譚永安,姜義平,趙靜,肖留斌
綠盲蝽G蛋白偶聯受體激酶2基因()的表達分析及在綠盲蝽生長發(fā)育中的功能
譚永安,姜義平,趙靜,肖留斌
江蘇省農業(yè)科學院植物保護研究所,南京 210014
【目的】克隆綠盲蝽()G蛋白偶聯受體激酶2基因()cDNA序列,明確其時空表達譜,闡明外源蛻皮激素(20E)對表達的影響,分析在綠盲蝽生長發(fā)育中的作用,為進一步研究其在蛻皮激素信號轉導通路中的功能打下基礎。【方法】RACE法克隆獲得全長,實時熒光定量PCR(qRT-PCR)分析不同日齡綠盲蝽及雌成蟲不同組織中的表達譜,分析外源20E誘導及RNAi處理后,mRNA表達的應答反應及對綠盲蝽生長發(fā)育主要參數(發(fā)育歷期、若蟲體重及成蟲羽化率)的影響。【結果】cDNA序列全長2 715 bp,開放閱讀框2 106 bp,編碼701個氨基酸,ExPASy預測其蛋白分子量為80.2 kD,理論等電點為6.56;蛋白結構分析顯示AlGRK2包含4個結構域,即G蛋白信號調節(jié)區(qū)(RGS,54—175 aa)、絲氨酸/蘇氨酸激酶結構域(S-TKc,191—454 aa)、絲氨酸/蘇氨酸型蛋白激酶的伸展部分(S-TK-X,455—534 aa)和PH結構域(PH,558—655 aa),其中PH結構域是GRK2蛋白的典型結構域;系統(tǒng)發(fā)育分析結果表明,綠盲蝽GRK2與茶翅蝽GRK2親緣關系最近;在綠盲蝽1—16日齡蟲體內均有表達,mRNA表達量呈現出波動式下降的模式,在綠盲蝽初始齡期的表達量較高,而在末齡期的表達量顯著下降;在綠盲蝽雌成蟲卵巢和脂肪體中高表達,在胸與足中的表達量較低;外源20E處理后,在綠盲蝽1日齡和3日齡表達量顯著下調,在雌成蟲各組織中均表達上調,在卵巢及脂肪體中上調幅度最大,相反的是,20E信號通路中PLC抑制劑U73122處理的表達量下調;綠盲蝽若蟲發(fā)育歷期、末齡若蟲體重和成蟲羽化率均顯著下降,相反的是,U73122處理組若蟲期的發(fā)育歷期顯著延長;此外,與注射ds處理組相比,注射ds處理后綠盲蝽的表達水平顯著下降,若蟲死亡率及發(fā)育歷期顯著增加,而成蟲羽化率和5齡若蟲體重均顯著下降。【結論】在綠盲蝽體內的表達譜顯示出發(fā)育階段特異性和組織特異性;外源20E抑制劑及RNAi處理后,均可抑制的表達,同時還可對綠盲蝽生長發(fā)育產生不利影響,表現為延緩綠盲蝽的發(fā)育進度、降低5齡若蟲體重及成蟲羽化率。
綠盲蝽;G蛋白偶聯受體激酶2;蛻皮激素;基因克??;表達譜;RNA干擾
【研究意義】綠盲蝽()屬半翅目盲蝽科,是果樹、蔬菜及棉花等多種經濟作物上的重要刺吸類害蟲[1]。近年來,隨著我國農業(yè)產業(yè)結構的調整及化學農藥使用等因素,綠盲蝽在多種作物上危害趨勢加重[2-3],造成巨大的經濟和生態(tài)效益的損失。因此,有效防控綠盲蝽亟待開拓新型無公害防控手段。蛻皮激素(20-hydroxyecdysone,20E)可調控昆蟲多種重要的生理活動,挖掘蛻皮激素信號轉導中的關鍵基因,將有利于開發(fā)新型綠色昆蟲生長調節(jié)劑及有效控制綠盲蝽危害?!厩叭搜芯窟M展】20E是一種類固醇激素,主導調控昆蟲發(fā)育、變態(tài)及繁殖等重要生理活動。蛻皮激素信號轉導途徑一直是昆蟲學研究的重點和熱點。研究表明,昆蟲蛻皮激素轉導分為基因組途徑及非基因組途徑。目前已經明確了基因組轉導的途徑:20E依靠自身脂溶性穿過細胞膜進入細胞核,激活核受體基因蛻皮激素受體基因(ecdysone receptor,EcR)和超氣門蛋白(ultraspiracle protein,USP)形成異源二聚體,啟動下游基因的轉錄,進而通過核受體途徑調控昆蟲生長發(fā)育及繁殖[4-6]。20E轉導還存在著多種非基因組途徑。其中最重要的一種是20E通過細胞膜上的G蛋白偶聯受體(G protein-coupled receptor,GPCR),調控細胞內磷脂酶C(phospholipase C,PLC)、Ca2+、蛋白激酶C(protein kinase C,PKC)等因子的表達,進而觸發(fā)基因組途徑的啟動,啟動20E下游靶標基因的轉錄[7-8]。G蛋白偶聯受體激酶(G protein-coupled receptor kinase,GRK)是一類重要的膜蛋白,屬于絲氨酸/蘇氨酸蛋白激酶家族成員,可磷酸化GPCR,磷酸化后的GPCR與-抑制蛋白(-arrestin)結合后可發(fā)生脫敏反應,導致G蛋白不能與GPCR結合,從而參與20E信號通路中一系列的生理活動[9-10]。GRK通常具有4個典型結構域:G蛋白信號調節(jié)域(regulator of G-protein signaling,RGS)、AGC激酶家族的Ser/Thr蛋白激酶結構域(Ser/ Thr protein kinase domain)、氨基端N域(N-terminal domain)和羧基端C域(C-terminal domain)[11-12]。此外,根據蛋白結構差異將GRK分為GRK1、GRK2和GRK4這3個亞家族,其中GRK1亞家族包含GRK1和GRK7,其蛋白C端可以發(fā)生法尼基化,可促進其與質膜結合[13];GRK2亞家族包含GRK2和GRK3,其蛋白序列C端存在一個PH結構域,可與酸性磷脂和G亞基相互作用,因可參與腎上腺素傳導,又被稱為-腎上腺素受體激酶家族[14-16];GRK4亞家族包含GRK4、GRK5和GRK6,其N-和C-末端存在兩個多堿基區(qū)域,其中GRK4和GRK6蛋白C端可發(fā)生棕櫚酰化[17-18],GRK5的C端含有堿性氨基酸富集區(qū)[9]。研究表明,昆蟲的GRK2基因可參與激素信號通路的轉導,進而調控昆蟲的多種生理活動。在棉鈴蟲()中,20E通過調控GRK2由細胞質向細胞膜移動,隨后磷酸化ErGRCR-2(ecdysone-responsible GPCR-2),并與之結合,誘導ErGRCR-2后發(fā)生內吞,最后可終止20E信號的轉導[19];此外,在黑腹果蠅()中,表達量的減少會導致果蠅胚胎分化異常及成蟲無法飛行等[20]。上述研究結果表明,GRK2可參與昆蟲20E信號的轉導,并在多種生理活動中發(fā)揮著重要功能。此外,在家蠶()中的研究也發(fā)現,當對幼蟲注射20E后,發(fā)育受到阻遏,呈現出發(fā)育歷期的縮短及死亡率增加[21];同樣在蕁麻蛺蝶()和孔雀蛺蝶()中也發(fā)現,20E也可顯著降低幼蟲體重及存活率[22]?!颈狙芯壳腥朦c】目前,對的研究多集中在哺乳動物及某些模式昆蟲上,對綠盲蝽()的相關研究尚未見報道。【擬解決的關鍵問題】獲得全長,明確其時空表達動態(tài),分析外源20E對其表達的影響,闡明在綠盲蝽生長發(fā)育中的功能。
試驗于2019年5月至2021年3月在江蘇省農業(yè)科學院植物保護研究所完成。
初始綠盲蝽采自2018年早春的江蘇大豐及東臺蠶豆()田,于室內用四季豆()豆莢繼代飼養(yǎng),飼養(yǎng)條件為溫度(25±1)℃,相對濕度70%±5%,光周期12L﹕12D。
Trizol(Invitrogen,Rockville,USA);M-MLV反轉錄試劑盒(Promega,Madison,USA);PrimeScriptTMRT Master Mix、SMARTer?RACE 5′/3′ Kit、TB Green?TaqTm、pMD?19-T Vector(TaKaRa,Shiga,Japan);2×EXP Taq(Accurate Biotechnology,中國湖南);AxyPrepTMDNA Gel Extraction Kit、AxyPrepTMPlasmid Miniprep Kit(Axygen,Union City,CA,USA);T7 RiboMAXTMExpress RNAi System(Promega,Madison,Wisconsin,USA);20E、U73122(Sigma,Missouri,USA)。Allegra 21R臺式高速冷凍離心機(Beckman,California,USA);水平電泳系統(tǒng)(Bio-Rad,California,USA);LightCycler 480 II(Roche,Basel,Switzerland);Eppendorf FemtoJet 4i-TransferMan 4r微量自動注射儀(Eppendorf,Hamburg,Germany)。
取綠盲蝽3齡若蟲20頭,Trizol法提取綠盲蝽總RNA,M-MLV反轉錄合成cDNA?;贜CBI報道的已知昆蟲,設計簡并引物(-F和-R)(表1),獲得保守序列,進一步根據獲得的序列設計特異性引物(表1),進行5′和3′端序列的克隆。5′端序列克隆反應體系:10×PCR緩沖液5.0 μL,25 mmol·L-1MgCl23.0 μL,10 mmol·L-1dNTP mix 1.0 μL,10 μmol·L-15′--F 1.0 μL,10 μmol·L-15′--R 1.0 μL,cDNA 2.5 μL,Taq DNA Polymerase 0.5 μL,超純水補足至20.0 μL;PCR反應條件:94℃ 2 min,94℃ 30 s,55℃ 30 s,72℃ 1 min,循環(huán)35次,94℃延伸7 min。3′端序列克隆反應體系:PCR-Grade Water 34.5 μL,10×Advantage PCR Buffer 5.0 μL,10 mmol·L-1dNTP Mix 1.0 μL,50×Advantage Polymerase Mix 1.0 μL,cDNA 2.5 μL,10 μmol·L-13′--F 1.0 μL,10 μmol·L-13′--R 1.0 μL,超純水補足至50.0 μL;PCR反應條件:94℃ 2 min,94℃ 30 s,68℃ 30 s,72℃ 1 min,循環(huán)30次,72℃延伸7 min。將獲得的5′和3′端及保守區(qū)域進行測序和拼接(上海生工生物工程有限公司),最終獲得全長,最后對全長基因進行克隆驗證。
采用Expasy在線分析程序(http://web.expasy.org/ compute_pi/)預測核苷酸序列的基本物理性質;SMART(http://smart.embl-heidelberg.de/)在線預測蛋白結構域;利用MEGA6.0軟件構建系統(tǒng)進化樹(neighbor-joining,NJ)。
表1 本研究中所使用的引物
下劃線處為T7-RNA聚合酶啟動子序列 T7-RNA polymerase promoter is underlined
取自然條件下1—16日齡綠盲蝽蟲體及羽化8 d后綠盲蝽雌成蟲的7個不同組織(頭、胸、翅、足、中腸、卵巢和脂肪體),作為時空表達譜分析的樣本。各日齡樣本每個處理15頭綠盲蝽,各組織樣本每個處理10頭綠盲蝽,4次生物學重復。液氮處理樣品后-80℃保存?zhèn)溆谩rizol法提取總RNA,Prime ScriptTMRT Master Mix反轉錄合成cDNA,-20℃保存。qRT-PCR試驗步驟按照SYBR Premix Ex Taq Kit說明書進行。所用的-QF及-QR引物參見表1,并以綠盲蝽持家基因為內標基因(GenBank登錄號:JN616391)。擴增體系:2×TB Green Premix Ex Taq II 10 μL,上下游引物各0.4 μL,cDNA 2.0 μL,ddH2O 7.2 μL,總體積20.0 μL。反應條件:95℃ 30 s;95℃ 5 s,60℃ 20 s,72℃ 10 s,40個循環(huán)。
分別用20E(2 μmol·L-1)、U73122(20E信號通路中PLC抑制劑[23],50 μmol·L-1)、20E+U73122處理、乙醇(CK)浸泡切除兩端的四季豆1 min,晾干后飼喂初孵1齡若蟲。取不同處理的1—6日齡綠盲蝽若蟲及上述1.5中不同雌成蟲組織樣本,作為表達特性分析的樣本。各日齡樣本每個處理15頭綠盲蝽,各組織樣本每個處理10頭綠盲蝽,4次生物學重復。表達量測定方法同1.5。
將上述不同處理后的初孵綠盲蝽若蟲置于一次性圓形餐盒(15 cm×6.5 cm)內,用一次性紗布封頂。逐日記錄若蟲發(fā)育進度及成蟲羽化率,每處理50頭綠盲蝽若蟲,4次重復。計重綠盲蝽5齡末期若蟲(出現翅芽)體重,每處理10頭若蟲,4次重復。
以測序驗證正確的質粒作為DNA模板,利用帶T7啟動子的引物(-T7F、-T7R,表1)分別進行PCR產物正義鏈與反義鏈的擴增。用T7 RiboMAXTMExpress RNAi System合成試劑盒合成雙鏈RNA(ds)和GFP雙鏈RNA(ds),最后用無RNA酶水配制成1 μg·μL-1終濃度的溶液備用。于綠盲蝽初孵4齡若蟲的后足與胸的連接處進行注射,每頭若蟲dsRNA注射量為1 μg。設未注射及注射ds為對照組。
分別于注射后6、12、24和48 h收集上述不同處理的初孵4齡綠盲蝽若蟲,每個處理60頭,4次重復。參照1.5中的方法分析表達量。此外,將不同處理后的初孵4齡綠盲蝽若蟲置于含有新鮮四季豆的一次性圓形餐盒(15 cm×6.5 cm)中,逐日統(tǒng)計死亡率、羽化率及5齡若蟲發(fā)育歷期,并計重5齡末期若蟲(出現翅芽)體重,每個處理10頭若蟲,4次重復。
相對表達量變化均采用2-ΔΔCt計算[24]。生物學相關參數的差異顯著性統(tǒng)計分析均采用統(tǒng)計軟件SAS 8.0 完成。
利用RACE法獲得了全長cDNA序列(GenBank登錄號:MN514868)。序列分析結果表明,cDNA序列全長2 715 bp,開放閱讀框2 106 bp,編碼701個氨基酸。ExPASy預測其蛋白分子量為80.2 kD,理論等電點為6.56。SMART在線預測AlGRK2蛋白包含4個結構域:G蛋白信號調節(jié)區(qū)(RGS,54—175 aa)、絲氨酸/蘇氨酸激酶結構域(S-TKc,191—454 aa)、絲氨酸/蘇氨酸型蛋白激酶的伸展部分(S-TK-X,455—534 aa)和PH結構域(PH,558—655 aa),其中PH結構域具有與肌醇磷酸酯和蛋白質結合的能力(圖1),此為GRK2蛋白的典型特征,表明獲得的基因是亞型基因。
綠色、紅色、黃色和藍色陰影標注的氨基酸分別代表RGS結構域、S-TKc結構域、S-TK-X結構域和PH結構域
對核苷酸推導出的氨基酸序列進行Blast比對。結果表明,AlGRK2氨基酸序列與半翅目蝽科茶翅蝽()GRK 2 isoform X2基因序列同源性最高,為92.3%,表明克隆獲得的基因為2。利用MEGA6.0軟件中的NJ法對包括綠盲蝽在內的18種不同種類昆蟲的GRK2氨基酸序列構建系統(tǒng)進化樹(圖2),結果顯示,綠盲蝽GRK2與茶翅蝽GRK2親緣關系最近。
在1—16日齡綠盲蝽中均有表達,mRNA表達量呈現出波動式下降的模式,以1日齡綠盲蝽表達量最高(圖3-A,<0.05)。綜合來看,在綠盲蝽初始齡期的表達量較高,而在末齡期的表達量顯著下降。在綠盲蝽8日齡雌成蟲卵巢和脂肪體中高表達,而在胸和足中微弱表達(圖3-B,<0.05),顯示具有典型的齡期和組織表達特異性。
與對照相比,20E處理后綠盲蝽若蟲期的發(fā)育歷期顯著縮短(14.94 d17.04 d,<0.05);相反,20E信號通路中PLC抑制劑U73122處理組若蟲期的發(fā)育歷期顯著延長(18.09 d17.04 d,<0.05)。綠盲蝽若蟲各齡期發(fā)育歷期與整個若蟲期發(fā)育趨勢一致,基本為U73122>20E+U73122>乙醇(CK)>20E。顯示出20E可加快綠盲蝽若蟲的發(fā)育(表2)。
20E處理組5齡若蟲體重顯著低于對照(<0.05),降低了9.81%(4-A);成蟲羽化率結果表明(圖4-B),與對照相比,20E處理組成蟲羽化率最低,其次是U73122處理組,分別下降了15.36%和12.19%。此外,20E與其抑制劑U73122處理后的成蟲羽化率差異不顯著。
綠盲蝽Apolygus lucorum GRK2(MN514868)、茶翅蝽Halyomorpha halys GRK2(XP_014284300)、煙粉虱Bemisia tabaci GRK2(XP_018907528)、濕木白蟻Zootermopsis nevadensis GRK1(XP_021942271)、大紅葬甲Nicrophorus vespilloides GRK1(XP_017785563)、光肩星天牛Anoplophora glabripennis GRK1(XP_023313123)、赤擬谷盜Tribolium castaneum GRK1(XP_015838145)、貓蚤Ctenocephalides felis GRK1(XP_026471851)、胡鋒Diachasma alloeum GRK1(XP_015116743)、西方蜜蜂Apis mellifera GRK1(XP_026297912)、佛羅里達弓背蟻Camponotus floridanus GRK1(XP_011267492)、切胸蟻Temnothorax curvispinosus GRK1(XP_024874981)、埃及伊蚊Aedes aegypti GRK1(XP_021706708)、小菜蛾Plutella xylostella GRK1(XP_011558851)、棉鈴蟲Helicoverpa armigera GRK2(ANZ22924)、黑腹果蠅Drosophila melanogaster GRK2(NP_476867)、玉米根螢葉甲Diabrotica virgifera virgifera GRK2(XP_028135185)、食糞金龜Onthophagus taurus GRK2(XP_022917771)
圖中數據為平均數±標準誤,柱上不同字母表示差異達顯著水平(P<0.05)。下同
表2 不同藥劑處理下綠盲蝽若蟲發(fā)育歷期
表中數據為平均數±標準誤,不同小寫字母表示差異達顯著水平(<0.05)
Data in the table are means±standard error, different lowercases indicate significant difference (<0.05)
與對照相比,20E處理后的表達顯著下降(1、3日齡)(<0.05);而20E抑制劑U73122處理后,供試的1—6日齡綠盲蝽若蟲的表達均下調,其中1、3和5日齡下調表達顯著(<0.05);總體來看,不同處理的表達量大致趨勢為乙醇(CK)>20E>U73122>20E+U73122(圖5-A),顯示20E有抑制綠盲蝽若蟲表達的效應。此外,與對照相比,20E處理后綠盲蝽雌成蟲各組織中表達均上調,其中以卵巢和脂肪體中表達量最高(48.57和199.64倍,<0.05);相反,U73122處理后綠盲蝽雌成蟲各組織中的表達均下調,其中以卵巢和脂肪體中表達量下調最為顯著(<0.05)(圖5-B),表明20E有提高綠盲蝽雌成蟲組織中表達的效應。
圖4 不同處理對綠盲蝽5齡若蟲體重(A)和成蟲羽化率(B)的影響
圖5 不同處理下綠盲蝽不同日齡(A)和組織(B)中AlGRK2相對表達量
qRT-PCR檢測結果顯示,與CK相比,注射ds后的表達水平均顯著下降(<0.05,圖6)。其中以注射后6 h的下降率最高,與對照組相比分別下降了66.77%(dsCK)和65.62%(dsds);與注射ds對照組相比,注射后12、24和48 h檢測發(fā)現,綠盲蝽若蟲中表達量分別下降了50.31%、38.27%和23.37%。此外,表達量在未注射處理和注射ds處理兩個對照組之間無顯著差異(>0.05)。表明注射的dsRNA對該基因具有明顯的沉默效應。
注射dsRNA后3 d內死亡率統(tǒng)計結果顯示(圖7-A),與對照組相比,注射ds后,綠盲蝽若蟲死亡率顯著增加(<0.05),分別增加了73.77%(dsCK)和53.63%(dsds)。若蟲死亡率在未注射(CK)和注射ds兩個對照組之間無顯著差異(>0.05)。注射dsRNA后綠盲蝽成蟲羽化率結果表明,注射ds處理組綠盲蝽羽化率最低(圖7-B),與注射ds組相比,下降了33.33%。未注射(CK)和注射ds兩個對照組之間羽化率無顯著差異(>0.05)。
注射ds對5齡若蟲體重和發(fā)育歷期均存在顯著影響(<0.05)(圖7-C、7-D),其中注射ds后末齡若蟲體重顯著減少了25.52%(dsds),而發(fā)育歷期顯著延長,推遲了11.42%(dsds)。未注射(CK)和注射ds兩個對照組之間均無顯著差異(>0.05)。
圖6 dsRNA處理后綠盲蝽若蟲AlGRK2的相對表達量
圖7 dsRNA處理對綠盲蝽若蟲死亡率(A)、成蟲羽化率(B)、5齡若蟲體重(C)和發(fā)育歷期(D)的影響
蛻皮激素又稱蛻皮酮,在昆蟲幼蟲或若蟲階段主要由前胸腺分泌,并在P450酶催化下轉化為有活性的20-羥基蛻皮酮,進而與保幼激素協同合作以調控昆蟲的生長發(fā)育與變態(tài)。此外,成蟲階段的性腺器官也是主要分泌器官之一,進一步調控昆蟲的生殖和胚胎發(fā)育[25-28]。蛻皮激素作為昆蟲生長發(fā)育的關鍵激素,其滴度含量對昆蟲生長發(fā)育具有核心的調控作用,一旦昆蟲體內激素含量出現異常,可能會對昆蟲產生不可逆的損傷。Malausa等[29]對桃蚜()的研究發(fā)現,高濃度20E顯著降低其若蟲數量;Sun等[30]對小菜蛾()的研究發(fā)現,外源20E顯著降低其幼蟲體重、發(fā)育歷期、繁殖和存活率。本研究結果顯示,外源20E顯著縮短了綠盲蝽若蟲發(fā)育歷期,且末齡若蟲體重和羽化率均顯著降低。另外,20E抑制劑U73122處理下可顯著延長綠盲蝽若蟲發(fā)育歷期,并有降低羽化率的效應。表明20E可促進綠盲蝽的生長發(fā)育。
迄今為止,科學家研究證實蛻皮激素的轉導途徑存在基因組和非基因組兩種途徑。其中,20E通過細胞膜上的GPCR調控PLC、Ca2+、PKC等效應因子的表達,進而誘導基因組途徑的啟動,是目前已明確的非基因組途徑[7-8]。GPCR是目前發(fā)現的最大跨膜受體家族,能傳遞多種細胞外信號,而GRK作為GPCR負調控因子,是GPCR信號轉導過程中的重要調控開關[31-32]。根據蛋白結構差異,GRK一般包含3個亞族的7個成員。目前該激酶已在哺乳動物體內廣泛研究,并發(fā)現多與疾病相關[33]。但是,昆蟲GRK的功能目前僅在一些模式昆蟲中有相關報道。果蠅中報道有3類GRK蛋白,而在一些鱗翅目、半翅目和鞘翅目昆蟲中發(fā)現1—2類亞型[19-20],且其具體的功能尚未清楚。因此,本文以綠盲蝽為研究對象,首先通過RACE方法,克隆獲得了一種綠盲蝽,進一步通過昆蟲同源性分析及蛋白結構推導,發(fā)現該基因具備亞型典型的PH結構域特征,因此將該基因命名為。
在本研究中,在綠盲蝽前3日齡若蟲中表達量顯著高于其他日齡,1—16日齡整體表達量呈現波動下降趨勢;在綠盲蝽雌成蟲卵巢和脂肪體中高表達,而在胸和足中表達量較低。這些結果暗示在綠盲蝽組織和齡期中具有表達特異性,可能存在著不同的功能。具體來說,在綠盲蝽若蟲蛻皮前后高表達,筆者推測GRK2是20E信號通路中的重要分子,參與了20E調控綠盲蝽的蛻皮進程;在卵巢和脂肪體中高表達,表明參與了綠盲蝽的卵巢發(fā)育及卵子形成。此外,外源20E處理后,1日齡和3日齡的相對表達量顯著下調,說明20E對綠盲蝽初孵若蟲的表達存在抑制作用。但Zhao等[19]通過對棉鈴蟲6齡幼蟲進行注射處理6 h后,發(fā)現20E上調表皮中的表達水平。在本研究中,20E促進了綠盲蝽若蟲的發(fā)育,降低了的表達、5齡若蟲的體重及成蟲羽化率;而ds處理后,的表達量、5齡若蟲的體重及成蟲羽化率均呈現出下降趨勢,但綠盲蝽若蟲的發(fā)育卻受到了延緩。實際上,過快發(fā)育或發(fā)育歷期的顯著增加,可能是不利于昆蟲正常生長發(fā)育的兩個方面。此外,出現上述結果的原因,還可能與處理方式及處理齡期的差異有關。APPLE等研究發(fā)現,一定濃度蛻皮激素處理6 h后,果蠅表皮蛋白相關基因顯著上調表達,而當蛻皮激素持續(xù)處理果蠅后,表皮蛋白相關基因表達量反而下調[34-35]。上述結果表明,昆蟲發(fā)育和變態(tài)過程中體內蛻皮激素含量是動態(tài)的,含量過高會抑制下游基因的表達。此外,在哺乳動物中,抑制蛋白及Mdm2(一種泛素連接酶E3)等介導的磷酸化作用對的降解具有調控作用[36-38]。抑制蛋白和GRK共同作用可導致GPCR發(fā)生脫敏反應,Salcedo等[36]研究發(fā)現,抑制蛋白可促進泛素連接酶E3與GRK2結合,促進GRK2蛋白的降解。
GRK2是哺乳動物胚胎發(fā)育過程中必不可少的蛋白,表達量下調會導致胚胎發(fā)育遲緩,而該基因的缺失甚至會引發(fā)胚胎死亡[39-40]。Wang等[41]研究發(fā)現,GRK2功能喪失不利于秀麗隱桿線蟲()產卵。本研究發(fā)現綠盲蝽雌蟲經過20E處理后,各組織中表達量均有所上升,其中卵巢和脂肪體中顯著上調表達,而20E抑制劑U73122處理雌蟲后,卵巢、脂肪體和翅中表達量均顯著下調,說明20E對綠盲蝽組織中的表達存在誘導作用。昆蟲脂肪體和卵巢分別是卵黃及卵子發(fā)生場所,以往的研究表明,昆蟲卵產生過程中,蛻皮激素能夠調控脂肪體中卵黃蛋白的合成、卵殼的發(fā)生及卵子的成熟等過程[26,42],而GRK2作為細胞周期調節(jié)器在早期胚胎發(fā)育過程中擔任重要角色[43]。因此筆者推測,在蛻皮激素轉導途徑中參與調控雌蟲生育和繁殖過程,這也是筆者團隊后續(xù)正在進行的工作。
RNA干擾(RNA interference,RNAi)是由保守的雙鏈RNA(double-stranded RNA,dsRNA)特異性與靶標基因mRNA序列配對,從而高效、特異性降解靶標基因mRNA的表達[44],最終導致靶標基因沉默。該技術作為一種重要的研究手段,在昆蟲基因功能的研究中已被廣泛應用[45-46]。本研究通過全長序列設計引物合成dsRNA,ds注射后6、12、24和48 h檢測表達量均顯著低于對照,其中注射后6 h綠盲蝽體內表達量最低。在家蠶中,參與脂動激素受體內吞作用,進而調控家蠶體內脂類和糖類代謝[47]。此外,還可參與棉鈴蟲20E的內化過程,并且表達減少會導致果蠅軀體分化異常和無法飛行[19-20]。本研究發(fā)現,注射ds后綠盲蝽表達顯著下降,且若蟲死亡率顯著增加,而成蟲羽化率和末齡若蟲體重均顯著降低。這與本研究中20E有抑制表達的效應,并對成蟲羽化率和末齡若蟲體重存在副效應的結果吻合。說明AlGRK2是20E信號調控綠盲蝽生長發(fā)育過程中的重要分子,下一步的研究重點為明確介導20E信號轉導的內在分子機制。
在綠盲蝽體內的表達譜顯示出發(fā)育階段和組織特異性;外源20E抑制劑及RNAi處理后,均可抑制的表達,同時還可對綠盲蝽生長發(fā)育產生不利影響,表明AlGRK2參與了20E對綠盲蝽生長發(fā)育的調控。
[1] 陸宴輝, 吳孔明. 棉花盲椿象及其防治. 北京: 金盾出版社, 2008.
LU Y H, WU K M. The cotton mirids and its control. Beijing: Jindun Publishing House, 2008. (in Chinese)
[2] LU Y H, WU K M, JIANG Y Y, XIAO B, LI P, FENG H Q, WYCKHUYS K A G, GUO Y Y. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science, 2010, 328(5982): 1151-1154.
[3] PAN H S, LIU B, LU Y H, WYCKHUYS K A G. Seasonal alterations in host range and fidelity in the polyphagous mirid bug,(Heteroptera: Miridae). Plos One, 2015, 10(2): e0117153.
[4] COSTANTINO B F B, BRICHE D K, ALEXANDRE K, SHEN K, MERRIAM J R, ANTONIEWSKI C, CALLENDER J L, HENRICH V C, PRESENTE A, ANDRES A J. A novel ecdysone receptor mediates steroid-regulated developmental events during the mid-third instar of. Plos Genetics, 2008, 4(6): e1000102.
[5] CHEN C H, PAN J, DI Y Q, LIU W, HOU L, WANG J X, ZHAO X F. Protein kinase c delta phosphorylates ecdysone receptor B1 to promote gene expression and apoptosis under 20-hydroxyecdysone regulation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(34): E7121-E7130.
[6] 譚永安, 肖留斌, 郝德君, 趙靜, 孫洋, 柏立新. 綠盲蝽AlEcR-A的單克隆抗體制備及在外源20E誘導下的應答. 中國農業(yè)科學, 2017, 50(1): 86-93.
TAN Y A, XIAO L B, HAO D J, ZHAO J, SUN Y, BAI L X. Preparation of monoclonal antibody against AlEcR-A protein and its response induced by exogenous 20-hydroxyecdysone in.Scientia Agricultura Sinica, 2017, 50(1): 86-93. (in Chinese)
[7] LIU W, CAI M J, WANG J X, ZHAO X F. In a nongenomic action, steroid hormone 20-hydroxyecdysone induces phosphorylation of cyclin-dependent kinase 10 to promote gene transcription. Endocrinology, 2014, 155(5): 1738-1750.
[8] 譚永安. 磷脂酶C、E75在綠盲蝽蛻皮激素信號傳導中的功能分析[D]. 南京: 南京林業(yè)大學, 2019.
TAN Y A. The functional of phospholipase C and E75 in 20E pathway of[D]. Nanjing: Nanjing Forestry University, 2019. (in Chinese)
[9] PENELA P, RIBAS C, MAYOR F. Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases. Cellular Signallin, 2003, 15(11): 973-981.
[10] ZHANG X, KIM K M. Multifactorial regulation of G protein-coupled receptor endocytosis. Biomolecules and Therapeutics, 2017, 25(1): 26-43.
[11] GUREVICH E V, TEAMER J J G, MUSHEGIAN A, GUREVICH V V. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacology and Therapeutics, 2012, 133(1): 40-69.
[12] KOMOLOV K E, BENOVIC J L. G protein-coupled receptor kinases: past, present and future. Cellular Signalling, 2018, 41: 17-24.
[13] INGLESE J, KOCH WJ, CARON MG, LEFKOWITZ R J. Isoprenylation in regulation of signal transduction by G-protein-coupled receptor kinases. Nature, 1992, 359(6391):147-150.
[14] BENOVIC J L, MAYOR F, SOMERS R L, CARON M G, LEFKOWITZ R J. Light-dependent phosphorylation of rhodopsin by-adrenergic receptor kinase. Nature, 1986, 321(6073): 869-872.
[15] BOEKHOFF I, INGLESE J, SCHLEICHER S, KOCH W J, LEFKOWITZ R J, BREER H. Olfactory desensitization requires membrane targeting of receptor kinase mediated by-subunits of heterotrimeric G proteins. The Journal of Biological Chemistry, 1994, 269(1): 37-40.
[16] OPPERMANN M, DIVERSE-PIERLUISSI M, DRAZNER M H, DYER S L, FREEDMAN N J, PEPPEL K C, Lefkowitz R J. Monoclonal antibodies reveal receptor specificity among G-protein- coupled receptor kinases. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(15): 7649-7654.
[17] STOFFEL R H, RANDALL R R, PREMONT R T, LEFKOWITZ R J, INGLESE J. Palmitoylation of G protein-coupled receptor kinase, GRK6. lipid modification diversity in the GRK family. The Journal of Biological Chemistry, 1994, 269(45): 27791-27794.
[18] PREMONT R T, MACRAE A D, STOFFEL R H, CHUNG N J, PITCHER J A, AMBROSE C, INGLESE J, MACDONALD M E, LEFKOWITZ R J. Characterization of the G protein-coupled receptor kinase GRK4. Identification of four splice variants. The Journal of Biological Chemistry, 1996, 271(11): 6403-6410.
[19] ZHAO W L, WANG D, LIU C Y, ZHAO X F. G-protein-coupled receptor kinase 2 terminates G-protein-coupled receptor function in steroid hormone 20-hydroxyecdysone signaling. Scientific Reports, 2016, 6: 29205.
[20] Garcia-Guerra L, Vila-Bedmar R, Carrasco-Rando M, Cruces-Sande M, Martín M, Ruiz-Gómez A, Ruiz-Gómez M, Lorenzo M, Fernández-Veledo S, Mayor F, Murga C, Nieto-Vázquez I. Skeletal muscle myogenesis is regulated by G protein-coupled receptor kinase 2.Journal of molecular cell biology, 2014, 6(4): 299-311.
[21] KUBO I, KLOCKE J A, ASANO S. Insect ecdysis inhibitors from the East African medicinal plant(Labiatae). Agricultural and biological chemistry, 1981, 45(8): 1925-1927.
[22] BLACKFORD M J P, DINAN L. The effects of ingested 20- hydroxyecdysone on the larvae of,,(Lepidoptera: Nymphalidae) and(Lepidoptera: Arctiidae). Journal of Insect Physiology, 1997, 43(4): 315-327.
[23] KLEIN R R, BOURDON D M, COSTALES C L, WAGNER C D, WHITE W L, WILLIAMS J D, HICKS S N, SONDEK J, THAKKER D R. Direct activation of human phospholipase C by its well known inhibitor U73122. The Journal of Biological Chemistry, 2011, 286(14): 12407-12416.
[24] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod. Methods, 2001, 25: 402-408.
[25] KARLSON P. On the hormonal control of insect metamorphosis. A historical review. The International Journal of Developmental Biology, 1996, 40(1): 93-96.
[26] LANOT R, THIEBOLD J, COSTET-CORIO M F, BENVENISTE P, HOFFMANN J A. Further experimental evidence for the involvement of ecdysone in the control of meiotic reinitiation in oocytes of(Insecta, Orthoptera). Developmental Biology, 1988, 126(1): 212-214.
[27] LOEB M J, DE LOOF A, GELMAN D B, HAKIM R S, JAFFE H, KOCHANSKY J P, MEOLA S M, SCHOOFS L, STEEL C, VAFOPOULOU X, WAGNER R M, WOODS C W. Testis ecdysiotropin, an insect gonadotropin that induces synthesis of ecdysteroid. Archives of Insect Biochemistry and Physiology, 2010, 47(4): 181-188.
[28] DAIMON T, UCHIBORI M, NAKAO H, SEZUTSU H, SHINODA T. Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(31): E4226-E4235.
[29] MALAUSA T, SALLES M, MARQUET V, GUILLEMAUD T, ALLA S, MARION-POLL F, LAPCHIN L. Within-species variability of the response to 20-hydroxyecdysone in peach-potato aphid (Sulzer). Journal of Insect Physiology, 2006, 52(5): 480-486.
[30] SUN L J, LIU Y J, SHEN C P. The effects of exogenous 20-hydroxyecdysone on the feeding, development, and reproduction of(Lepidoptera: Plutellidae). Florida Entomologist, 2015, 98(2): 606-612.
[31] MARINISSEN M J, GUTKIND J S. G-protein-coupled receptors and signaling networks: emerging paradigms. Trends in Pharmacological Sciences, 2001, 22(7): 368-376.
[32] BELMONTE S L, BLAXALL B C. G protein coupled receptor kinases as therapeutic targets in cardiovascular disease. Circulation Research, 2011, 109(3): 309-319.
[33] KANG J H, TOITA R, KAWANO T, MURATA M, ASAI D. Design of substrates and inhibitors of G protein-coupled receptor kinase 2 (GRK2) based on its phosphorylation reaction. Amino Acids, 2020, 52(6): 863-870.
[34] APPLE R T, FRISTROM J W. 20-Hydroxyecdysone is required for, and negatively regulates, transcription ofpupal cuticle protein genes. Developmental Biology, 1991, 146(2): 569-582.
[35] DOCTOR J, FRISTRIM D, FRISTRIM J W. The pupal cuticle of: biphasic synthesis of pupal cuticle proteinsandin response to 20-hydroxyecdysone. The Journal of Cell Biology, 1985, 101(1): 189-200.
[36] SALCEDO A, MAYOR F, PENELA P. Mdm2 is involved in the ubiquitination and degradation of G-protein-coupled receptor kinase 2. The EMBO Journal, 2006, 25(20): 4752-4762.
[37] HUANG J A, NALLI A D, MSHAVADI S, KUMAR D P, MURTHY K S. Inhibition of Giactivity by Gis mediated by PI 3-kinase-- and cSrc- dependent tyrosine phosphorylation of Giand recruitment of RGS12. American Journal of Physiology Gastrointestinal and Liver Physiology, 2014, 306(9): G802-G810.
[38] WALDSCHMIDT H V, HOMAN K T, CRUZ-RODRIGUEZ O, CATO M C, WANINGER-SARONI J, LARIMORE K M, CANNAVO A, SONG J, CHEUNG J Y, KIRCHHOFF P D, KOCH W J, TESMER J J G, LARSEN S D. Structure-based design, synthesis and biological evaluation of highly selective and potent G protein-coupled receptor kinase 2 inhibitors. Journal of Medicinal Chemistry, 2016, 59(8): 3793-3807.
[39] JABER M, KOCH W J, ROCKMAN H, SMITH B, BOND R A, SULIK K K, ROSS J, LEFKOWITZ R J, CARON M G, GIROS B. Essential role of-adrenergic receptor kinase 1 in cardiac development and function. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(23): 12974-12979.
[40] PHILIPP M, FRALISH G B, MEIONI A R, CHEN W, MACINNES A W, BARAK L S, CARON M G. Smoothened signaling in vertebrates is facilitated by a G protein-coupled receptor kinase. Molecular Biology of the Cell, 2008, 19(12): 5478-5489.
[41] WANG J J, LUO J S, ARYAL D K, WETSEL W C, NASS R, BENOVIC J L. G protein-coupled receptor kinase-2 (GRK-2) regulates serotonin metabolism through the monoamine oxidase AMX-2 in. The Journal of Biological Chemistry, 2017, 292(14): 5943-5956.
[42] ISAAC R E, REES H H. Isolation and identification of ecdysteroid phosphates and acetylecdysteroid phosphates from developing eggs of the locust,. The Biochemical Journal, 1984, 221(2): 459-464.
[43] JIANG X, YANG P, MA L. Kinase activity-independent regulation of cyclin pathway by GRK2 is essential for zebrafish early development. Proceedings of the National Academy of sciences of the United States of America, 2009, 106(25): 10183-10188.
[44] 楊中俠, 文禮章, 吳青君, 王少麗, 徐寶云, 張友軍. RNAi技術在昆蟲功能基因研究中的應用進展. 昆蟲學報, 2008, 51(10): 1077-1082.
YANG Z X, WEN L Z, WU Q J, WANG S L, XU B Y, ZHANG Y J. Application of RNA interference in studying gene functions in insects. Acta Entomologica Sinica, 2008, 51(10): 1077-1082. (in Chinese)
[45] MCFARLANE M, LAURETI M, LEVEE T, TERRY S, KOHL A, PONDEVILLE E. Improved transient silencing of gene expression in the mosquito female. Insect Molecular Biology, 2021, 30(3): 355-365.
[46] ZHU J H, LIU X Q, ZHU K M, ZHOU H Y, LI L, LI Z X, QIN W W, HE Y P. Knockdown of TRPV genes affects the locomotion and feeding behavior of(Hemiptera: Delphacidae). Journal of Insect Science, 2020, 20(1): 9.
[47] 黃海山. 家蠶脂動激素受體信號轉導機制研究[D]. 杭州: 浙江大學, 2010.
HUANG H S. The mechanism of signal transduction of adipokinetic hormone receptor in[D]. Hangzhou: Zhejiang University, 2010. (in Chinese)
Expression profile of G protein-coupled receptor kinase 2 gene () and its function in the development of
TAN YongAn, Jiang YiPing, ZHAO Jing, XIAO LiuBin
Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014
【Objective】The objective of this study is to clone the full-length cDNA of the G protein-coupled receptor kinase 2 () in, clarify its expression profiles and the effect of exogenous ecdysterone hormone 20E on the expressionof, analyze the role of, and to provide a preliminary research basis for further study of its function in the ecdysone signaling transduction pathway. 【Method】Thewas cloned and obtained by RACE method. Using the qRT-PCR method, the relative expression levels ofwere determined. Finally, the response of themRNA expression inafter exogenous 20E induction and RNAi treatment and their effects on the main parameters (development progress, nymphs weight and adult emergence rate) in the growth and development of thewere analyzed.【Result】The full length ofcDNA is 2 715 bp, and ORF is 2 106 bp, which encodes 701 amino acids. ExPASy predicts that the protein molecular weight is 80.2 kD and the theoretical isoelectric point is 6.56. Protein structure analysis shows that AlGRK2 contains 4 domains: G protein signalling domain (RGS, 54-175 aa), serine/threonine protein kinases domain (S-TKc, 191-454 aa), extension to Ser/Thr-type protein kinases (S-TK-X, 455-534 aa) and pleckstrin homology domain (PH, 558-655 aa), and the PH domain is a typical protein feature in the GRK2 subtype. Phylogenetic analysis showed that GRK2 inhad the closest genetic relationship withGRK2. qRT-PCR results showed thatwas expressed in 1-day-old to 16-day-old nymphs of, and the mRNA expression showed a fluctuating downward pattern. The expression level ofwas higher in the initial instar,but decreased significantly in the last instar of. Thewas highly expressed in the ovary and fat body of female adults and less expressed in the thorax and leg. After exogenous 20E treatment, the expression ofwas significantly down-regulated in nymphs at the 1-day-old and 3-day-old. The relative expression oftreated with U73122 (PLC inhibitor) was down-regulated. Compared with ethanol control, the developmental duration of nymph, the body weight of the last instar nymph and the emergence rate of adult inwere significantly decreased after 20E treatment. On the contrary, the development duration of nymph stage in U73122 treatment group was significantly prolonged. In addition, compared with the dsgroup,expression level ofwas significantly decreased after injection of ds, and nymphs mortality and developmental stages were significantly increased, while adult emergence rate and weight of the 5th instar nymph were significantly decreased. 【Conclusion】The expression profile ofshowed the specificity of the developmental stage and the tissue. Exogenous 20E inhibitor and RNAi treatment can inhibit the expression of, and have adverse effects on the growth and development of, such as delaying the development progress of, reducing the weight of 5th instar nymph and adult emergence rate.
; G protein-coupled receptor kinase 2 (GRK2); ecdysterone hormone; gene cloning; expression profile; RNAi
2021-04-16;
2021-06-10
國家重點研發(fā)計劃(2017YFD0201900)、國家現代農業(yè)產業(yè)技術體系建設專項資金(CARS-15-20)、國家自然科學基金(31301668)、轉基因棉花環(huán)境安全性評價技術(2016ZX08011)、江蘇省農業(yè)科學院院基金(611613)
譚永安,E-mail:kellytan001@163.com。通信作者肖留斌,E-mail:xlb@jaas.ac.cn
(責任編輯 岳梅)