李 倩,高陽,王洪博,王興鵬*,楊瑩攀
溫度升高和干旱對農(nóng)田生態(tài)系統(tǒng)水碳交換動態(tài)影響的研究進展
李 倩1,高陽2,王洪博1,王興鵬1*,楊瑩攀1
(1.塔里木大學(xué) 水利與建筑工程學(xué)院,新疆 阿拉爾 843300;2.中國農(nóng)業(yè)科學(xué)院 農(nóng)田灌溉研究所,河南 新鄉(xiāng) 453002)
氣候變化是威脅全球農(nóng)業(yè)可持續(xù)發(fā)展的重要因素之一。溫度升高和干旱等極端天氣頻發(fā)是全球氣候變化的主要體現(xiàn)方式。溫度升高顯著影響土壤-作物系統(tǒng)的表現(xiàn)和功能。深入理解溫度升高和干旱對農(nóng)田水碳動態(tài)的影響機理,需要揭示農(nóng)田生態(tài)系統(tǒng)功能與環(huán)境因子間的互作關(guān)系及其尺度轉(zhuǎn)化效應(yīng)。本文從以下幾個方面綜述了升溫和干旱脅迫對農(nóng)田生態(tài)水碳動態(tài)的影響:①全球氣候變化及其影響因素分析;②溫度升高、干旱脅迫以及其他氣候變化因子對農(nóng)田生態(tài)系統(tǒng)水碳動態(tài)的影響;③存在問題與未來研究方向。文獻顯示,世界人口增加、化石燃料燃燒碳排放量增加等致使氣候變暖,在此背景下,引發(fā)的氣溫上升以及干旱頻率增加都會對農(nóng)田生態(tài)系統(tǒng)水碳動態(tài)有一定程度的影響。溫度升高改變農(nóng)田生態(tài)系統(tǒng)的生物量積累,同時影響作物生長和水分利用過程。此外,溫度升高加快了土壤活性有機碳的轉(zhuǎn)化和固存。干旱條件下會降低植物光合速率、呼吸速率以及蒸騰速率,同時,在極端干旱條件下水分利用效率也會隨之降低;干旱還顯著影響土壤碳轉(zhuǎn)化過程與排放通量。氣候變化也會伴隨降水格局變化,進一步會影響土壤呼吸作用,降水增加會抑制土壤呼吸,從而減緩農(nóng)田水碳循環(huán)過程。然而,目前關(guān)于增溫和干旱條件下農(nóng)田水碳動態(tài)的研究等方面仍存在一些不足,如對單一環(huán)境因子的研究較多,而對多重脅迫的研究較少。在今后的研究中,需加強多因素(如水分、溫度等)對農(nóng)田生態(tài)系統(tǒng)水碳動態(tài)方面的研究,以期為深入認(rèn)識溫度和干旱對農(nóng)田生態(tài)系統(tǒng)的影響機理提供理論支撐。
增溫;干旱;生物量;水碳循環(huán);農(nóng)田生態(tài)系統(tǒng)
世界人口從1990年的52.82億增加到2020年的75.0億,增長率從1.74下降為1.18[1]。盡管全球人口增長率有所下降,但還是呈增加的趨勢。預(yù)計到2050年,世界人口將會增加到89.1億[1]。由于人口的增長使得人類活動產(chǎn)生的CO2排放量也隨之增加。人類活動所產(chǎn)生的CO2是引起氣候變化的因素之一,這對全球變暖的影響是不可逆轉(zhuǎn)的[2]。
1880—2012年全球陸地平均氣溫升高了0.85 ℃,北半球陸地則為0.64 ℃/100 a[3-4]。中國的升溫趨勢為0.76 ℃/100 a,據(jù)國家氣象站網(wǎng)獲取河南省1967—2016年50年氣象數(shù)據(jù)顯示,當(dāng)?shù)貧鉁爻蔬f增趨勢。溫度升高不利于作物生產(chǎn),其帶來的負(fù)面作用會抵消大氣CO2量升高對產(chǎn)量的促進作用[5]。相關(guān)研究指出,在低緯度地區(qū),升溫對水稻干物質(zhì)的形成會有抑制作用,而在溫度和CO2量升高條件下,對高緯度地區(qū)水稻生產(chǎn)起到雙重促進作用[5]。增溫對玉米產(chǎn)量的影響效應(yīng)與水稻相類似,例如,歐洲地區(qū)玉米在增溫環(huán)境下產(chǎn)量有隨溫度升高而增加的趨勢[6]。
大氣環(huán)境質(zhì)量與全球氣候的變化情況極為密切。譚雪紅等[7]研究指出:在1996、1999年和2003年,人類活動對大氣環(huán)境影響的綜合評價指數(shù)分別為0.556、0.565和0.568,整體呈遞增趨勢。隨著化石燃料的使用增加,CH4、N2O等有害氣體的排放量也隨之增加,使得大氣環(huán)境的污染指數(shù)遞增,這些不可避免的因素使得溫室效應(yīng)愈演愈烈,從而導(dǎo)致全球變暖[8]。
全球氣候變化引起了氣溫升高、干旱災(zāi)害頻繁、CO2量升高和降水格局變化,是威脅農(nóng)業(yè)可持續(xù)發(fā)展的重要因素。Wigley等[9]根據(jù)IPCC-TAR的預(yù)測結(jié)果結(jié)合其他有關(guān)資料綜合分析指出,全球平均溫度從1990年到2100年將上升1.7~4.9 ℃;降水格局將發(fā)生變化,變幅為±10 %[10]。中國西部的年平均氣溫將升高1.7~2.3 ℃,降水增加5%~23%。據(jù)分析,CO2體積分?jǐn)?shù)已經(jīng)由19世紀(jì)末的280 μL/L-1增加到當(dāng)今的360 μL/L-1,預(yù)計到21世紀(jì)中后期將倍增[11]。
世界人口增加、人類活動等引起氣候變暖從而使CO2量、降水格局等發(fā)生變化,在此背景下,利用溫度升高和干旱來分析農(nóng)田系統(tǒng)水碳交換動態(tài)的影響,進一步為氣候變暖對農(nóng)田作物的影響提供支撐。
溫度是改變農(nóng)田生態(tài)系統(tǒng)生物量的因素之一。與未增溫處理相比,增溫提升了小麥營養(yǎng)、生殖生長并進期和收獲期的地上生物量,但未顯著影響地下部生物量;小麥在營養(yǎng)與生殖生長并進期增溫處理的總生物量顯著高于未增溫處理[12]。田間水分充足的條件下,增溫在有效范圍內(nèi)可增強土壤的微生物活性[13];但在土壤水分不足條件下, 增溫可能會抑制其活性升高, 反而會使得其活性下降[14-15]。另外,有試驗得出,作物生育期會因升溫而縮短,地上部生物量的積累會隨溫度的升高而增加,另外,增溫也加快作物對地下營養(yǎng)物質(zhì)的吸收和利用[16]。
升溫促進了作物地上部分的生長發(fā)育[17],作物生產(chǎn)干物質(zhì)的能力也會相應(yīng)地增強,植物同化CO2的能力主要受葉面積的影響[18]。因此,溫度升高對植物葉片數(shù)目、面積大小以及生長速率會產(chǎn)生一定程度的促進作用[19]。如Wang等[20]的研究得出,增溫處理會優(yōu)先促進植物進行光合作用器官的生長發(fā)育??梢?,溫度升高可以通過促進植物的代謝和微生物的活性,來進一步增加農(nóng)田生物量[12-16]。吳楊周等[21]研究表明,增溫與不增溫相比,冬小麥各個生育期增溫顯著增加了地上部生物量,同時也增加了總生物量。溫度變化對植物生物量分配多少可能與同一種植物不同器官代謝速率的異同相關(guān)[22]。通常認(rèn)為,升溫能夠加快植物的周轉(zhuǎn)速率,并減少光合產(chǎn)物向地下的分配[23]。溫度對植物生物量分配的影響大于降水影響[24],因植物水分條件變化較快,生物量分配的能力會受到植物水分條件的限制[25]。丁樂樂等[26]和吳楊周等[27]以3 a和1 a的試驗得出增溫對冬小麥地上生物量的影響不一致,這主要由于增溫年限不同所致??梢?,在增溫條件下會增加農(nóng)田生態(tài)系統(tǒng)生物量。
溫度升高是全球氣候變化的一個主要體現(xiàn)方式,顯著影響農(nóng)田系統(tǒng)的水循環(huán)過程[28]。溫度升高改變作物物候期、加劇土壤蒸發(fā)、降低冠層水汽壓差(),影響作物生長和水分利用過程[29]。毛明翠等[30]指出增溫會加快田間水分騰發(fā),加大農(nóng)田蒸散量。王石立等[31]認(rèn)為在泰安和鄭州2個地區(qū)溫度升高1.5 ℃時,冬小麥生育期內(nèi)潛在蒸發(fā)量分別增加24 mm和32 mm,比當(dāng)前氣候下多5.5%和8.5%,表明溫度升高加快了農(nóng)田土壤的水循環(huán)過程[32-35]。當(dāng)溫度升高對農(nóng)田水分騰發(fā)量產(chǎn)生顯著影響,研究其原因是溫度升高改變作物物候期、土壤含水率等[29]。另外,溫度控制對農(nóng)田水循環(huán)的研究相對較少,極有必要深入開展關(guān)于溫度升高對農(nóng)田系統(tǒng)水循環(huán)過程的研究。
農(nóng)田碳循環(huán)系統(tǒng)的邊界不僅限于土壤呼吸、生物量還有如肥料、殺蟲劑等的使用帶來的排放,另外還包括土壤CO2和CH4的排放以及秸稈還田后帶來的土壤固碳,即考慮到各個環(huán)節(jié)溫室氣體排放及固碳的整個生命周期過程[36]。隨著溫度的升高,土壤CO2和CH4的排放量都呈明顯增加趨勢,但它們的排放量的多少還受到增溫速率、幅度、土壤和微生物等其他條件的限制[37-40]。另外,Wan等[41]發(fā)現(xiàn),氣候變暖會改變試驗因子(增溫)對土壤碳排放的影響效應(yīng)。增溫會通過影響群落結(jié)構(gòu)特征使得土壤有機碳的礦化過程發(fā)生變化以及使得土壤呼吸作用增強,進一步改變麥田中CO2的釋放量[42-43]。Lu等[44]和Shi等[45]的增溫試驗得出,通過短期增溫增加大氣和土壤溫度進一步促進了土壤微生物活性,同時也增加其數(shù)量,進而使土壤孔隙中的CO2排放量明顯上升。Hou等[46]在華北地區(qū)農(nóng)田的試驗指出,在增溫條件下農(nóng)田土壤呼吸效應(yīng)較不增溫相比不顯著,但延長增溫時間土壤呼吸會表現(xiàn)出遞增的趨勢。
Kirschbaum等[47]研究發(fā)現(xiàn),氣溫每上升1 ℃,土壤有機碳成分損失約10%。孔雨光等[48]研究指出,利用適度升溫增強酶活性進而促進了土壤有機質(zhì)的分解,加快了土壤CO2產(chǎn)生速率。增溫使得土壤微生物代謝速率加快,酶活性增強,促進了有機碳的轉(zhuǎn)化和分解,排放出更多的CO2[49-50]。李俊等[51]利用5~6 a對小麥的增溫處理研究得出,在增溫條件下甲烷菌種對CH4的吸收能力降低。劉艷等[52]通過模擬增溫試驗研究表明,在冬小麥生長季和大豆生長季增溫均促進土壤CO2產(chǎn)生速率,但對大豆田的促進作用高于冬小麥田。增溫會使葉綠素量減少、光合速率降低[53]、縮短作物生育期[54-55]、減少作物產(chǎn)量[54,56-59]。綜上所述,溫度升高對農(nóng)田碳循環(huán)有促進作用。
氣候變化條件下,干旱頻率會顯著增加,尤其是在干旱/半干旱地區(qū)。在農(nóng)田生態(tài)系統(tǒng)水平上,干旱會影響群落生理特性以及結(jié)構(gòu)組成,從而使得相應(yīng)生態(tài)系統(tǒng)的光合固碳過程、蒸散耗水過程及水分利用過程發(fā)生改變[60-62]。雖然關(guān)于水分虧缺對生態(tài)系統(tǒng)不同層次水碳循環(huán)過程影響的研究較多,但在不同時空尺度下不同界面水碳耦合過程的系統(tǒng)性研究比較缺乏。
張文英[63]的試驗表明,植物密度隨著降水呈線性減少的趨勢,農(nóng)田水動態(tài)的循環(huán)及消耗速率也會減慢。干旱通過降低植物葉片氣孔導(dǎo)度來進一步增加水分傳輸阻力等以減少水分損失[64],與此同時葉片的光合速率也會隨氣孔導(dǎo)度的降低而下降[64-65]。土壤水分狀況是反應(yīng)農(nóng)田蒸發(fā)蒸騰大小及變化的一個重要因素[66-69]。夏玉米的蒸發(fā)蒸騰研究[70-73]表明:田間土壤水分通過影響植株生長進而影響植株的棵間蒸發(fā),在水分不足時,葉片氣孔會自動關(guān)閉使得植株蒸騰速率下降,從而減少組織內(nèi)部的水分散失[74-75],此時,土壤蒸發(fā)消耗的水分也會隨之減少[76]。作物會因適度缺水而保持較高的水分利用效率,而干旱較嚴(yán)重的條件下水分利用效率會隨之降低[77-78]。干旱脅迫下葉片氣孔關(guān)閉氣孔導(dǎo)度降低,以此來減少作物植株水分損失提高蒸騰效率[79]。
綜上可見,干旱會使光合固碳過程、蒸散耗水過程以及水分利用過程發(fā)生改變[60-61],另外,減少水量會引起植物密度隨著降水呈現(xiàn)線性減少的趨勢,農(nóng)田水動態(tài)的循環(huán)及消耗速率也會隨之減慢[63,74-76]。
當(dāng)土壤中水分不足時會影響植物體內(nèi)營養(yǎng)物質(zhì)的合成和運輸,也會阻礙植物對礦質(zhì)養(yǎng)分的吸收,而進一步抑制作物產(chǎn)量形成[80]。在農(nóng)田生態(tài)系統(tǒng)中,水分不足將會阻礙作物對土壤養(yǎng)分的獲取,影響土壤有機物的轉(zhuǎn)化速率,土壤緩效養(yǎng)分向速效養(yǎng)分的轉(zhuǎn)化速率也會隨之減慢[81]。降水對植物生物量分配的影響與干旱的嚴(yán)重程度有關(guān),在嚴(yán)重干旱條件下,植物響應(yīng)較為強烈。呂曉敏等[82]以降水和溫度為研究條件來分析其對植物碳物質(zhì)和生物量的影響,發(fā)現(xiàn)在同一溫度水平下,降水量比常規(guī)情況下減少30%,生物量會明顯減小,碳物質(zhì)循環(huán)也會隨之減緩,而降水減少15%以內(nèi)對生物量以及碳物質(zhì)沒有顯著影響。Deng等[83]指出在水分虧缺程度不同時植物葉片生物量也有所差異,農(nóng)田系統(tǒng)生物量的分配對短期的干旱沒有明顯的響應(yīng)[84]。另外,降水頻率和降水量的多少也會影響生物量和生產(chǎn)力[85]。干旱也會阻礙作物對養(yǎng)分的獲取,影響土壤有機物的轉(zhuǎn)化速率[81],同時也會影響農(nóng)田系統(tǒng)的生物量積累[82-84]。
一般來說,當(dāng)外界環(huán)境處于正常狀態(tài)且土壤水分為最大田間持水量時,土壤呼吸量會達到最大,當(dāng)土壤水分過高或過低時會抑制土壤呼吸作用[86]。蔡祖聰?shù)萚87]的研究表明,農(nóng)田系統(tǒng)中含水率對CH4氧化菌活性有一定程度的影響,當(dāng)土壤含水率超過田間持水量時,其活性會隨含水率的增加而受到抑制[88]。通過長期增溫(5 a及以上)發(fā)現(xiàn),農(nóng)田土壤微生物分解能力會隨著土壤含水率降低而下降,進而抑制了土壤中CO2的釋放[89-91]。在水分虧缺條件下土壤有機碳量較高,無機固碳能力增強[92]。
CO2是植物進行光合作用的基礎(chǔ),增加其濃度有利于促進植物產(chǎn)量和生物量的形成。隨著CO2量升高,植物光合速率增加,農(nóng)田系統(tǒng)作物耗水速率、耗水量也隨之增加[93]。已有的研究表明,CO2量增加對作物生產(chǎn)力起促進作用[94],例如Jablonski等[94]利用Meta分析總結(jié)了大氣CO2量升高對多種植物生殖生長指標(biāo)的影響,結(jié)果表明大氣CO2摩爾分?jǐn)?shù)升高到510~790 μmol/mol,植物在生育期內(nèi)的開花數(shù)量平均增加了19%,籽實數(shù)量平均增加了16%~18%。
CO2量升高,作物葉片固碳量增加,土壤呼吸增加,但是會導(dǎo)致葉片氣孔密度下降,氣孔密度對CO2的響應(yīng)存在一定的閾值效應(yīng)[93]。植物光合作用隨著CO2量升高而增強,在一定的量處達到峰值[95],與此同時土壤呼吸也會隨CO2量增加而增加;也有研究表明CO2量增加有利于CO2分子不斷地被光合反應(yīng)吸收利用,從而讓更多的CO2進入葉片,來促進作物產(chǎn)量等[96]。植物對大氣CO2量升高的響應(yīng)不僅包括生物量或產(chǎn)量的變化,還包括糖及其他碳水化合物量變化,比如蔗糖、麥芽糖等量預(yù)計平均增加27%[97-98]。此外,當(dāng)大氣中CO2量增加后,與碳物質(zhì)貯存和能量代謝轉(zhuǎn)化相關(guān)的指標(biāo)也會隨之增加[99]。由相關(guān)CO2量的研究表明大氣CO2摩爾分?jǐn)?shù)升高到550 μmol/mol后,C3作物小麥和水稻籽粒蛋白質(zhì)含量下降趨勢相近,均在7.8%左右;C4作物玉米下降5%左右[100]。也有模型研究表明,大氣CO2量升高對植物根系生物量多少有促進作用[101]。增加大氣CO2量會提高農(nóng)田作物對碳水化合物的合成、積累速度以及對礦質(zhì)元素的吸收速度。有關(guān)樹木的研究也指出,楊樹在高CO2量環(huán)境下光合C固定能力將會增加55%左右[102]。這主要是以最大限度保證大氣CO2量升高對光合C固定能力的促進作用[103]。顯見,CO2量升高對農(nóng)田水碳動態(tài)也有一定響應(yīng),在CO2量升高的條件下作物對碳水化合物的積累會增多,另外,碳貯存和能量代謝以及農(nóng)田系統(tǒng)作物耗水速率也會隨之增加[93,99]。
降水格局改變可通過影響作物生理生態(tài)、土壤微生物和土壤溫濕度進而影響農(nóng)田土壤呼吸和N2O的產(chǎn)生與排放。干旱區(qū)降水稀少[104],但降水格局較非干旱區(qū)變異較大[105-106]。隨著溫度升高,干旱區(qū)將形成單次降水量增多、缺水間隔期延長的降水格局[107]。陳隆勛[108]和翟盤茂[109-110]等采用統(tǒng)計分析指出我國平均年降水量呈遞減趨勢。作物受到降水減少的影響,其氮代謝過程和相關(guān)酶活性的改變也會影響土壤呼吸和N2O的產(chǎn)生與排放[111]。Jalota等[112]發(fā)現(xiàn)降水可以促進棉花的作物水分生產(chǎn)力,但是降水過多又會破壞作物生產(chǎn)力;姬興杰等[113]通過對我國北方冬小麥生育期的研究表明,除成熟期外,其他均與降水量顯著負(fù)相關(guān);張明捷等[114]研究表明,冬小麥產(chǎn)量與1月、6—9月降水量顯著相關(guān);陳書濤等[115]研究長三角地區(qū)溫度和降水對冬小麥生育期的影響表明,試驗地區(qū)降水比較充沛,所以降水不是影響該地區(qū)冬小麥生育期的關(guān)鍵因子。徐新創(chuàng)等[116]對中國近幾十年來降雨強度變化趨勢研究表明,在全球變暖的背景下,中國東部和南部暖濕地區(qū)強降雨事件將會增多[117],降水還對土壤溫濕度產(chǎn)生顯著影響,進而影響土壤呼吸。綜上,在氣候變暖的背景下,降水格局也會發(fā)生變化,進一步會影響土壤呼吸作用,降水增加會抑制土壤呼吸,從而減緩農(nóng)田水碳循環(huán)過程[111,117]。
由于全球氣候變化影響以及試驗因素的增加,進一步來研究增溫和干旱對農(nóng)田水碳動態(tài)的影響。增溫會加劇農(nóng)田系統(tǒng)的水循環(huán)過程,進一步加快田間水分騰發(fā)速率,加大田間蒸散量。通過升高溫度以及干旱條件的試驗表明,農(nóng)田系統(tǒng)的生物量、水碳以及其他指標(biāo)都會隨之產(chǎn)生不同的影響。文獻綜述顯示,國內(nèi)外有關(guān)溫度升高和干旱對農(nóng)田水碳動態(tài)的影響研究已有很多,并取得了一定成果,但仍存在一些不足之處。
1)關(guān)于增溫和干旱對農(nóng)田土壤水碳(如何通過影響土壤微生物與土壤結(jié)構(gòu),來改變碳動態(tài)和水分運動?)以及植株水碳(如何影響氣孔的碳輸入和水分蒸騰間的耦合關(guān)系?)影響的研究比較欠缺。
2)雖然單因素條件下有詳細(xì)的研究,但雙因素(溫度升高和干旱脅迫)以及多因素條件下小麥農(nóng)田系統(tǒng)水碳動態(tài)的研究仍然缺乏。應(yīng)加強多因素條件下農(nóng)田土壤、作物水碳動態(tài)等方面的研究,揭示多因素條件下對農(nóng)田系統(tǒng)水碳動態(tài)的影響。
3)關(guān)于升溫和干旱對農(nóng)田水碳動態(tài)影響的研究多是在單一尺度下開展的,缺乏單株-群體-區(qū)域不同尺度間的系統(tǒng)研究。
未來,應(yīng)以分析不同地區(qū)氣候變化特征和規(guī)?;?jié)水來開展溫度、水分等因子對作物各個生育期生長發(fā)育以及作物產(chǎn)量的影響研究,進而可以通過氣候特征以及作物前期的生長狀況更加準(zhǔn)確判斷農(nóng)田水碳循環(huán)對環(huán)境的響應(yīng)過程和作物生產(chǎn)變化趨勢。
1)應(yīng)多集中于多因素條件下對農(nóng)田作物水碳的研究,如,增溫和干旱條件下作物光合和蒸騰的耦合關(guān)系的響應(yīng)機制等。
2)應(yīng)加強未來農(nóng)田水碳循環(huán)的研究,以便對區(qū)域水循環(huán)、碳循環(huán)以及地下水平衡有定量的把握,為農(nóng)田系統(tǒng)作物生長發(fā)育進一步提供有力的支撐和依據(jù)。
3)多關(guān)注升溫和干旱對農(nóng)田水碳動態(tài)在單株-群體-區(qū)域不同尺度間的系統(tǒng)性研究,為節(jié)水高產(chǎn)農(nóng)業(yè)發(fā)展提供理論參考。
[1] 褚勁風(fēng). 全球人口增長及其地區(qū)差異[J]. 地理教學(xué), 2000(12): 4-5.
CHU Jinfeng. Global Population Growth and Regional Differences[J]. Geography Teaching, 2000(12): 4-5.
[2] 熱伊萊?卡得爾, 伊卜拉伊木?阿卜杜吾普, 陳剛. 全球氣候變化及其影響因素研究進展[J]. 農(nóng)業(yè)開發(fā)與裝備, 2020(9): 81-82.
JAYLE·Kader, IBRAHIM·Abduluup, CHEN Gang. Research progress on global climate change and its influencing factors[J]. Agricultural development and equipment, 2020(9): 81-82.
[3] IPCC. Climate change 2013: The physical science basis[M]. Cambridge: Cambridge University Press, 2013.
[4] 屠其璞, 鄧自旺, 周曉蘭. 中國近117年年平均氣溫變化的區(qū)域特征研究[J]. 應(yīng)用氣象學(xué)報, 1999, 10(S1): 35-43.
TU Qipu, DENG Ziwang, ZHOU Xiaolan. Study of regional characteristics on mean annual temperature variation of near 117 years in China[J]. Quarterly Journal of Applied Meteorlolgy, 1999, 10(S1): 35-43.
[5] AINSWORTH E A, ORT D R. How do we improve crop production in a warming world[J]. Plant Physiology, 2010, 154(2): 526-530.
[6] SUPIT I, VAN DIEPEN C A, DE WIT A J W, et al. Recent changes in the climatic yield potential of various crops in Europe[J]. Agricultural Systems, 2010, 103(9): 683-694.
[7] 譚雪紅, 尤海梅, 張廣琴. 徐州市區(qū)人類活動對大氣環(huán)境質(zhì)量影響的綜合評價[J]. 內(nèi)蒙古師范大學(xué)學(xué)報(自然科學(xué)漢文版), 2008, 37(5): 660-664.
TAN Xuehong, YOU Haimei, ZHANG Guangqin. Comprehensive ecological assessments of human impacts on air quality in Xuzhou city[J]. Journal of Inner Mongolia Normal University (Natural Science Edition), 2008, 37(5): 660-664.
[8] 馬忠海. 中國幾種主要能源溫室氣體排放系數(shù)的比較評價研究[D].北京: 中國原子能科學(xué)研究院, 2002.
MA Zhonghai. Comparative evaluation of greenhouse gas emission coefficients of several major energy sources in China [D]. Beijing: China Institute of Atomic Energy, 2002.
[9] WIGLEY T M L, RAPER S C B. Interpretation of high projections for global-mean warming[J]. Science, 2001, 293(5529): 451-454.
[10] WALLACE J S. Increasing agricultural water use efficiency to meet future food production[J]. Agriculture, Ecosystems & Environment, 2000, 82(1/2/3): 105-119.
[11] ALCAMO J, KREILEMAN G, BOLLEN J, et al. Baseline scenarios of global environmental change[J]. Global Environmental Change, 1996, 6(4): 261-303.
[12] 李景蕻. 高海拔生態(tài)區(qū)氮肥運籌和增溫措施對水稻生長發(fā)育的影響及高產(chǎn)栽培技術(shù)研究[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2009.
LI Jinghong. Effects of nitrogen application and warming measures on rice plant growth and high yield rice cultivation in high-altitude ecological areas[D]. Nanjing: Nanjing Agricultural University, 2009.
[13] BERGNER B, JOHNSTONE J, TRESEDER K K. Experimental warming and burn severity alter soil CO2flux and soil functional groups in a recently burned boreal forest[J]. Global Change Biology, 2004, 10(12): 1 996-2 004.
[14] SOWERBY A, EMMETT B, BEIER C, et al. Microbial community changes in heathland soil communities along a geographical gradient: Interaction with climate change manipulations[J]. Soil Biology and Biochemistry, 2005, 37(10): 1 805-1 813.
[15] PE?UELAS J, GORDON C, LLORENS L, et al. Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons, and species in a north-south European gradient[J]. Ecosystems, 2004, 7(6): 598-612.
[16] DOBSON A P, BRADSHAW A D, BAKER A J M. Hopes for the future: Restoration ecology and conservation biology[J]. Science, 1997, 277(5325): 515-522.
[17] DRAKE J E, TJOELKER M G, ASPINWALL M J, et al. The partitioning of gross primary production for young Eucalyptus tereticornis trees under experimental warming and altered water availability[J]. New Phytologist, 2019, 222(3): 1 298-1 312.
[18] 祝介東, 孟婷婷, 倪健, 等. 不同氣候帶間成熟林植物葉性狀間異速生長關(guān)系隨功能型的變異[J]. 植物生態(tài)學(xué)報, 2011, 35(7): 687-698.
ZHU Jiedong, MENG Tingting, NI Jian, et al. Within-leaf allometric relationships of mature forests in different bioclimatic zones vary with plant functional types[J]. Chinese Journal of Plant Ecology, 2011, 35(7): 687-698.
[19] 張橋英, 彭少麟. 增溫對入侵植物馬纓丹生物量分配和異速生長的影響[J]. 生態(tài)學(xué)報, 2018, 38(18): 6 670-6 676.
ZHANG Qiaoying, PENG Shaolin. Effects of warming on the biomass allocation and allometric growth of the invasive shrub Lantana camara[J]. Acta Ecologica Sinica, 2018, 38(18): 6 670-6 676.
[20] WANG D, MAUGHAN M W, SUN J D, et al. Impact of nitrogen allocation on growth and photosynthesis of Miscanthus (Miscanthus × giganteus)[J]. GCB Bioenergy, 2012, 4(6): 688-697.
[21] 吳楊周. 模擬增溫和降水減少對旱作農(nóng)田土壤呼吸和N2O通量的影響[D]. 南京: 南京信息工程大學(xué), 2015.
WU Yangzhou. Effect of simulated warming and declining rainfall on soil respiration and N2O emission from arid farmland[D]. Nanjing: Nanjing University of Information Science & Technology, 2015.
[22] VENTER M, DWYER J, DIELEMAN W, et al. Optimal climate for large trees at high elevations drives patterns of biomass in remote forests of Papua New Guinea[J]. Global Change Biology, 2017, 23(11): 4 873-4 883.
[23] FANG Y R, ZOU X J, LIE Z Y, et al. Variation in organ biomass with changing climate and forest characteristics across Chinese forests[J]. Forests, 2018, 9(9): 521.
[24] REICH P B, LUO Y J, BRADFORD J B, et al. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots[J]. PNAS, 2014, 111(38): 1 3721-1 3726.
[25] FARRIOR C E, TILMAN D, DYBZINSKI R, et al. Resource limitation in a competitive context determines complex plant responses to experimental resource additions[J]. Ecology, 2013, 94(11): 2 505-2 517.
[26] 丁樂樂, 程浩, 劉增富, 等. 環(huán)境增溫對稻麥輪作生態(tài)系統(tǒng)中作物產(chǎn)量的影響[J]. 植物科學(xué)學(xué)報, 2013, 31(1): 49-56.
DING Lele, CHENG Hao, LIU Zengfu, et al. Experimental warming on the rice-wheat rotation agroecosystem[J]. Plant Science Journal, 2013, 31(1): 49-56.
[27] 吳楊周, 陳健, 胡正華, 等. 水分減少與增溫處理對冬小麥生物量和土壤呼吸的影響[J]. 環(huán)境科學(xué), 2016, 37(1): 280-287.
WU Yangzhou, CHEN Jian, HU Zhenghua, et al. Effects of reduced water and diurnal warming on winter-wheat biomass and soil respiration[J]. Environmental Science, 2016, 37(1): 280-287.
[28] 張茜茜. 不同水分條件下CO2濃度和溫度對冬小麥光合性能及水分利用率的影響[D]. 邯鄲: 河北工程大學(xué), 2020.
ZHANG Qianqian. Effects of CO2concentrations and temperature on photosynthesis and water use efficiency of winter wheat under different water conditions[D]. Handan: Hebei University of Engineering, 2020.
[29] 高傳昌, 汪順生, 傅渝亮, 等. 冬小麥溝灌土壤水分動態(tài)和生長發(fā)育的試驗研究[J]. 南水北調(diào)與水利科技, 2011, 9(2): 77-79, 83.
GAO Chuanchang, WANG Shunsheng, FU Yuliang, et al. Experimental study on the soil water dynamics and growth effect of winter wheat in furrow irrigation mode[J]. South-to-North Water Diversion and Water Science & Technology, 2011, 9(2): 77-79, 83.
[30] 毛明翠, 劉暢, 曹靜, 等. 水分減少與增溫處理對冬小麥生物量和土壤呼吸的影響[J]. 環(huán)境與發(fā)展, 2019, 31(2): 15-16.
MAO Mingcui, LIU Chang, CAO Jing, et al. Effects of water deficit and warming treatments on biomass and soil respiration of winter wheat[J]. Environment and Development, 2019, 31(2): 15-16.
[31] 王石立, 趙艷霞, 王馥棠. 氣候變暖對小麥蒸散和產(chǎn)量的可能影響[J]. 中國農(nóng)業(yè)氣象, 1996, 17(4): 18-22.
WANG Shili, ZHAO Yanxia, WANG Futang. Study on the possible impact of climate warming on the evapotranspiration and yield of winter wheat[J]. Agricultural Meteorology, 1996, 17(4): 18-22.
[32] 李玉山. 旱作高產(chǎn)田產(chǎn)量波動性和土壤干燥化[J]. 土壤學(xué)報, 2001, 38(3): 353-356.
LI Yushan. Fluctuation of yield on high-yield field and desiccation of the soil on dryland[J]. Acta Pedologica Sinica, 2001, 38(3): 353-356.
[33] 黃明斌, 黨廷輝, 李玉山. 黃土區(qū)旱塬農(nóng)田生產(chǎn)力提高對土壤水分循環(huán)的影響[J]. 農(nóng)業(yè)工程學(xué)報, 2002, 18(6): 50-54.
HUANG Mingbin, DANG Tinghui, LI Yushan. Effect of advanced productivity in dryland farming of the loess plateau on soil water cycle[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(6): 50-54.
[34] WANG Z Q, LIU B Y, ZHANG Y. Soil moisture of different vegetation types on the Loess Plateau[J]. Journal of Geographical Sciences, 2009, 19(6): 707-718.
[35] 劉蘇峽, 莫興國, 李俊, 等. 土壤水分及土壤-大氣界面對麥田水熱傳輸?shù)淖饔肹J]. 地理研究, 1999, 18(1): 24-30.
LIU Suxia, MO Xingguo, LI Jun, et al. The effects of soil moisture and soil atmosphere interface on water heat transfer in winter wheat field[J]. Geographical Research, 1999, 18(1): 24-30.
[36] 薛建福. 耕作措施對南方雙季稻田碳、氮效應(yīng)的影響[D]. 北京: 中國農(nóng)業(yè)大學(xué), 2015.
XUE Jianfu. Effects of tillage on soil carbon and nitrogen in double paddy cropping system of Southern China[D]. Beijing: China Agricultural University, 2015.
[37] 韓雪, 陳寶明. 增溫對土壤N2O和CH4排放的影響與微生物機制研究進展[J]. 應(yīng)用生態(tài)學(xué)報, 2020, 31(11): 3 906-3 914.
HAN Xue, CHEN Baoming. Progress in the effects of warming on soil N2O and CH4emission and the underlying micro-bial mechanisms[J]. Chinese Journal of Applied Ecology, 2020, 31(11): 3 906-3 914.
[38] CHENG H, REN W W, DING L L, et al. Responses of a rice–wheat rotation agroecosystem to experimental warming[J]. Ecological Research, 2013, 28(6): 959-967.
[39] AGUILOS M, TAKAGI K, LIANG N S, et al. Sustained large stimulation of soil heterotrophic respiration rate and its temperature sensitivity by soil warming in a cool-temperate forested peatland[J]. Tellus B: Chemical and Physical Meteorology, 2013, 65(1): 20792.
[40] 劉杰云, 邱虎森, 張文正, 等. 節(jié)水灌溉對農(nóng)田土壤溫室氣體排放的影響[J]. 灌溉排水學(xué)報, 2019, 38(6): 1-7.
LIU Jieyun, QIU Husen, ZHANG Wenzheng, et al. Response of greenhouse gas emissions to water-saving irrigation in croplands[J]. Journal of Irrigation and Drainage, 2019, 38 (6): 1-7.
[41] WAN S Q, NORBY R J, LEDFORD J, et al. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland[J]. Global Change Biology, 2007, 13(11): 2 411-2 424.
[42] 徐學(xué)池, 黃媛, 何尋陽, 等. 土壤水分和溫度對西南喀斯特棕色石灰土無機碳釋放的影響[J]. 環(huán)境科學(xué), 2019, 40(4): 1 965-1 972.
XU Xuechi, HUANG Yuan, HE Xunyang, et al. Effect of soil moisture and temperature on the soil inorganic carbon release of brown limestone soil in the Karst region of southwestern China[J]. Environmental Science, 2019, 40(4): 1 965-1 972.
[43] 萬盛, 秦天玲, 宋新山, 等. 冬小麥田春灌前后CO2排放通量的日變化特征及對比分析[J]. 灌溉排水學(xué)報, 2019, 38(6): 80-84.
WAN Sheng, QIN Tianling, SONG Xinshan, et al. Change in CO2emission flux before and after spring irrigation in winter wheat field [J]. Journal of Irrigation and Drainage, 2019, 38(6): 80-84.
[44] LU M, ZHOU X H, YANG Q, et al. Responses of ecosystem carbon cycle to experimental warming: A meta-analysis[J]. Ecology, 2013, 94(3): 726-738.
[45] SHI F S, CHEN H, CHEN H F, et al. The combined effects of warming and drying suppress CO2and N2O emission rates in an alpine meadow of the eastern Tibetan Plateau[J]. Ecological Research, 2012, 27(4): 725-733.
[46] HOU R X, OUYANG Z, WILSON G V, et al. Response of carbon dioxide emissions to warming under no-till and conventional till systems[J]. Soil Science Society of America Journal, 2014, 78(1): 280-289.
[47] KIRSCHBAUM M U F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage[J]. Soil Biology and Biochemistry, 1995, 27(6): 753-760.
[48] 孔雨光, 張金池, 王因花, 等. 蘇北淤泥質(zhì)海岸典型防護林地土壤呼吸及其溫度敏感性[J]. 生態(tài)學(xué)報, 2009, 29(8): 4 084-4 093.
KONG Yuguang, ZHANG Jinchi, WANG Yinhua, et al. Soil respiration and its sensitivity to temperature in the typical shelter forests in a silting coastal area of Northern Jiangsu Province[J]. Acta Ecologica Sinica, 2009, 29(8): 4 084-4 093.
[49] LI L J, YOU M Y, SHI H A, et al. Soil CO2emissions from a cultivated Mollisol: Effects of organic amendments, soil temperature, and moisture[J]. European Journal of Soil Biology, 2013, 55: 83-90.
[50] 薛晶月, 張洪軒, 全權(quán), 等. 土地利用方式對中亞熱帶紅壤碳礦化及其激發(fā)效應(yīng)的影響[J]. 應(yīng)用與環(huán)境生物學(xué)報, 2014, 20(3): 516-522.
XUE Jingyue, ZHANG Hongxuan, QUAN Quan, et al. Effect of land-use type on soil carbon mineralization and its priming effect on red soils in the mid-subtropics of China[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(3): 516-522.
[51] 李俊, 同小娟, 于強. 不飽和土壤CH4的吸收與氧化[J]. 生態(tài)學(xué)報, 2005, 25(1): 141-147.
LI Jun, TONG Xiaojuan, YU Qiang. Methane uptake and oxidation by unsaturated soil[J]. Acta Ecologica Sinica, 2005, 25(1): 141-147.
[52] 劉艷, 陳書濤, 劉燕, 等. 增溫對農(nóng)田土壤碳氮循環(huán)關(guān)鍵過程的影響[J]. 中國環(huán)境科學(xué), 2013, 33(4): 674-679.
LIU Yan, CHEN Shutao, LIU Yan, et al. Effects of simulated warming on the key processes of soil carbon and nitrogen cycling in a cropland[J]. China Environmental Science, 2013, 33(4): 674-679.
[53] 張吉旺, 董樹亭, 王空軍, 等. 大田增溫對夏玉米光合特性的影響[J]. 應(yīng)用生態(tài)學(xué)報, 2008, 19(1): 81-86.
ZHANG Jiwang, DONG Shuting, WANG Kongjun, et al. Effects of increasing field temperature on photosynthetic characteristics of summer maize[J]. Chinese Journal of Applied Ecology, 2008, 19(1): 81-86.
[54] LIU L L, WANG E L, ZHU Y, et al. Contrasting effects of warming and autonomous breeding on single-rice productivity in China[J]. Agriculture, Ecosystems & Environment, 2012, 149: 20-29.
[55] TIAN Y L, CHEN J, CHEN C Q, et al. Warming impacts on winter wheat phenophase and grain yield under field conditions in Yangtze Delta Plain, China[J]. Field Crops Research, 2012, 134: 193-199.
[56] LOBELL D B, ASNER G P. Climate and management contributions to recent trends in US agricultural yields[J]. Science, 2003, 299(5609): 1032.
[57] PENG S, HUANG J, SHEEHY J E, et al. Rice yields decline with higher night temperature from global warming[J]. Pnas, 2004, 101(27): 9 971-9 975.
[58] 卞曉波, 陳丹丹, 王強盛, 等. 花后開放式增溫對小麥產(chǎn)量及品質(zhì)的影響[J]. 中國農(nóng)業(yè)科學(xué), 2012, 45(8): 1 489-1 498.
BIAN Xiaobo, CHEN Dandan, WANG Qiangsheng, et al. Effects of different day and night temperature enhancements on wheat grain yield and quality after anthesis under free air controlled condition[J]. Scientia Agricultura Sinica, 2012, 45(8): 1 489-1 498.
[59] 譚凱炎, 房世波, 任三學(xué). 增溫對華北冬小麥生產(chǎn)影響的試驗研究[J]. 氣象學(xué)報, 2012, 70(4): 902-908.
TAN Kaiyan, FANG Shibo, REN Sanxue. Experiment study of winter wheat growth and yield response to climate warming[J]. Acta Meteorologica Sinica, 2012, 70(4): 902-908.
[60] 于貴瑞, 高揚, 王秋鳳, 等. 陸地生態(tài)系統(tǒng)碳氮水循環(huán)的關(guān)鍵耦合過程及其生物調(diào)控機制探討[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報, 2013, 21(1): 1-13.
YU Guirui, GAO Yang, WANG Qiufeng, et al. Discussion on the key processes of carbon-nitrogen-water coupling cycles and biological regulation mechanisms in terrestrial ecosystem[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 1-13.
[61] 張雪松. 冬小麥農(nóng)田生態(tài)系統(tǒng)碳、水循環(huán)特征及冠層上方碳通量的模擬[D]. 南京: 南京信息工程大學(xué), 2009.
ZHANG Xuesong. Characteristic of cycle of carbon and water and modeling of carbon flux in winter wheat agro-ecosystem[D]. Nanjing: Nanjing University of Information Science & Technology, 2009.
[62] 胡中民, 于貴瑞, 樊江文, 等. 干旱對陸地生態(tài)系統(tǒng)水碳過程的影響研究進展[J]. 地理科學(xué)進展, 2006, 25(6): 12-20.
HU Zhongmin, YU Guirui, FAN Jiangwen, et al. Effects of drought on ecosystem carbon and water processes: A review at different scales[J]. Progress in Geography, 2006, 25(6): 12-20.
[63] 張文英. 水碳互作對華北冬小麥水分生產(chǎn)力的影響[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2017.
ZHANG Wenying. Effects of water and carbon interaction on water productivity of winter wheat in the NCP[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.
[64] 趙成義. 陸地不同生態(tài)系統(tǒng)土壤呼吸及土壤碳循環(huán)研究[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2004.
ZHAO Chengyi. Study on soil respiration and soil carbon cycle of different terrestrial ecosystem[D]. Beijing: Chinese Academy of Agricultural Sciences, 2004.
[65] 田晶會. 黃土半干旱區(qū)水土保持林主要樹種耗水特性研究[D]. 北京: 北京林業(yè)大學(xué), 2005.
TIAN Jinghui. Studies on water consumption characteristics of main tree species of soil and water conservation forest in semi-arid region on loess plateau[D]. Beijing: Beijing Forestry University, 2005.
[66] 李新有, 梁宗鎖, 康紹忠. 節(jié)水灌溉對夏玉米蒸騰效率的影響[J]. 華北農(nóng)學(xué)報, 1995, 10(4): 14-19.
LI Xinyou, LIANG Zongsuo, KANG Shaozhong. Effect of water saving irrigation on summer maize transpiration efficiency[J]. Acta Agriculturae Boreall Sinica, 1995, 10(4): 14-19.
[67] 高照全, 張顯川, 王小偉. 桃樹冠層蒸騰動態(tài)的數(shù)學(xué)模擬[J]. 生態(tài)學(xué)報, 2006, 26(2): 489-495.
GAO Zhaoquan, ZHANG Xianchuan, WANG Xiaowei. Mathematical simulation of canopy transpiration rate of peach tree canopy[J]. Acta Ecologica Sinica, 2006, 26(2): 489-495.
[68] 王健, 蔡煥杰, 陳鳳, 等. 夏玉米田蒸發(fā)蒸騰量與棵間蒸發(fā)的試驗研究[J]. 水利學(xué)報, 2004, 35(11): 108-113.
WANG Jian, CAI Huanjie, CHEN Feng, et al. Experimental study on evapotranspiration and soil evaporation in summer maize field[J]. Journal of Hydraulic Engineering, 2004, 35(11): 108-113.
[69] 康紹忠, 蔡煥杰, 梁銀麗, 等. 大氣CO2濃度增加對春小麥冠層溫度、蒸發(fā)蒸騰與土壤剖面水分動態(tài)影響的試驗研究[J]. 生態(tài)學(xué)報, 1997, 17(4): 412-417.
KANG Shaozhong, CAI Huanjie, LIANG Yinli, et al. Experimental research on effects of the atmospheric CO2concentration increase on the canopy temprature, evapotranspira tion andsoil moisture dirstributioni in root zone of spring wheat[J]. Acta Ecologica Sinica, 1997, 17(4):412-417.
[70] 謝華, 沈榮開. 用莖流計研究冬小麥蒸騰規(guī)律[J]. 灌溉排水, 2001, 20(1): 5-9.
XIE Hua, SHEN Rongkai. Experimental research on transpiration of winter wheat with stem flow gauge[J]. Irrigation and Drainage, 2001, 20(1): 5-9.
[71] 程維新.農(nóng)田蒸發(fā)和作物蒸騰研究[M]. 鄭州: 氣象出版社, 2000: 11-12.
CHENG Weixin. Research on the evaporation and transpiration of crops in farmland[M]. Zhengzhou: China Meteorological Press, 2000: 11-12.
[72] 孫景生, 陳玉民, 康紹忠, 等. 夏玉米田作物蒸騰與棵間土壤蒸發(fā)模擬計算方法研究[J]. 玉米科學(xué), 1996, 4(1):76-80.
SUN Jingsheng, CHEN Yumin, KANG Shaozhong, et al. Study on estimation of crop transpiration and soil evaporation in summer corn field[J]. Maize Science, 1996, 4(1):76-80.
[73] 孫景生, 康紹忠, 王景雷, 等. 溝灌夏玉米棵間土壤蒸發(fā)規(guī)律的試驗研究[J]. 農(nóng)業(yè)工程學(xué)報, 2005, 21(11): 20-24
SUN Jingsheng, KANG Shaozhong, WANG Jinglei, et al. Experiment on soil evaporation of summer maize under furrow irrigation condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(11): 20-24.
[74] MCDOWELL N, POCKMAN W T, ALLEN C D, et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? [J]. The New Phytologist, 2008, 178(4): 719-739.
[75] MCDOWELL N G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality[J]. Plant Physiology, 2011, 155(3): 1 051-1 059.
[76] WANG H X, LIU C M. Soil evaporation and its affecting factors under crop canopy[J]. Communications in Soil Science and Plant Analysis, 2007, 38(1/2): 259-271.
[77] DONG G, GUO J X, CHEN J Q, et al. Effects of spring drought on carbon sequestration, evapotranspiration and water use efficiency in the Songnen meadow steppe in northeast China[J]. Ecohydrology, 2011, 4(2): 211-224.
[78] REICHSTEIN M, TENHUNEN J D, ROUPSARD O, et al. Severe drought effects on ecosystem CO2and H2O fluxes at three Mediterranean evergreen sites: Revision of current hypotheses? [J]. Global Change Biology, 2002, 8(10): 999-1017.
[79] EDWARDS C E, EWERS B E, MCCLUNG C R, et al. Quantitative variation in water-use efficiency across water regimes and its relationship with circadian, vegetative, reproductive, and leaf gas-exchange traits[J]. Molecular Plant, 2012, 5(3): 653-668.
[80] 王建林, 于貴瑞, 房全孝, 等. 作物水分利用效率的制約因素與調(diào)節(jié)[J]. 作物雜志, 2007(2): 9-11.
WANG Jianlin, YU Guirui, FANG Quanxiao, et al. The restriction factors and regulation of crop water use efficiency[J]. Crops, 2007(2): 9-11.
[81] 山侖. 旱地農(nóng)業(yè)中有限水高效利用的研究[J]. 水土保持研究, 1996, 3(1): 8-13, 21.
SHAN Lun. The study on high efficient utilization of limited water in dry land[J]. Research of Soil and Water Conservation, 1996, 3(1):8-13, 21.
[82] 呂曉敏, 王玉輝, 周廣勝, 等. 溫度與降水協(xié)同作用對短花針茅生物量及其分配的影響[J]. 生態(tài)學(xué)報, 2015, 35(3): 752-760.
LYU Xiaomin, WANG Yuhui, ZHOU Guangsheng, et al. Effects of temperature and precipitation on Stipa bregiformis biomass and its allocation. Acta Ecologica Sinica, 2015, 35(3): 752-760.
[83] DENG J M, WANG G X, MORRIS E C, et al. Plant mass-density relationship along a moisture gradient in north-west China[J]. Journal of Ecology, 2006, 94(5): 953-958.
[84] POORTER H, NIKLAS K J, REICH P B, et al. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control[J]. New Phytologist, 2012, 193(1): 30-50.
[85] WU Z T, DIJKSTRA P, KOCH G W, et al. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation[J]. Global Change Biology, 2011, 17(2): 927-942.
[86] 陳全勝, 李凌浩, 韓興國, 等. 水分對土壤呼吸的影響及機理[J]. 生態(tài)學(xué)報, 2003, 23(5): 972-978.
CHEN Quansheng, LI Linghao, HAN Xingguo, et al. Effects of water content on soil respiration and the mechanisms[J]. Acta Ecologica Sinica, 2003, 23(5): 972-978.
[87] 蔡祖聰, ARIVNR Mosier. 土壤水分狀況對CH4氧化, N2O和CO2排放的影響[J]. 土壤, 1999(6): 289-294, 298.
CAI Zucong, ARIVNR Mosier. Effects of soil moisture on CH4oxidation, N2O and CO2[J]. Soils, 1999(6): 289-294, 298.
[88] KANG Guoding, CAI Zucong. Estimate of CH4emissions from yearroundflooded rice field during rice growing season in china[J]. Pedosphere. 2005, 15(1): 66.
[89] 楊毅, 黃玫, 劉洪升, 等. 土壤呼吸的溫度敏感性和適應(yīng)性研究進展[J]. 自然資源學(xué)報, 2011, 26(10): 1 811-1 820.
YANG Yi, HUANG Mei, LIU Hongsheng, et al.The interrelation between temperature sensitivity and adaptability of soil respiration[J]. Journal of Natural Resources, 2011, 26(10): 1 811-1 820.
[90] WANG X, LIU L L, PIAO S L, et al. Soil respiration under climate warming: Differential response of heterotrophic and autotrophic respiration[J]. Global Change Biology, 2014, 20(10): 3 229-3 237.
[91] HARTLEY I P, HEINEMEYER A, INESON P. Effects of three years of soil warming and shading on the rate of soil respiration: Substrate availability and not thermal acclimation mediates observed response[J]. Global Change Biology, 2007, 13(8): 1 761-1 770.
[92] LIU Y, DANG Z Q, TIAN F P, et al. Soil organic carbon and inorganic carbon accumulation along a 30-year grassland restoration chronosequence in semi-arid regions (China)[J]. Land Degradation & Development, 2017, 28(1): 189-198.
[93] 郭丁, 郭文斐, 趙建, 等. 黃土高原草地和農(nóng)田系統(tǒng)碳動態(tài)對降雨、溫度和CO2濃度變化響應(yīng)的模擬[J]. 草業(yè)學(xué)報, 2018, 27(2): 1-14.
GUO Ding, GUO Wenfei, ZHAO Jian, et al. Modeled effects of precipitation, temperature, and CO2changes on carbon dynamics in grassland and cropland on the Loess Plateau[J]. Acta Prataculturae Sinica, 2018, 27(2): 1-14.
[94] JABLONSKI L M, WANG X Z, CURTIS P S. Plant reproduction under elevated CO2conditions: A meta-analysis of reports on 79 crop and wild species[J]. New Phytologist, 2002, 156(1): 9-26.
[95] SILVOLA J, AHLHOLM U. Photosynthesis in willows (Salix× dasyclados) grown at different CO2concentrations and fertilization levels[J]. Oecologia, 1992, 91(2): 208-213.
[96] 陳楠楠. 溫度和CO2升高對稻麥產(chǎn)量及生物量影響的整合分析研究[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2012.
CHEN Nannan. Impacts of elevated atmospheric CO2and increased temperature on growth and yield of rice and wheat: A meta-analysis[D]. Nanjing: Nanjing Agricultural University, 2012.
[97] LOLADZE I. Hidden shift of the ionome of plants exposed to elevated CO2depletes minerals at the base of human nutrition[J]. Elife, 2014, 3: e02245.
[98] ROBINSON E A, RYAN G D, NEWMAN J A. A meta-analytical review of the effects of elevated CO2on plant-arthropod interactions highlights the importance of interacting environmental and biological variables[J]. New Phytologist, 2012, 194(2): 321-336.
[99] BATES P D, STYMNE S, OHLROGGE J. Biochemical pathways in seed oil synthesis[J]. Current Opinion in Plant Biology, 2013, 16(3): 358-364.
[100] MYERS S S, ZANOBETTI A, KLOOG I, et al. Increasing CO2threatens human nutrition[J]. Nature, 2014, 510(7503): 139-142.
[101] BASSIRIRAD H, GUTSCHICK V P, LUSSENHOP J. Root system adjustments: Regulation of plant nutrient uptake and growth responses to elevated CO2[J]. Oecologia, 2001, 126(3): 305-320.
[102] BERNACCHI C J, CALFAPIETRA C, DAVEY P A, et al. Photosynthesis and stomatal conductance responses of poplars to free-air CO2enrichment (PopFACE) during the first growth cycle and immediately following coppice[J]. New Phytologist, 2003, 159(3): 609-621.
[103] DAVEY P A, OLCER H, ZAKHLENIUK O, et al. Can fast-growing plantation trees escape biochemical down-regulation of photosynthesis when grown throughout their complete production cycle in the open air under elevated carbon dioxide [J]. Plant, Cell & Environment, 2006, 29(7): 1 235-1 244.
[104] SMITH R E, SCHREIBER H A. Point processes of seasonal thunderstorm rainfall: 2. Rainfall depth probabilities[J]. Water Resources Research, 1974, 10(3): 418-423.
[105] NOY-MEIR I. Desert ecosystems: Environment and producers[J]. Annual Review of Ecology and Systematics, 1973, 4(1): 25-51.
[106] REYNOLDS J F, KEMP P R, OGLE K, et al. Modifying the ‘pulse-reserve’ paradigm for deserts of North America: Precipitation pulses, soil water, and plant responses[J]. Oecologia, 2004, 141(2): 194-210.
[107] IPCC, “Climate Change 2007: The Physical Science Basis,” WGI Fourth Assessment Report, Intergovernmental Panel on Climate Change (IPCC), Geneva, 2007.
[108] 陳隆勛, 邵永寧, 張清芬, 等. 近四十年我國氣候變化的初步分析[J]. 應(yīng)用氣象學(xué)報, 1991, 2(2): 164-174.
CHEN Longxun, SHAO Yongning, ZHANG Qingfen, et al. Preliminary analysis of climatic change during the last 39 years in China[J]. Quarterly Journal of Applied Meteorology, 1991, 2(2): 164-174.
[109] 翟盤茂, 任福民, 張強. 中國降水極值變化趨勢檢測[J]. 氣象學(xué)報, 1999, 57(2):208-216.
ZHAI Panmao, REN Fumin, ZHANG Qiang. Detection of trends in China's precipitation extremes[J]. Acta Meteorologica Sinica, 1999, 57(2): 208-216.
[110] ZHAI P M, ZHANG X B, WAN H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China[J]. Journal of Climate, 2005, 18(7): 1 096-1 108.
[111] 崔海羚. 增溫和酸雨對大豆—冬小麥輪作農(nóng)田N2O排放的影響[D]. 南京: 南京信息工程大學(xué), 2013.
CUI Hailing. Effect of simulated experimental warming and acid rain on N2O emission from soybean-winter wheat rotation system[D]. Nanjing: Nanjing University of Information Science & Technology, 2013.
[112] JALOTA S K, SOOD A, CHAHAL G B S, et al. Crop water productivity of cotton (Gossypium hirsutum L.)-wheat (Triticum aestivum L.) system as influenced by deficit irrigation, soil texture and precipitation[J]. Agricultural Water Management, 2006, 84(1/2): 137-146.
[113] 姬興杰, 朱業(yè)玉, 劉曉迎, 等. 氣候變化對北方冬麥區(qū)冬小麥生育期的影響[J]. 中國農(nóng)業(yè)氣象, 2011, 32(4): 576-581.
JI Xingjie, ZHU Yeyu, LIU Xiaoying, et al. Impacts of climate change on the winter wheat growth stages in North China[J]. Chinese Journal of Agrometeorology, 2011, 32(4): 576-581.
[114] 張明捷, 王運行, 趙桂芳, 等. 濮陽冬小麥生育期氣候變化及其對小麥產(chǎn)量的影響[J]. 中國農(nóng)業(yè)氣象, 2009, 30(2): 223-229.
ZHANG Mingjie, WANG Yunhang, ZHAO Guifang, et al. Climate change during winter wheat growing period and its impacts on winter wheat yield in puy ang of henen Province[J]. Chinese Journal of Agrometeorology, 2009, 30(2): 223-229.
[115] 陳書濤, 王讓會, 許遐禎, 等. 氣溫及降水變化對江蘇省典型農(nóng)業(yè)區(qū)冬小麥、水稻生育期的影響[J]. 中國農(nóng)業(yè)氣象, 2011, 32(2): 235-239.
CHEN Shutao, WANG Ranghui, XU Xiazhen, et al. Impacts of variations in air temperature and precipitation on the growth stages of winter wheat and rice in typical agricultural zones of Jiangsu Province[J]. Chinese Journal of Agrometeorology, 2011, 32(2): 235-239.
[116] 徐新創(chuàng), 張學(xué)珍, 戴爾阜, 等. 1961—2010年中國降水強度變化趨勢及其對降水量影響分析[J]. 地理研究, 2014, 33(7): 1 335-1 347.
XU Xinchuang, ZHANG Xuezhen, DAI Erfu, et al. Research of trend variability of precipitation intensity and their contribution to precipitation in China from 1961 to 2010[J]. Geographical Research, 2014, 33(7): 1 335-1 347.
[117] ALLAN R P, SODEN B J. Atmospheric warming and the amplification of precipitation extremes[J]. Science, 2008, 321(5895): 1 481-1 484.
Changes in Water and Carbon in Farmland Ecosystems Due to the Combined Impact of Temperature Rise and Drought: A Review
LI Qian1, GAO Yang2, WANG Hongbo1, WANG Xingpeng1*, YANG Yingpan1
(1. College of Water Resource and Architecture Engineering,Tarim University,Alar 843300,China;2. Farmland Irrigation Research Institute,Chinese Academy of Agricultural Sciences,Xinxiang 453002,China)
Climate change would increase the frequency of extreme weather events threatening sustainable agricultural production as a warmed atmosphere has significant effects on functions of soil-crop systems. Although moderate drought is known to improve plant water use efficiency (), how warming combined with drought affects terrestrial ecosystems remains largely unknown. Evolutionally, different plants have developed different strategies to facilitate water acquisition, and their physiological and morphological traits respond to drought in different ways. In this paper, we reviewed the combined effects of warming and drought on water and carbon dynamics in cropped lands in three aspects: ①global climate change and its underlying drivers; ②effects of warming, drought and other climate change factors on water/carbon dynamics; ③unknown/known problems and future research directions. Global warming induced by the increased population, carbon emissions from fossil fuel and increase in drought frequency will all pose a significant impact on water and carbon in farmland. Warming will change the amount of biomass thereby affecting crop growth and water use efficiency, in addition to the accelerated soil organic carbon (SOC) loss. In the above-ground, drought will reduce photosynthetic rate and transpiration, while in the below-ground, it will reduce microbial activity and slow down SOC decomposition, thereby inhibiting soil CO2emissions. Climate change is likely to change the precipitation pattern, which in turn will alter soil respiration. Apparently, there is a lack of studies on water and carbon cycles under combined influence of drought and increasing temperature. This should be strengthened as water and carbon cycles in soil-crop systems are likely to be affected by multiple biotic and abiotic factors including soil water, temperature, carbon and nutrient concentration, in order to provide a mechanistic understanding of their combined effects on functions of farmland ecosystems as well as their feedback interaction with global warming.
global warming; drought; biomass; water and carbon cycle; farmland ecosystem
S181
A
10.13522/j.cnki.ggps.2021285
1672 - 3317(2021)12 - 0110 - 09
李倩, 高陽, 王洪博, 等. 溫度升高和干旱對農(nóng)田生態(tài)系統(tǒng)水碳交換動態(tài)影響的研究進展[J]. 灌溉排水學(xué)報, 2021, 40(12): 110-118.
LI Qian, GAO Yang, WANG Hongbo, et al. Changes in Water and Carbon in Farmland Ecosystems Due to the Combined Impact of Temperature Rise and Drought: A Review[J]. Journal of Irrigation and Drainage, 2021, 40(12): 110-118.
2021-07-07
國家自然科學(xué)基金項目(51879267);財政部、農(nóng)業(yè)農(nóng)村部:現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(CARS-03);塔里木大學(xué)校長基金項目(TDZKSS202146);兵團財政科技計劃項目(2021AA003)
李倩(1996-),女。碩士研究生,主要從事灌溉排水理論與節(jié)水灌溉技術(shù)研究。E-mail:910021332@qq.com
王興鵬(1978-),男。教授,博士,碩士生導(dǎo)師,主要從事作物高效用水技術(shù)研究。E-mail: 13999068354@163.com
責(zé)任編輯:趙宇龍