• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improving the process forming limit considering forming defects in the transitional region in local loading forming of Ti-alloy rib-web components

    2017-11-20 01:56:38PengfeiGAOXiaodiLIHeYANGXiaoguangFANZhenniLEI
    CHINESE JOURNAL OF AERONAUTICS 2017年3期

    Pengfei GAO,Xiaodi LI,He YANG,Xiaoguang FAN,Zhenni LEI

    State Key Laboratory of Solidification Processing,School of Materials Science and Engineering,Northwestern Polytechnical University,Xi’an 710072,China

    Improving the process forming limit considering forming defects in the transitional region in local loading forming of Ti-alloy rib-web components

    Pengfei GAO*,Xiaodi LI,He YANG*,Xiaoguang FAN,Zhenni LEI

    State Key Laboratory of Solidification Processing,School of Materials Science and Engineering,Northwestern Polytechnical University,Xi’an 710072,China

    Available online 21 December 2016

    *Corresponding authors.

    E-mail address:gaopengfei@nwpu.edu.cn(P.F.GAO).

    Peer review under responsibility of Editorial Committee of CJA.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.cja.2016.11.004

    1000-9361?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.

    This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    The isothermal local loading forming technology provides a feasible way to form Ti-alloy large-scale rib-web components in aerospace and aviation fields.However,the local loading process forming limit is restricted by forming defects in the transitional region.In this work,the feasibility of controlling forming defects and improving the process forming limit by adjusting die parameters is explored through finite element(FE)simulation.It is found that the common cavum and folding defects in the transitional region are significantly influenced by the fillet radii of left rib and middle rib,respectively.The cavum and folding defects can be effectively controlled by increasing the fillet radii of left rib and middle rib,respectively.The process forming limits considering forming defects in the transitional region are determined by the stepwise searching method under various die parameters.Moreover,the relationship between the process forming limit and die parameters is developed through the response surface methodology(RSM).The developed RSM models suggest that increasing the fillet radii of left and middle ribs is effective to improve the process forming limit during local loading forming of rib-web components.The results will provide technical basis for the design of die parameters and the reduction amount,which is of great importance to control forming defects and improve the process forming limit in local loading forming of Ti-alloy large-scale rib-web components.

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Defect;

    Large-scale

    rib-web component;

    Local loading forming;

    Process forming limit;

    Transitional region

    1.Introduction

    Ti-alloy large-scale complex components(such as bulkheads)are a kind of high-performance and lightweight structural component,which have been widely used in the aviation field.However,their complex shapes and the hard-to-deform property of titanium alloy makes it very difficult to form these components using the integral forging method.To overcome the challenge,Yang et al.1–5proposed an isothermal local loading forming technology,in which a component is formed by changing the loading region(Fig.1).It can reduce the forming load,enhance the formability of a material,and enlarge the size of a component,providing a highly attractive way of forming Ti-alloy large-scale complex components.However,during local loading forming,the transitional region undergoes large uneven deformation under the constraints of the loading and unloading regions,which may lead to some forming defects such as folding and cavum.A previous investigation6indicated that the amount of uneven deformation and forming defects can be suppressed by reducing the reduction amount.Nevertheless,this will increase the total required loading passes,and then prolong the production cycle and raise the cost.Moreover,too many isothermal loading passes may result in a bad microstructure and a poor performance,since the workpiece undergoes series of thermal cycles(heating,holding,deformation,and cooling).Therefore,it is very critical to maximize the reduction amount in each loading pass under the precondition of avoiding forming defects.Here,we call the allowablemaximum reduction amount without forming defects in the transitional region as process forming limit.

    To date,many works have been conducted on the formation and avoidance of forming defects during integral forging.For instance,Chan et al.7studied the dependence of the folding defect on tooling geometrical parameters in forging of asymmetrical f l anged components by finite element(FE)simulation.Zhang et al.8investigated the formation mechanisms of folding and underfilling during isothermal forging of aluminum-alloy ring seats through a combination of FE simulation and experiments.Petrov et al.9revealed the variation law of the folding length with die geometrical parameters and friction in closed-die forging of an aluminum part with an irregular shape.Then they obtained the optimal die parameters and friction to avoid the folding defect.Chen et al.10found that flow-through is a common defect in press forging of AZ31 magnesium-alloy sheets,which can be suppressed by increasing the sheet thickness.In addition,they determined the minimum sheet thickness without flow-through using the stepwise searching method.The research methodologies and results of the above works enlighten the investigation of forming defects during local loading forming.

    Some primary works have also been carried out on forming characteristics during local loading forming.Zhang et al.11,12and Gao et al.13studied the behavior of material flow in the transitional region by FE simulation,and quantitatively uncovered the mechanisms of transverse material flow from the loading region into the unloading region.On these bases,the formation mechanisms of forming defects(folding and cavum)in the transitional region and their dependences on local loading processing parameters were revealed.6It was found that both decreasing the spacer block thickness and increasing friction can suppress folding and cavum,while the deformation temperature and loading speed have few effects on forming defects.The effects of structural parameters of the transitional region on folding and cavum have also been studied.14Furthermore,Gao et al.15developed the prediction models of forming defects in the transitional region for local loading forming of rib-web components with various structural parameters.Then,they determined the process forming limit considering forming defects in the transitional region through the stepwise searching method combined with the prediction models of forming defects.However,it was found that the process forming limit locates in the range of 7.1–8.1 mm at various structural parameters,which is still not a satisfactory result to reduce the loading pass.Therefore,it is still needed to find feasible ways to control the forming defects in the transitional region and then improve the process forming limit of local loading forming.

    Up to now,there is no study on the method for improving the process forming limit of local loading forming.Zhang et al.16found that besides the processing condition and structural parameters,die parameters(fillet radius and draft angle)also play a great role in the material flow and deformation behavior during local loading forming of rib-web components.Therefore,it may be able to control forming defects and improve the process forming limit by adjusting die parameters.To this end,further investigations should be conducted on the effects of die parameters on forming defects in the transitional region and the process forming limit in isothermal local loading forming.

    In this work,the dependences of forming defects in the transitional region and the process forming limit on die parameters in local loading forming were studied systematically.By carrying out orthogonal FE simulation analyses,the key influencing factors and laws of die parameters on forming defects and the process forming limit were revealed.Then,the relationships between the process forming limit and die parameters were developed.On these bases,design strategies of die parameters for improving the process forming limit were proposed.

    The results will provide technological basis for optimizing die parameters in isothermal local loading forming of Ti-alloy large-scale rib-web components.

    2.Research methodology

    2.1.FE model of the transitional region

    A previously developed FE model of the transitional region in local loading forming of rib-web components was employed in this work,as shown in Fig.2.13,14The FE model is developed based on DEFORM-2D software,in which the deformation in the transitional region is simplified as a plane strain problem.For the die structure,the lower die is kept integral,while the top die is divided into two symmetrical parts:Top die 1 and Top die 2.Fig.2(a)shows the structural dimensions of dies,where the unit is mm.In Fig.2,Lis the reduction amount,ris the fillet radius,and γ is the draft angle.The billet is TA15 alloy with a height(H)of 30 mm.A typical local loading process has two loading steps conducted by adjusting the relative position of the two top dies using a spacer block.In the first loading step(Fig.2(a)),Top die 1 is protuberant by implanting the spacer block between the top die bed and Top die 1.In the second loading step(Fig.2(b)),Top dies 1 and 2 are at the same level by removing the spacer block.

    During FE modeling,the flow behavior of TA15 alloy is input into DEFORM software in the form of discrete points based on the experimental results in Fig.3.17(Trepresents the temperature).Meanwhile,the dies are modeled as rigid bodies.As isothermal local loading is performed under high temperature and low loading speed,the whole forming process is modeled in an isothermal condition without any thermal events.The shear friction model and von Mises yielding criteria are adopted.Besides,the automatic remeshing and local refined meshing techniques are applied to avoid the meshinginduced singularity.The FE model has been validated by physical experiments with a material of lead in previous works.13,14Table 1 lists the key parameters in the physical experiment and FE models.The good agreements on the flow line,shape,and feature sizes between the simulated and experimental samples(Fig.4 and Table 2)suggest that the FE model is reliable in studying forming defects in the transitional region during local loading forming.In Table 2,left rib,middle rib,and right rib represent the heights of three ribs respectively;Lfoldis the length of folding andLmis the distance between folding and middle rib;D1andD2represent the depths of cavum in left rib and middle rib,respectively.

    Thus,this FE model is applicable to study forming defects in the transitional region and the process forming limit in this work.To study the effects of die parameters,the fillet radii and draft angles of the three ribs are set changing from 3 to 9 mm and 1 to 3°,respectively.It should be noted that the fillet radii and draft angles are symmetrical for the three ribs.As far as the processing parameters are concerned,the deformation temperature,loading speed,and friction factor are set as 950°C,0.1 mm/s,and 0.5,respectively.Both the spacer block thickness and reduction amount are 13 mm.These processing parameters are all set as favorable values for suppressing forming defects in the transitional region according to the results of previous studies.6,14

    Quantities simulations show that the cavum at left rib and folding defects are still prone to emerge,while the cavum at middle rib would not occur in the above ranges of die parameters,as shown in Fig.5.In this work,the cavum defect at left rib is evaluated by its depth,noted asD,and the folding defect is evaluated by its length,noted asLfold(Fig.5).If no folding is generated,we defineLfoldas 0.According to the requirements of machining allowance and forming quality in precision forging15,18,the standards for qualif i ed workpiece are set as follows:no folding emerges and the cavum depth is less than 3 mm.

    2.2.Orthogonal experiment design and response surface methodology

    The orthogonal experiment design is a widely used sampling strategy,which can study the effects of many factors simultaneously in a single set of experiments with much fewer experiments.19,20Thematrix,an orthogonal array of seven factors and three levels,was used to study the effects of die parameters on forming defects and the process forming limit.The considered die parameters and their levels are given in Table 3,and the designed experiment schemes are shown in Table 4.FE simulations were conducted according to the experiment schemes,and then the simulated cavum depth and folding length were measured(Table 4).

    In this work,the range analysis was used to study the orthogonal experiment results.During range analysis,two key parameters,i.e.,KjiandRj,need to be calculated,whose detailed calculation processes can be found in Ref.19.is the average value of the indexes of all levels(i,i=1,2,3)in each factorjat the same leveli.The range between the maximum and minimum values ofis de fi ned as range value,Rj,which can be used to evaluate the significance of a factor,i.e.,the greaterRjis,the more significant a factor is.

    Table 1 Key parameters in the physical experiment and FE models.14

    Response surface methodology(RSM)is one of the most popular modeling techniques,which has been widely used to approximate the time-consuming FE simulation in various fi elds.21,22Thus,the RSM modeling method was employed to correlate the process forming limit and die parameters in this work.During RSM modeling,the quadratic polynomial without a quadratic term was used with the following formulation:

    whereyis the response(process forming limit),kis the number of input variables,xiandxjare the sets of model input variables(γ1,r1,γ2,r2,γ3,r3),and β0,βj,βijrepresent the regression coefficients.

    Table 2 Comparisons of feature sizes between the simulated and experimental results.14

    3.Results and discussion

    3.1.Effects of die parameters on forming defects

    Fig.6 shows the range analysis results on the cavum depth based on the data in Table 4.From the range values of different factors,it can be concluded thatr1is the only significant factor for the cavum depth.The cavum depth decreases monotonically with an increases ofr1,as shown in Fig.6(b).It has been reported that the cavum at left rib is produced in the second loading step due to a shift of the rib root,which is essentially caused by the leftward transverse flow of the web material.6Fig.7 compares the formation of the cavum defect between samples with differentr1.It can be found that the sample with a greaterr1(Fig.7(d))presents a smoother transition at the rib root,rather than a V-shaped cavum in the sample with a smallerr1(Fig.7(b)).This indicates that a smoother transition at the rib root could suppress the cavum greatly.As a result,with an increase ofr1,the cavum depth decreases gradually.

    The range analysis results on the folding defect are given in Fig.8.From Fig.8(a),we can find that there is only one significant factor,i.e.,r2,for folding,which is similar to the case of cavum.It can be found from Fig.8(b)that the folding length decreases with an increase ofr2,and folding disappears whenr2increases to 9 mm.Fig.9(a)shows a typical formation process of the folding defect in the second loading step.It includes three main steps:(1)a step is created under the effect of transverse material flow;(2)the step evolves to a V-shaped cavum;(3)the V-shaped cavum gets close gradually and becomes folding.It can be concluded that the creations of a step and a V-shaped cavum play a critical role in the formation of folding.From the comparison of samples with differentr2(Fig.9(b–e)),it can be found that a greaterr2can reduce the slope of the step(Fig.9(d))and suppress the generation of a V-shaped cavum(Fig.9(e)),then controlling the formation of folding.Thus,the folding length decreases with an increase ofr2.

    3.2.Dependence of process forming limit on die parameters

    The results in Section 3.1 suggest that die parameters,especiallyr1andr2,present great influences on forming defects in the transitional region.Increasingr1andr2can significantly suppress cavum and folding,respectively.Thus,it can be deduced that increasingr1andr2can improve the process forming limit constrained by forming defects in the transitional region.In this section,the dependence rule of the process forming limit on die parameters will be investigated in detail.

    Here,we define the process forming limit constrained by the cavum defect asLmax1,the process forming limit constrained by the folding defect asLmax2,and the limit considering both of the two defects asLmax.Naturally,for a certain group of die parameters,Lmax=min{Lmax1,Lmax2}.According to the requirements of a qualif i ed workpiece mentioned in Section 2.1,Lmax1andLmax2of samples in Table 4 are determined by thestepwise searching method based on FE simulation.Based on these results(Table 4),the range analysis is also conducted onLmax1(Fig.10)andLmax2(Fig.11).From Fig.10,it can be found thatr1plays a great role inLmax1.Whenr1increases from 3 to 9 mm,the averageLmax1increases from 12.8 to 16.1 mm.On the other hand,r2plays a great role inLmax2,as shown in Fig.11.Whenr2increases from 3 to 9 mm,the averageLmax2increases from 7.4 to 15.1 mm.This verifies that increasingr1andr2is an effective method to improve the process forming limit constrained by forming defects in the transitional region.

    Table 3 Factors and levels of orthogonal experiment design.

    Table 4 Orthogonal experiment schemes and simulated forming results.

    To develop the design criteria of die parameters and the reduction amount in local loading forming,it is still needed to establish the relationship between the process forming limit and die parameters.To this end,the RSM modeling method described in Section 2.2 is used.Using the stepwise regression method,the final regression models forLmax1andLmax2are obtained as follows:

    The ANOVA analysis for the two regression models are shown in Tables 5 and 6,respectively.It can be found that thep-values of the two models are both less than 0.01,suggesting that the regression models are both significant.Moreover,the adequacy measures ofR2and adjustedR2are in a reasonable agreement and are both close to 1 for the two models.These indicate that the regression models are both adequate and meaningful.

    To verify the accuracy of the developed RSM models,we design 6 additional random samples within the whole die parameters space(Section 2.1)by the general Latin Hypercube design.Table 7 gives the detailed scheme of random samples and the comparisons between the process forming limits(Lmax1andLmax2)obtained by RSM and FE simulation.It can be found that the predicted errors of the two models are both very small,which suggests that the developed RSM models are reliable to predictLmax1andLmax2at various die parameters.

    After getting both the process forming limit considering the cavum defect(Lmax1)and the process forming limit considering the folding defect(Lmax2),the final process forming limit considering both defects(Lmax)can be represented by:

    3.3.Coupling effects of die parameters

    In this section,the coupling effects of two key factors(r1andr2)on the process forming limits and the restriction laws ofLmax1andLmax2onLmaxare analyzed.Here,bothr1andr2range from 3 to 9 mm,while γ1,γ2,γ3,andr3are fixed as 2°,2°,2°,and 6 mm,respectively.Using Eqs.(2)and(3),Lmax1andLmax2are calculated at 32×32 uniform distributed points in the space ofr1×r2.Then,the variations ofLmax1andLmax2withr1andr2are shown in Fig.12(a)through a threedimensional diagram.It can be found that the surfaces ofLmax1andLmax2are both close to planes.Moreover,theLmax1andLmax2planes are roughly parallel tor2-axis andr1-axis,respectively,suggesting that the coupling effects ofr1andr2onLmax1andLmax2are small.This is to say,Lmax1andLmax2are mainly determined byr1andr2,respectively.On the other hand,it can be observed from Fig.12(a)that the surfaces ofLmax1andLmax2intersect in the space.Ther1-r2plane can be divided into Region A and Region B(Fig.12(a))by projecting the intersecting line of the two surfaces.In Region A,Lmax2is smaller thanLmax1,so the final process forming limitLmaxequals toLmax2.This means that the final process forming limitLmaxis essentially constrained by folding in Region A.Conversely,Lmax1is smaller thanLmax2in Region B,and thus the final process forming limitLmaxis essentially constrained by cavum and equals toLmax1in Region B.Fig.12(b)gives the process forming limit considering both defects(Lmax)at various die parameters.It can be found that the process forming limit(Lmax)can be improved from 7.6 mm to 15.4 mm,whenr1andr2both increase from 3 mm to 9 mm.

    Table 5 ANOVA analysis for the RSM model of Lmax1.

    Table 6 ANOVA analysis for the RSM model of Lmax2.

    Table 7 Comparisons between the predicted process forming limits obtained by RSM and FE simulation.

    3.4.Discussion

    The above analyses suggest that increasingr1andr2is an effective way to suppress cavum and folding defects in the transitional region,and then improve the process forming limit during local loading forming of rib-web components.Moreover,r1andr2are the only significant factors for the cavum and folding defects,respectively.There is little coupling effect ofr1andr2on forming defects and the process forming limit.These results are essentially determined by the formation mechanisms of defects and their dependences on die parameters.As described in Section 3.1,local geometrical parameters at the rib root greatly influence the material flow and determine forming defects.A greater fillet radius is more beneficial to avoid a V-shaped cavum at the rib root,which usually results in the cavum and folding defects.In addition,formations of cavum and folding defects both mainly depend on the local deformation behavior at the rib root.Thus,increasingr1andr2could control the cavum and folding defects,respectively,and little coupling effect exists.

    Using Eqs.(2–4),the process forming limit,i.e.,the allowable maximum reduction amount,at different die parameters can be determined,as shown in Fig.12(b).This will provide technical basis for the design of die parameters and the reduction amount,which is of great importance to control forming defects and improve the process forming limit in local loading forming of Ti-alloy large-scale rib-web components.Although the process forming limit models(Eq.(2–4))are developed for a specific component,the effect laws of die parameters on forming defects and the process forming limit in this work are still propagable for local loading forming of rib-web components.

    4.Conclusions

    In this paper,we have explored the effects of die parameters on forming defects in the transitional region and the process forming limit during local loading forming of rib-web components.The following conclusions can be drawn:

    (1)The common cavum and folding defects in the transitional region mainly depend on the fillet radii of left rib and middle rib,respectively.Increasing the fillet radii of left rib and middle rib can suppress the cavum and folding defects,respectively.

    (2)The process forming limit constrained by forming defects in the transitional region is determined by the stepwise searching method based on FE simulation,and correlated with die parameters by the response surface methodology.

    (3)Increasing the fillet radii of left and middle ribs is an effective way to improve the process forming limit during local loading forming of rib-web components.The process forming limit can be improved from 7.6 mm to 15.4 mm when the fillet radii of left and middle ribs both increase from 3 mm to 9 mm for the component in this work.

    Acknowledgements

    The authors would like to gratefully acknowledge the support of the National Natural Science Foundation of China(Nos.51605388,51675433),111 Project(B08040),the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)in China(Grant No.131-QP-2015),the Fundamental Research Funds for the Central Universities,and the Open Research Fund of State Key Laboratory of Materials Processing and Dieamp;Mold Technology at Huazhong University of Science and Technology.

    1.Yang H,Fan XG,Sun ZC,Guo LG,Zhan M.Recent developments in plastic forming technology of titanium alloys.Sci China Technol Sci2011;54(2):490–501.

    2.Fan XG,Yang H,Gao PF.Through-process macro-micro finite element modeling of local loading forming of large-scale complex titanium alloy component for microstructure prediction.J Mater Process Technol2014;214(2):253–66.

    3.Fan XG,Yang H,Sun ZC,Zhang DW.Effect of deformation inhomogeneity on the microstructure and mechanical properties of large-scale rib-web component of titanium alloy under local loading forming.Mater Sci Eng A2010;527(21–22):5391–9.

    4.Zhang DW,Yang H,Sun ZC.Analysis of local loading forming for titanium-alloy T-shaped components using slab method.J Mater Process Technol2010;210(2):258–66.

    5.Zhang DW,Yang H,Sun ZC,Fan XG.Deformation behavior of variable-thickness region of billet in rib-web component isothermal local loading process.Int J Adv Manuf Technol2012;63(1–4):1–12.

    6.Gao PF,Yang H,Fan XG,Lei PH.Forming defects control in transitional region during isothermal local loading of Ti-alloy ribweb component.Int J Adv Manuf Technol2014;76(5–8):857–68.

    7.Chan WL,Fu MW,Lu J,Chan LC.Simulation-enabled study of folding defect formation and avoidance in axisymmetrical f l anged components.J Mater Process Technol2009;209(11):5077–86.

    8.Zhang YQ,Jiang SY,Zhao YA,Shan DB.Isothermal precision forging of aluminum alloy ring seats with different preforms using FEM and experimental investigation.Int J Adv Manuf Technol2014;72(9):1693–703.

    9.Petrov P,Perf i lov V,Stebunov S.Prevention of lap formation in near net shape isothermal forging technology of part of irregular shape made of aluminum alloy A92618.J Mater Process Technol2006;177(1–3):218–23.

    10.Chen FK,Huang TB,Wang SJ.A study of flow-through phenomenon in the press forging of magnesium-alloy sheets.J Mater Process Technol2007;187–188:770–4.

    11.Zhang DW,Yang H,Sun ZC,Fan XG.Deformation behavior under die partitioning boundary during titanium alloy large-scale rib-web component forming by isothermal local loading.Proceedings of the 12th World Conference on Titanium.Beijing:Science Press;2011.p.328.

    12.Zhang DW,Yang H.Distribution of metal flowing into unloaded area in the local loading process of titanium alloy rib-web component.Rare Metal Mater Eng2014;43(2):296–300.

    13.Gao PF,Yang H,Fan XG.Quantitative analysis of the material flow in transitional region during isothermal local loading forming of Ti-alloy rib-web component.Int J Adv Manuf Technol2014;75(9–12):1339–47.

    14.Gao PF,Yang H,Fan XG,Lei PH.Quick prediction of the folding defect in transitional region during isothermal local loading forming of titanium alloy large-scale rib-web component based on folding index.J Mater Process Technol2015;219:101–11.

    15.Gao PF,Yang H,Fan XG,Lei PH.Forming limit of local loading forming of Ti-alloy large-scale rib-web components considering defects in the transitional region.Int J Adv Manuf Technol2015;80(5):1015–26.

    16.Zhang DW,Yang H,Sun ZC,Fan XG.Influences of fillet radius and draft angle on local loading process of titanium alloy T-shaped components.Trans Nonferrous Met Soc China2011;21(12):2693–704.

    17.Shen CW.Research on material constitution models of TA15 and TC11 titanium alloys in hot deformation process[Dissertation].Xi’an Northwestern Polytechnical University;2007.

    18.Shipley RJ.Precision forging,forging process,ASM Handbook.ASM International;1988.

    19.Shen Q,Zheng Y,Li S,Ding H,Xu Y,Zheng C,et al.Optimize process parameters of microwave-assisted EDTA method using orthogonal experiment for novel BaCoO3-δ perovskite.J Alloy Comp2016;658:125–31.

    20.Meng Y,Chen Y,Li S,Chen C,Xu K,Ma F,et al.Research on the orthogonal experiment of numeric simulation of macromolecule-cleaning element for sugarcane harvester.Mater Des2009;30(6):2250–8.

    21.Yang YH,Liu D,He ZY,Luo ZJ.Optimization of preform shapes by RSM and FEM to improve deformation homogeneity in aerospace forgings.Chin.J Aeronaut2010;23(2):260–7.

    22.Wang H,Li GY,Zhong ZH.Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method.J Mater Process Technol2008;197(1–3):77–88.

    25 June 2016;revised 21 September 2016;accepted 18 October 2016

    看黄色毛片网站| 蜜臀久久99精品久久宅男| 在线播放无遮挡| 中文字幕人妻熟人妻熟丝袜美| 久久精品国产99精品国产亚洲性色| 最近中文字幕高清免费大全6| 亚洲av美国av| 久久久久久伊人网av| 黄片wwwwww| 亚洲精品亚洲一区二区| 午夜福利高清视频| 精品熟女少妇av免费看| 亚洲av五月六月丁香网| 国产探花极品一区二区| 欧美一级a爱片免费观看看| 高清毛片免费看| 免费黄网站久久成人精品| 成年免费大片在线观看| 韩国av在线不卡| 欧美色视频一区免费| 69av精品久久久久久| а√天堂www在线а√下载| 黄色视频,在线免费观看| 有码 亚洲区| 国产精品日韩av在线免费观看| 久久久久久久久久黄片| 久久久久久久久大av| 久久亚洲精品不卡| avwww免费| 村上凉子中文字幕在线| 美女大奶头视频| 无遮挡黄片免费观看| av天堂在线播放| 国产精品久久久久久亚洲av鲁大| 国产三级中文精品| 国内少妇人妻偷人精品xxx网站| 亚洲中文字幕一区二区三区有码在线看| 村上凉子中文字幕在线| 91久久精品电影网| 精品熟女少妇av免费看| 国产女主播在线喷水免费视频网站 | 尾随美女入室| 人人妻人人看人人澡| 国产高清三级在线| 一级毛片aaaaaa免费看小| 成人欧美大片| 欧美最黄视频在线播放免费| 国产精品一区二区性色av| 成人永久免费在线观看视频| 国产欧美日韩精品一区二区| 青春草视频在线免费观看| 成人一区二区视频在线观看| 看黄色毛片网站| 一级毛片aaaaaa免费看小| 欧美最黄视频在线播放免费| 天堂av国产一区二区熟女人妻| 国产伦精品一区二区三区四那| 淫妇啪啪啪对白视频| 亚洲av成人精品一区久久| 啦啦啦观看免费观看视频高清| 亚洲丝袜综合中文字幕| 精品国内亚洲2022精品成人| 天堂网av新在线| 欧美最黄视频在线播放免费| 久久久欧美国产精品| 国产伦在线观看视频一区| 国产探花极品一区二区| 国产黄片美女视频| 在线观看免费视频日本深夜| 女同久久另类99精品国产91| 国产av在哪里看| 国产精品福利在线免费观看| 国产高潮美女av| 日韩av不卡免费在线播放| 亚洲精品一区av在线观看| 久久欧美精品欧美久久欧美| 欧美日韩在线观看h| 自拍偷自拍亚洲精品老妇| 国产一区二区在线观看日韩| 自拍偷自拍亚洲精品老妇| av天堂在线播放| 国产午夜精品久久久久久一区二区三区 | 亚洲精华国产精华液的使用体验 | 给我免费播放毛片高清在线观看| 国产成人影院久久av| 久久韩国三级中文字幕| 国产精品久久久久久av不卡| 久久久久国内视频| 最近在线观看免费完整版| 国产黄色视频一区二区在线观看 | h日本视频在线播放| 黄色一级大片看看| 亚洲精品一卡2卡三卡4卡5卡| 看免费成人av毛片| 久久久久国产网址| 伦理电影大哥的女人| 看免费成人av毛片| 亚洲色图av天堂| 波野结衣二区三区在线| 女同久久另类99精品国产91| 不卡一级毛片| 午夜福利高清视频| 久久久久久久久中文| av在线老鸭窝| 国产精品一二三区在线看| 美女高潮的动态| 欧美丝袜亚洲另类| 亚洲欧美日韩卡通动漫| 丝袜美腿在线中文| 日韩av在线大香蕉| 免费人成视频x8x8入口观看| 午夜老司机福利剧场| 美女内射精品一级片tv| 精品欧美国产一区二区三| 人妻少妇偷人精品九色| 国产视频内射| 亚洲欧美精品综合久久99| 精品久久久久久成人av| 尤物成人国产欧美一区二区三区| 日韩欧美国产在线观看| 真实男女啪啪啪动态图| 99精品在免费线老司机午夜| 人人妻人人看人人澡| 内射极品少妇av片p| 免费av不卡在线播放| 女同久久另类99精品国产91| 不卡一级毛片| 亚洲中文字幕一区二区三区有码在线看| 免费无遮挡裸体视频| av福利片在线观看| 欧美一区二区精品小视频在线| 日本免费一区二区三区高清不卡| 国产av在哪里看| www日本黄色视频网| 久久中文看片网| 狂野欧美激情性xxxx在线观看| 亚洲av熟女| 99久久精品国产国产毛片| 97超级碰碰碰精品色视频在线观看| 欧美高清性xxxxhd video| 看片在线看免费视频| 黄色配什么色好看| 亚洲av五月六月丁香网| 国内精品美女久久久久久| 97碰自拍视频| 97人妻精品一区二区三区麻豆| 99久久精品热视频| 男女边吃奶边做爰视频| 欧美zozozo另类| 在现免费观看毛片| 麻豆精品久久久久久蜜桃| 国产在视频线在精品| 久久久精品大字幕| 伦精品一区二区三区| 久久精品91蜜桃| 99国产极品粉嫩在线观看| 久久人人精品亚洲av| 草草在线视频免费看| 精品午夜福利在线看| 美女xxoo啪啪120秒动态图| 国产成人影院久久av| 青春草视频在线免费观看| 亚洲丝袜综合中文字幕| 国产精品国产高清国产av| 欧美三级亚洲精品| 国产精品无大码| 免费高清视频大片| 日日干狠狠操夜夜爽| 美女cb高潮喷水在线观看| 麻豆精品久久久久久蜜桃| 国产欧美日韩精品一区二区| 国产欧美日韩精品一区二区| 亚洲最大成人中文| 97超视频在线观看视频| 丰满人妻一区二区三区视频av| 综合色丁香网| 毛片女人毛片| 又爽又黄无遮挡网站| 亚洲在线观看片| 看免费成人av毛片| 国产乱人视频| 亚洲欧美成人综合另类久久久 | 18禁在线无遮挡免费观看视频 | 免费看光身美女| 小说图片视频综合网站| 国产男靠女视频免费网站| 黑人高潮一二区| 搡老妇女老女人老熟妇| 亚洲人与动物交配视频| 亚洲在线自拍视频| 亚洲国产精品合色在线| 国产真实伦视频高清在线观看| 久久中文看片网| 最近视频中文字幕2019在线8| 欧美xxxx黑人xx丫x性爽| 亚洲一区高清亚洲精品| 国产综合懂色| 国产高清不卡午夜福利| 亚洲精品一区av在线观看| 亚洲综合色惰| 丝袜美腿在线中文| 99热这里只有是精品在线观看| 成人美女网站在线观看视频| 国产成人一区二区在线| 国产极品精品免费视频能看的| 精品一区二区三区视频在线观看免费| 男女下面进入的视频免费午夜| 激情 狠狠 欧美| 国产精品嫩草影院av在线观看| 久久久国产成人精品二区| 国产成人a区在线观看| 国内精品一区二区在线观看| 亚洲av中文av极速乱| 精品午夜福利在线看| 18禁在线无遮挡免费观看视频 | 色在线成人网| 黑人高潮一二区| av卡一久久| 久久精品国产亚洲网站| 级片在线观看| 黄色配什么色好看| 欧美日本亚洲视频在线播放| 哪里可以看免费的av片| 国产一区二区激情短视频| 久久久久九九精品影院| 精品99又大又爽又粗少妇毛片| 精品一区二区三区av网在线观看| 亚洲国产精品久久男人天堂| 一个人免费在线观看电影| 国产精品99久久久久久久久| 免费观看的影片在线观看| 亚洲美女黄片视频| 日韩,欧美,国产一区二区三区 | 国产精品久久久久久av不卡| 一级av片app| 国产伦一二天堂av在线观看| 国产乱人视频| 变态另类丝袜制服| 午夜福利在线观看吧| 色视频www国产| 成人精品一区二区免费| 免费在线观看影片大全网站| 免费电影在线观看免费观看| 亚洲高清免费不卡视频| 国产 一区 欧美 日韩| 婷婷精品国产亚洲av| 日韩欧美精品v在线| a级毛片a级免费在线| 亚洲欧美中文字幕日韩二区| 成人综合一区亚洲| 亚洲中文字幕日韩| 国内揄拍国产精品人妻在线| 少妇裸体淫交视频免费看高清| 亚洲人与动物交配视频| 国产av麻豆久久久久久久| 国产免费一级a男人的天堂| 久久久久久伊人网av| 最后的刺客免费高清国语| 99热这里只有精品一区| 久久久久久久久久成人| 午夜福利在线在线| 床上黄色一级片| 老司机影院成人| 国产精品电影一区二区三区| 亚洲欧美精品自产自拍| 国产精品国产三级国产av玫瑰| 久久午夜福利片| 老师上课跳d突然被开到最大视频| 黄色一级大片看看| 国产不卡一卡二| 日日摸夜夜添夜夜爱| 又爽又黄无遮挡网站| 色5月婷婷丁香| 国产一区二区三区av在线 | 亚洲精品粉嫩美女一区| 联通29元200g的流量卡| 不卡视频在线观看欧美| 亚洲av中文av极速乱| 长腿黑丝高跟| 国产精华一区二区三区| 联通29元200g的流量卡| 99久久久亚洲精品蜜臀av| 亚洲熟妇熟女久久| 久久久国产成人免费| 联通29元200g的流量卡| 悠悠久久av| 国产精品一及| 亚洲va在线va天堂va国产| 亚洲第一电影网av| 久久天躁狠狠躁夜夜2o2o| 国产黄色视频一区二区在线观看 | 久久久久久大精品| 国产人妻一区二区三区在| 色尼玛亚洲综合影院| 国产老妇女一区| 久久人人爽人人爽人人片va| 男人和女人高潮做爰伦理| 国产色婷婷99| 日本免费一区二区三区高清不卡| 女生性感内裤真人,穿戴方法视频| 可以在线观看的亚洲视频| 亚洲国产日韩欧美精品在线观看| 亚洲自拍偷在线| а√天堂www在线а√下载| 亚洲美女搞黄在线观看 | 狠狠狠狠99中文字幕| 欧美中文日本在线观看视频| 欧美绝顶高潮抽搐喷水| 最新中文字幕久久久久| 欧美xxxx黑人xx丫x性爽| 天堂影院成人在线观看| 亚洲中文字幕日韩| 91久久精品电影网| 久久国产乱子免费精品| 日日干狠狠操夜夜爽| 给我免费播放毛片高清在线观看| 又爽又黄a免费视频| 身体一侧抽搐| 在线免费观看的www视频| 日韩高清综合在线| 精品国内亚洲2022精品成人| 欧美日本亚洲视频在线播放| av视频在线观看入口| 亚洲图色成人| 变态另类成人亚洲欧美熟女| 日日撸夜夜添| 国产成人影院久久av| 国产乱人偷精品视频| 色哟哟哟哟哟哟| 露出奶头的视频| 亚洲成人久久爱视频| 欧美日本视频| 人人妻,人人澡人人爽秒播| 日日摸夜夜添夜夜爱| 丝袜喷水一区| 波多野结衣高清无吗| 少妇裸体淫交视频免费看高清| 亚洲第一电影网av| 精品一区二区三区人妻视频| 国国产精品蜜臀av免费| 久久久国产成人精品二区| 亚洲专区国产一区二区| 99热只有精品国产| 午夜激情欧美在线| 内射极品少妇av片p| 国产精品一及| 国产黄色视频一区二区在线观看 | 国产黄a三级三级三级人| 国产精品美女特级片免费视频播放器| 在线国产一区二区在线| 人人妻人人澡欧美一区二区| 91久久精品国产一区二区三区| 欧美性猛交黑人性爽| 亚洲国产精品成人久久小说 | 天堂网av新在线| 欧美又色又爽又黄视频| 校园人妻丝袜中文字幕| 人妻久久中文字幕网| 国产精品一区二区三区四区免费观看 | 我的女老师完整版在线观看| 春色校园在线视频观看| 成人综合一区亚洲| 99国产极品粉嫩在线观看| 女人十人毛片免费观看3o分钟| 亚洲图色成人| 老熟妇仑乱视频hdxx| 日本爱情动作片www.在线观看 | 色吧在线观看| 国产淫片久久久久久久久| 中国美白少妇内射xxxbb| 99久久精品热视频| 在线免费十八禁| 久久鲁丝午夜福利片| 少妇被粗大猛烈的视频| 国产精华一区二区三区| 国产亚洲精品综合一区在线观看| 亚洲精品成人久久久久久| 亚洲精品久久国产高清桃花| 日韩欧美在线乱码| 在线观看一区二区三区| 毛片女人毛片| 欧美日韩国产亚洲二区| 亚洲综合色惰| 干丝袜人妻中文字幕| 国产高清不卡午夜福利| 变态另类丝袜制服| 老司机午夜福利在线观看视频| 国产亚洲精品久久久久久毛片| 九九热线精品视视频播放| 又爽又黄无遮挡网站| 插逼视频在线观看| 男女边吃奶边做爰视频| 成熟少妇高潮喷水视频| 色哟哟哟哟哟哟| 99国产精品一区二区蜜桃av| 精品人妻一区二区三区麻豆 | 女生性感内裤真人,穿戴方法视频| 色尼玛亚洲综合影院| 国产高清视频在线播放一区| a级毛片a级免费在线| 老司机午夜福利在线观看视频| 精品一区二区三区视频在线观看免费| 久久久久久大精品| 干丝袜人妻中文字幕| 欧美日韩综合久久久久久| 国产高清视频在线观看网站| 99热全是精品| 亚洲成人av在线免费| 色综合站精品国产| 亚洲第一电影网av| 亚洲精品日韩在线中文字幕 | 丝袜美腿在线中文| 国产精品野战在线观看| 少妇被粗大猛烈的视频| 麻豆国产av国片精品| 一个人看视频在线观看www免费| 日韩三级伦理在线观看| 中文在线观看免费www的网站| 久久精品人妻少妇| 亚洲精品影视一区二区三区av| 国产欧美日韩精品一区二区| 色噜噜av男人的天堂激情| 国产美女午夜福利| 黄色日韩在线| 国产精品爽爽va在线观看网站| 乱码一卡2卡4卡精品| 男女啪啪激烈高潮av片| 丝袜美腿在线中文| 亚洲丝袜综合中文字幕| 午夜a级毛片| 美女 人体艺术 gogo| 国产精品国产高清国产av| 久久久久久国产a免费观看| 成年av动漫网址| 神马国产精品三级电影在线观看| 一级毛片我不卡| 国产亚洲精品av在线| 久久久久久久久久黄片| 日本黄色片子视频| 色哟哟哟哟哟哟| 日日干狠狠操夜夜爽| 日日摸夜夜添夜夜添小说| 国产高清激情床上av| 日本黄色片子视频| 我的老师免费观看完整版| 日日干狠狠操夜夜爽| 看黄色毛片网站| 久久久久久久久久黄片| 亚洲人成网站在线播| 精品一区二区三区人妻视频| 91久久精品国产一区二区成人| 日韩欧美在线乱码| 久久久久久久久久黄片| 女的被弄到高潮叫床怎么办| 97碰自拍视频| 禁无遮挡网站| 少妇熟女aⅴ在线视频| 国产av麻豆久久久久久久| 国国产精品蜜臀av免费| 久久精品国产亚洲av香蕉五月| 乱系列少妇在线播放| 在线天堂最新版资源| 精品人妻一区二区三区麻豆 | 国产精品一及| 日本撒尿小便嘘嘘汇集6| 身体一侧抽搐| 久久天躁狠狠躁夜夜2o2o| 特级一级黄色大片| 亚洲国产欧洲综合997久久,| 国产av一区在线观看免费| 亚洲美女黄片视频| 99久久精品国产国产毛片| 国产在线男女| 91麻豆精品激情在线观看国产| 国产精品久久久久久久久免| 国产高清视频在线播放一区| 18禁在线无遮挡免费观看视频 | 有码 亚洲区| 日本一本二区三区精品| 五月伊人婷婷丁香| a级毛色黄片| 99久久久亚洲精品蜜臀av| 天天躁日日操中文字幕| 中文资源天堂在线| 欧美一区二区国产精品久久精品| 国产在视频线在精品| 寂寞人妻少妇视频99o| 国产成人a∨麻豆精品| 久久精品国产亚洲av涩爱 | 丰满乱子伦码专区| 日韩大尺度精品在线看网址| 久久久久久久久大av| 蜜桃久久精品国产亚洲av| 国产精品无大码| 午夜激情欧美在线| 国内少妇人妻偷人精品xxx网站| 夜夜爽天天搞| 国产精品一区二区三区四区免费观看 | 亚洲国产精品成人综合色| 伦精品一区二区三区| 中文字幕熟女人妻在线| 大又大粗又爽又黄少妇毛片口| 免费不卡的大黄色大毛片视频在线观看 | 最后的刺客免费高清国语| 欧美激情久久久久久爽电影| 免费大片18禁| 日韩欧美在线乱码| 亚洲无线在线观看| 黄色欧美视频在线观看| 99久久中文字幕三级久久日本| 99热这里只有精品一区| 国产 一区精品| 99热这里只有是精品在线观看| 日本免费一区二区三区高清不卡| 国产欧美日韩一区二区精品| 国产免费一级a男人的天堂| 春色校园在线视频观看| 婷婷亚洲欧美| 少妇猛男粗大的猛烈进出视频 | 麻豆成人午夜福利视频| 九九在线视频观看精品| 欧美在线一区亚洲| 日韩精品中文字幕看吧| 女人十人毛片免费观看3o分钟| 久久久久国产网址| 国产高清有码在线观看视频| 国产午夜精品论理片| or卡值多少钱| 黄色欧美视频在线观看| 国产一区亚洲一区在线观看| 中文在线观看免费www的网站| 精品一区二区免费观看| 久久精品国产亚洲av天美| 欧美bdsm另类| 国产精品久久久久久久久免| 一级a爱片免费观看的视频| 久久精品影院6| 一本精品99久久精品77| 亚洲av.av天堂| 国产 一区 欧美 日韩| 亚洲av美国av| 青春草视频在线免费观看| 在线免费观看的www视频| 又黄又爽又刺激的免费视频.| 亚洲综合色惰| 久久久a久久爽久久v久久| 国产精品一及| 午夜精品国产一区二区电影 | 精品一区二区三区视频在线| 国产午夜福利久久久久久| 精品欧美国产一区二区三| av在线蜜桃| 最后的刺客免费高清国语| 全区人妻精品视频| 午夜精品在线福利| av在线蜜桃| 久久国内精品自在自线图片| 亚洲专区国产一区二区| 午夜老司机福利剧场| 你懂的网址亚洲精品在线观看 | 你懂的网址亚洲精品在线观看 | 亚洲精品一区av在线观看| 99热6这里只有精品| av中文乱码字幕在线| 国产中年淑女户外野战色| 精品无人区乱码1区二区| 亚洲中文字幕日韩| 久久午夜亚洲精品久久| 99久久久亚洲精品蜜臀av| 国产淫片久久久久久久久| 久久热精品热| 麻豆乱淫一区二区| 亚洲乱码一区二区免费版| 亚洲欧美日韩高清专用| 成人毛片a级毛片在线播放| 国产成人aa在线观看| 午夜福利在线在线| 中出人妻视频一区二区| 午夜影院日韩av| 色av中文字幕| 国产伦精品一区二区三区视频9| 老女人水多毛片| 亚洲av免费在线观看| 免费一级毛片在线播放高清视频| 久久久久久国产a免费观看| 日日摸夜夜添夜夜添小说| 噜噜噜噜噜久久久久久91| 伦精品一区二区三区| 免费搜索国产男女视频| 日本成人三级电影网站| 国产精品嫩草影院av在线观看| ponron亚洲| 99热6这里只有精品| 97人妻精品一区二区三区麻豆| 成年女人毛片免费观看观看9| 国内揄拍国产精品人妻在线| 国内久久婷婷六月综合欲色啪| 日本精品一区二区三区蜜桃| 美女被艹到高潮喷水动态| 色综合站精品国产| 欧美激情国产日韩精品一区| 亚洲国产精品成人综合色| 九九在线视频观看精品| 国产欧美日韩一区二区精品| 97碰自拍视频| 亚洲一区高清亚洲精品| 久久婷婷人人爽人人干人人爱| 99热这里只有是精品50| 亚洲精品国产成人久久av| 欧美人与善性xxx| 性插视频无遮挡在线免费观看| 精品熟女少妇av免费看| 午夜激情福利司机影院| 婷婷色综合大香蕉| 国产aⅴ精品一区二区三区波|