩电影二区| 两个人的视频大全免费| 精品久久国产蜜桃| 国产精品国产三级国产专区5o| 中国美白少妇内射xxxbb| av播播在线观看一区| 亚洲熟女精品中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品色激情综合| 多毛熟女@视频| 秋霞在线观看毛片| 青春草视频在线免费观看| 男女啪啪激烈高潮av片| 我要看日韩黄色一级片| 婷婷色av中文字幕| 国国产精品蜜臀av免费| 免费大片18禁| av国产久精品久网站免费入址| 热re99久久精品国产66热6| 91精品一卡2卡3卡4卡| 国产精品偷伦视频观看了| 欧美日韩视频高清一区二区三区二| 一级av片app| 日韩在线高清观看一区二区三区| 国产免费福利视频在线观看| 97超视频在线观看视频| 亚洲精品日本国产第一区| 国产伦精品一区二区三区四那| 人妻夜夜爽99麻豆av| 亚洲国产精品专区欧美| 卡戴珊不雅视频在线播放| 一级av片app| 国产伦在线观看视频一区| 午夜日本视频在线| 欧美少妇被猛烈插入视频| 亚洲国产色片| 九九爱精品视频在线观看| www.av在线官网国产| 成人黄色视频免费在线看| 久久精品久久精品一区二区三区| 秋霞在线观看毛片| 国产精品国产av在线观看| 午夜日本视频在线| 久久99热这里只频精品6学生| 免费黄网站久久成人精品| 内射极品少妇av片p| 国产极品天堂在线| 国产视频首页在线观看| 91精品国产九色| 免费av不卡在线播放| 亚洲自偷自拍三级| 下体分泌物呈黄色| 在线观看免费视频网站a站| 久久久久久久久久久免费av| 99热国产这里只有精品6| 国产免费视频播放在线视频| 高清毛片免费看| 在线看a的网站| 偷拍熟女少妇极品色| 天堂俺去俺来也www色官网| 欧美人与善性xxx| 日韩伦理黄色片| 欧美 亚洲 国产 日韩一| 日韩视频在线欧美| 高清黄色对白视频在线免费看 | 少妇熟女欧美另类| av有码第一页| 大片电影免费在线观看免费| 免费在线观看成人毛片| 免费大片黄手机在线观看| 草草在线视频免费看| 在线观看国产h片| 最近2019中文字幕mv第一页| 久久av网站| 亚洲av男天堂| 免费黄色在线免费观看| 国产成人freesex在线| 国产亚洲5aaaaa淫片| 偷拍熟女少妇极品色| 免费看日本二区| 免费大片黄手机在线观看| 观看av在线不卡| 日韩欧美精品免费久久| 久久久a久久爽久久v久久| 在线观看av片永久免费下载| 伦理电影免费视频| 国产精品伦人一区二区| 伊人久久精品亚洲午夜| 人人妻人人澡人人看| 能在线免费看毛片的网站| 午夜影院在线不卡| 国内少妇人妻偷人精品xxx网站| 丰满乱子伦码专区| 建设人人有责人人尽责人人享有的| 久久久久久久久久成人| 五月伊人婷婷丁香| 王馨瑶露胸无遮挡在线观看| 国产在线一区二区三区精| 高清午夜精品一区二区三区| 国国产精品蜜臀av免费| 丝袜在线中文字幕| 中文字幕人妻丝袜制服| 黑人猛操日本美女一级片| 人妻系列 视频| 久久久久国产网址| 七月丁香在线播放| 欧美xxxx性猛交bbbb| 日韩熟女老妇一区二区性免费视频| 我的女老师完整版在线观看| 在线 av 中文字幕| 人妻 亚洲 视频| 亚洲真实伦在线观看| 毛片一级片免费看久久久久| tube8黄色片| 美女主播在线视频| 下体分泌物呈黄色| 日本黄色日本黄色录像| 少妇的逼好多水| 国产精品久久久久久精品古装| 国产在线免费精品| 2018国产大陆天天弄谢| 如何舔出高潮| 亚洲电影在线观看av| 国产精品欧美亚洲77777| 香蕉精品网在线| 免费观看av网站的网址| 午夜免费鲁丝| 亚洲三级黄色毛片| 国产精品秋霞免费鲁丝片| 秋霞在线观看毛片| 亚洲中文av在线| 各种免费的搞黄视频| 少妇 在线观看| 成人免费观看视频高清| 多毛熟女@视频| 亚洲精品一区蜜桃| 日产精品乱码卡一卡2卡三| 日日摸夜夜添夜夜爱| 成人美女网站在线观看视频| 蜜臀久久99精品久久宅男| 亚洲成人手机| 精品视频人人做人人爽| 视频区图区小说| 狂野欧美激情性bbbbbb| 成人免费观看视频高清| 日韩av免费高清视频| 精品国产国语对白av| 涩涩av久久男人的天堂| 日本-黄色视频高清免费观看| 国产一区二区在线观看日韩| 久久国内精品自在自线图片| 97超碰精品成人国产| 草草在线视频免费看| 国产精品一区www在线观看| 免费av不卡在线播放| av又黄又爽大尺度在线免费看| 亚洲成人一二三区av| 寂寞人妻少妇视频99o| 最近中文字幕高清免费大全6| 久久狼人影院| 国产伦精品一区二区三区视频9| 免费在线观看成人毛片| 熟女电影av网| 人人澡人人妻人| av在线老鸭窝| 久久国产乱子免费精品| 精品人妻熟女av久视频| 黑丝袜美女国产一区| 免费观看性生交大片5| 欧美老熟妇乱子伦牲交| 一本—道久久a久久精品蜜桃钙片| 丰满饥渴人妻一区二区三| 全区人妻精品视频| 丰满迷人的少妇在线观看| 老女人水多毛片| 国产精品无大码| 水蜜桃什么品种好| 亚洲欧美精品自产自拍| 亚洲成人手机| 不卡视频在线观看欧美| 男女国产视频网站| av在线老鸭窝| 欧美日韩精品成人综合77777| 亚洲av免费高清在线观看| 看十八女毛片水多多多| 18禁在线播放成人免费| 在线观看一区二区三区激情| 最黄视频免费看| 久久精品久久久久久久性| 男人舔奶头视频| 高清欧美精品videossex| 三级经典国产精品| 人人澡人人妻人| 午夜免费男女啪啪视频观看| 中文精品一卡2卡3卡4更新| 新久久久久国产一级毛片| 久久精品国产自在天天线| 久久精品国产亚洲网站| 这个男人来自地球电影免费观看 | 成人国产麻豆网| 亚洲国产精品国产精品| 深夜a级毛片| 亚洲欧美日韩另类电影网站| 欧美三级亚洲精品| 日韩欧美精品免费久久| 亚洲在久久综合| 观看美女的网站| 成年人免费黄色播放视频 | 黄色视频在线播放观看不卡| 熟女电影av网| 亚洲欧美日韩卡通动漫| 国产伦理片在线播放av一区| 在线观看国产h片| 久久亚洲国产成人精品v| 中国国产av一级| 国产精品99久久久久久久久| 日本av手机在线免费观看| 国产毛片在线视频| 人人澡人人妻人| 伊人久久精品亚洲午夜| 嫩草影院新地址| 成年人免费黄色播放视频 | 香蕉精品网在线| 如日韩欧美国产精品一区二区三区 | 亚洲精品,欧美精品| 久久精品夜色国产| 国内少妇人妻偷人精品xxx网站| 亚洲精品日本国产第一区| 大香蕉久久网| 国产av国产精品国产| 久久精品国产亚洲av涩爱| 天堂8中文在线网| 黄色配什么色好看| 精品卡一卡二卡四卡免费| 肉色欧美久久久久久久蜜桃| 中文乱码字字幕精品一区二区三区| 国产女主播在线喷水免费视频网站| 狂野欧美白嫩少妇大欣赏| 国产精品福利在线免费观看| 极品教师在线视频| 五月伊人婷婷丁香| 在线观看www视频免费| 免费观看a级毛片全部| 蜜桃久久精品国产亚洲av| 国产欧美另类精品又又久久亚洲欧美| 成人美女网站在线观看视频| 爱豆传媒免费全集在线观看| 国产一级毛片在线| 最新中文字幕久久久久| 高清在线视频一区二区三区| 五月玫瑰六月丁香| 日韩视频在线欧美| 午夜久久久在线观看| h视频一区二区三区| 亚洲欧洲日产国产| a级一级毛片免费在线观看| 亚洲欧洲日产国产| 80岁老熟妇乱子伦牲交| 成人特级av手机在线观看| 精品人妻熟女毛片av久久网站| 18禁在线无遮挡免费观看视频| 大陆偷拍与自拍| 国产在视频线精品| 肉色欧美久久久久久久蜜桃| 国产在视频线精品| 久久人妻熟女aⅴ| 午夜激情福利司机影院| 国产熟女午夜一区二区三区 | 国产亚洲av片在线观看秒播厂| 日韩av免费高清视频| 国产精品不卡视频一区二区| 青青草视频在线视频观看| av福利片在线观看| 热99国产精品久久久久久7| 日韩av在线免费看完整版不卡| 国产精品久久久久久久久免| 色吧在线观看| 另类亚洲欧美激情| 中文字幕av电影在线播放| 欧美三级亚洲精品| 亚洲精品成人av观看孕妇| av福利片在线| 老女人水多毛片| 中文精品一卡2卡3卡4更新| 成人综合一区亚洲| 自拍欧美九色日韩亚洲蝌蚪91 | 少妇人妻 视频| 内地一区二区视频在线| 免费播放大片免费观看视频在线观看| 中文字幕制服av| 日韩精品有码人妻一区| 99久久人妻综合| 亚洲av福利一区| 久久婷婷青草| 久久久精品94久久精品| 亚洲人成网站在线观看播放| 成人影院久久| 国产伦理片在线播放av一区| 久久人人爽av亚洲精品天堂| 日韩在线高清观看一区二区三区| 黑人猛操日本美女一级片| 人人妻人人看人人澡| 丰满迷人的少妇在线观看| 99re6热这里在线精品视频| 久久97久久精品|