• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Beam-pointing error compensation method of phased array radar seeker with phantom-bit technology

    2017-11-20 01:56:27QiuqiuWENTinyuLUQunliXIAZedongSUN
    CHINESE JOURNAL OF AERONAUTICS 2017年3期

    Qiuqiu WEN,Tinyu LU,Qunli XIA,Zedong SUN

    aSchool of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China

    bBeijing Aerospace Automatic Control Institute,Beijing 100854,China

    cArmy Aviation Institute,Beijing 100041,China

    Beam-pointing error compensation method of phased array radar seeker with phantom-bit technology

    Qiuqiu WENa,*,Tianyu LUb,Qunli XIAa,Zedong SUNc

    aSchool of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China

    bBeijing Aerospace Automatic Control Institute,Beijing 100854,China

    cArmy Aviation Institute,Beijing 100041,China

    Available online 8 May 2017

    *Corresponding author.

    E-mail address:wenqiuqiu82@bit.edu.cn(Q.WEN).

    Peer review under responsibility of Editorial Committee of CJA.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.cja.2017.03.020

    1000-9361?2017 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.

    This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    A phased array radar seeker(PARS)must be able to effectively decouple body motion and accurately extract the line-of-sight(LOS)rate for target missile tracking.In this study,the realtime two-channel beam pointing error(BPE)compensation method of PARS for LOS rate extraction is designed.The PARS discrete beam motion principium is analyzed,and the mathematical model of beam scanning control is finished.According to the principle of the antenna element shift phase,both the antenna element shift phase law and the causes of beam-pointing error under phantom-bit conditions are analyzed,and the effect of BPE caused by phantom-bit technology(PBT)on the extraction accuracy of the LOS rate is examined.A compensation method is given,which includes coordinate transforms,beam angle margin compensation,and detector dislocation angle calculation.When the method is used,the beam angle margin in the pitch and yaw directions is calculated to reduce the effect of the missile body disturbance and to improve LOS rate extraction precision by compensating for the detector dislocation angle.The simulation results validate the proposed method.

    ?2017 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Beam-pointing error;

    Beam scanning control;

    Line-of-sight rate extraction;

    Phantom-bit technology;

    Phased array radar seeker

    1.Introduction

    The phased array radar seeker(PARS)is a new type of guidance system with many advantages,such as rapidity,flexibility,high range,and strong anti-jamming capability,making it of interest for upgrading the homing guidance missile systems.1,2Different with traditional mechanical scanning radar seekers,PARS is strapped on the missile body and conducts beam scanning via the phase shift value of the elements radiating from the digital phase shifter.3But the beam granularity appears during the beam scanning process,causing the beam to scan discretely and reducing PARS beam scanning accuracy.4–6In order to control beam granularity,the phantombit technology(PBT)has been widely applied in PARS.Although the PBT can improve the PARS beam scanning accuracy,it also negatively affects the beam pointing error,which will lead to body movement incompletely decoupling when the beam pointing and inertial measurement unit information are used to extract the guidance information.7–9

    Furthermore,as a target detection device,PARS should output the line-of-sight(LOS)rate for the guidance of a homing missile by using the proportional navigation law.10Obtaining of LOS of PARS is calculated from inertial measurements of missile attitude angle and beam angle.11The beam pointing error will lead to wrong LOS rate output,and then decrease guidance performance.Thereby,studying beam-pointing error caused by PBT is of important significance to calibration of PARS as well as stability and accuracy of guidance system.

    In Refs.12,13,some scholars have studied problems caused by quantization error of PARS and corresponding solutions.But the above references only consider the lack of an initial antenna scanning angle,which prevents the array antenna elements within the sub-array from scanning.Moreover,in Ref.14,the problem caused by pointing error of strap-down phased array seeker applied in satellite communication was studied.However,there are few research studies on the guidance problem caused by PBT and related solution strategies.

    Similar with PBT,the radome boresight error of PARS can also affect the output of LOS rate.It would induce a disturbance rejection rate that would result in a disturbance rejection rate parasitical loop in the guidance loop.In Refs.15,16,the effects of the radar seeker radome boresight error on the stability and guidance accuracy of homing missiles were investigated.In Refs.17,18,the effect of the disturbance rejection rate caused by spring torque and damping torque on the stability of the guidance system was analyzed.At the same time,Janice et al.2stated that radome boresight error is a key technique to be urgently solved for the terminal guidance of homing missiles.Peterson et al.19proposed a type of radome boresight error compensation method.The related results and methods are useful for this study.

    The current study aims to present a real-time two-channel beam-pointing error compensation method for PARS LOS rate extraction.To this end,the PARS discrete beam motion principium is givenfirstly.According to the principle of the antenna element shift phase,the mathematical model of beam scanning control is built.Both the antenna element shift phase law and the causes of beam-pointing error under phantom-bit conditions are analyzed.Furthermore,the effect of BPE caused by PBT on the extraction accuracy of the LOS rate and stability margin of the guidance system is examined.Then,a two-channel LOS rate extraction model using a beampointing error compensation method,which includes coordinate transforms,beam angle margin compensation,and detector dislocation angle calculation,is proposed.Finally,results of numerical simulations for four conditions are presented,and the effectiveness of the compensation method is proved.

    2.PARS beam control and beam-pointing error

    2.1.Target tracking control and LOS rate output principle

    The relative position relationship of the PARS beam,missile,and target in a portrait plane is shown in Fig.1.The missile center of mass is defined as pointO,the inertial space coordinate axis is defined asOxI,and the lengthwise axis of the missile is expressed asOxM.OxBis the PARS beam axis,andOxTis the direction to the target.In Fig.1,? is the body attitude angle,qthe LOS angle,θ the angle between the LOS and the lengthwise axis of the missile,θBthe beam direction angle,and ε the detector dislocation angle.

    The target tracking control loop diagram of PARS is shown in Fig.2.Here,˙qis the true LOS rate,˙?IMUthe angular velocity of the body measured by the inertial measurement unit(IMU)on the missile,kthe control gain,Gε(s)the dynamics of PARS’s monopulse angle measurement,GIMU(s) the dynamics of PARS’s angular rate of body measurement,andGθ(s)the beam control measurement.

    According to Fig.3,the beam angle control command can be written as

    where εsis the dislocation angle measured by PARS.

    And the LOS rate output of PARS is

    In this study,the dynamics of PARS’s monopulse angle measurement and IMU are assumed to be fast enough.Thereby,Eq.(2)is simplified viaGε(s)=GIMU(s)=1

    Eq.(5)shows that the disturbance rejection rate caused by body movement will be zero when the beam controlGθ(s)equals one.If not,the body movement(˙?)will be coupled into the LOS rate output of PARS.As a result,the performance of the PARS beam control becomes the key for decoupling body movement from the LOS rate.

    2.2.PARS beam control

    When the radiating element phase shift value of PARS is ΔφB,the element spacing isd,the radar wavelength is λ,and the angle(θB)of the beam-pointing deviation from the normal direction of the antenna is certain,which can be expressed as follows:

    We can determine from Eq.(6)that the antenna direction changes with changing phase shift value,and ΔφBis obtained from the digital phase shifter.When the digit of the phase shifter isK(Kis a positive integer),the minimum phase shift value can be expressed as follows:

    The radiating element phase shift value from the phase shifter is expressed as follows:

    wherepis the beam control code,which is provided by the digital phase shifter,p=0,1,2,...,2K-1.Notice that ΔφBis discrete from Eq.(8),and then the beam movement is also discrete according to Eq.(6).As a result,PARS broadcasts electromagnetic waves based on the beam angle instruction(θBC),when a missile tracks a target.

    Fig.3 shows the beam control principle diagram of PARS.We can obtain the ideal phase shift value

    between the adjacent elements on the basis of the beam angle instruction(θBC).The beam control code(p)can be obtained by roundingThe phase shifter output practical phase shift value (ΔφB=pΔφBmin)between adjacent elements is obtained according top.The practical beam angle(θB)can be obtained by Eq.(3).

    2.3.Phantom-bit technology

    Beam granularity(θB(p+1)- θB(p))is determined by the bit of the phase shifter.A smaller bit leads to larger beam granularity.To reduce beam granularity and make the phased array antenna scanning approach the level of mechanical continuous scanning,the bit should be increased.With the cost and complexity considered,the PBT is widely applicable in practical engineering.With PBT,PARS could achieve performance approximate to that of a high-bit phase shifter by using a low-bit phase shifter.Fig.4 shows the principle architecture of the PBT phase shift.The control signal register and arithmetic unit correspond to a high-bit phase shift.The lowmbit binary codes of the arithmetic unit are eliminated during phase shifter setting,while high-bit binary codes are sent to the phase shifter to finish unit phase setting.3If the actual bit of the phase shifter isband the phantom bit ism,the phase control computer will calculate the minimum phase shift value(ΔφBmin=2π/2K)withK=b+mbits.The beam control codepis expressed by a binary figure in the control signal registerand arithmetic unit,and the theoretical phase shift code is expressed asZ=ipfor element No.i;with the lowm-bit eliminated,we setZ-mod (Z,2m)as the practical phase shift code,where mod (Z,2m)is the remainder whenZis divided by 2m.

    This study used a missile diameter of 120 mm,and Ka waveband(8 mm wavelength)is used to meet the ratio of the element spacing to radar wavelengthd/λ=0.5.The number of antenna elementsNis usually 30,but we setNto 32 for convenience.The phase shifter adopts the PBT(b=5,m=4).Fig.5 shows the practical phase shift value with PBT when the beam control codepis from 1 to 2m(2mis one period).This shows that the number of the sub-array will increase as the beam control code increases,while the phase shift value is identical in every sub-array.

    2.4.BPE and BPES

    The variation law of the phase shift error when the beam control code changes fromp=1 top=2mwas analyzed by the end-off approach.3Fig.6 shows the results,and we can easily see that the phase shift errors are centered at the 8th phantombit jump in one period,presenting an anti-symmetric distribution pattern.

    The phase shift error causes differences between virtual beam pointing and theoretical beam pointing.This indicates the positive correlation between the BPE distribution law and phase shift error distribution law.BPE distributions under different phantom bits(m=3,m=4 andm=5)but fixedN=32 andb=5 are shown in Fig.7.

    From Fig.7,we can easily see that BPE changes periodically(2mis one period).It presents an anti-symmetric distribution centered on the central jump of the phantom-bit period.The BPE envelope line will increase with the increase of the beam control code and phantom bits,respectively.

    If Δ denotes the angle between the theoretical beam angle(θBC)and practical beam angle(θB)in one phantom-bit period caused by the BPES,we have

    Differentiation of Eq.(6)yields

    whereRi= ?Δ/?θBCpresent the effects of BPES on the beam angle control andithe numbers of phantom bits,which correspond tom=3,4 and 5.In practical engineering applications,BPES can be eliminated via calibration technology;to lighten the calibration workload,usually every one phantom-bit period(ΔθBC=3.58°)is calibrated.As shown in Table 1,the maximum BPES can be expressed asR3≈ ±0.01,R4≈ ±0.03 andR5≈ ±0.05.

    According to Eq.(10),Gθ(s)in Eqs.(3)–(5)can be expressed asGθ(s)=1+Ri.Then,the PARS’s LOS rate output is

    Table 1 Variation of BPE with different phantom bits.

    From Eq.(13),it can be found that the LOS rate outputcaused by the angular missile body is not equal to zero unlessRiis equal to zero.According to the Bode diagram of the LOS angle rate under different PBNs,presented in Fig.8,the disturbance of the missile body will lead to additional line-of-sight angle-rate output.The greater the virtual digit is,the larger the amplitude of the additional line-of-sight angle-rate output will be.However,the virtual digit hardly affects the phase characteristics.

    2.5.Effect on guidance loop

    To analyze the influence of BPES on the guidance loop,a closed guidance loop for a perfectly stabilized PARS,along with BPES interactions,is given in Fig.9.Here,a fourthorder binomial representation of the missile homing guidance,including afirst-order model for a noise filter and third-order model for the control system,is used.LetGε(s)=GIMU(s)=1,and the guidance transfer function is

    whereeis the effective navigation ratio,Vcthe closing velocity,Vmthe flight speed of the missile,Tgthe guidance time constant,Tαthe time constant of the angle of attack,andamthe missile acceleration.

    According to Table.1,|R|? 1,and then Eq.(12)can be simplified as

    The guidance system characteristic equation is

    The guidance system transfer function is stable only if the poles of Eq.(16)are in the left-half plane.If the normalization factors:

    are used,Eq.(16)becomes

    The coefficients of Eq.(17)are defined as

    The Routh criterion guarantees stability of the guidance system transfer function if the coefficients of Eq.(18)are positive(B0,B1,...,B5> 0)and if the following additional quantities are positive:

    where

    The stability of the guidance system transfer function is determined numerically for all values of the ratioa nd the parameterand the results are plotted in Fig.10.Clearly,larger values of|lead to a smaller range of stability for,and small values ofgive the widest possible range of stability.Thereby,it is necessary to control BPES for a large stability margin.

    3.Decoupling algorithm of two channels used in BPE compensation

    3.1.BPE compensation principle

    The above analysis shows that,whenRis equal to zero,the practical beam angle(θB)is equal to the beam angle instruction(θBC),and PARS tracking loop can decouple body movement completely.Due to the beam control link,which uses PBT,the practical beam angle(θB)is not equal to the beam angle instruction(θBC);then,body movement is coupled with the LOS rate output,and the disturbance rejection rate parasitic loop will be introduced into the guidance loop of the missile,which affects the target-tracking performance of the missile.Furthermore,Ris not constant,which will cause volatility of the detector dislocation angle.The key cause of the above phenomenon is thatRis not equal to zero.According to Fig.3,we design a compensation loop to eliminate the effect of the beam control link.Fig.11 shows the BPE compensation principle diagram.

    In Fig.11,θBCis measurable,θBcan be obtained by beam control code,and thus BPE(Δ)can be calculated by θBCminus θBin real time.

    The PARS tracking loop transfer function can be expressed based on the simplified model using BPE compensation.

    A comparison of Eqs.(11)and(21)shows that the effect of the body movement can be eliminated completely after BPE compensation is used,and the beam volatility is also resolved.At the same time,the PARS tracking loop transfer function is described as a first-order process of the phase lag.

    3.2.Beam angle margin calculation

    For the relationship betweenSbandS^b,the beam angle margin of PARS is applied in the 3D space.Fig.12 shows the angle relationship betweenSbandS^b.The related coordinate system and the angle definition are given in Appendix A.

    The beam angle instructions(θBCy,θBCz)can be obtained via the measurement value ofSbat timet,and the practical beam angle(θBy, θBz)can be obtained via the beam control model and the calibration technique.The unit vector inS^bis presumablya^b= [1,0,0]T,which can be projected toSbat timet,denoted asab.The transformational matrix about the coordinate system is denoted asC.The subscript indicates the transformational direction,for example,Cmbdenotes the transformational matrix fromSmtoSb.Thereafter,

    C^bmandCmbare then substituted into Eq.(6).abis then obtained at timet.We suppose thatab=given that the maximum beam control error is 0.3°. Δθyand Δθzare small.Thus,Δθyand Δθzare expressed as follows:

    3.3.Beam angle control commands

    The PARS dislocation angle is the angular deviation between the beam-pointing coordinate systemxb-axis and LOS coordinate systemxl-axis in the pitch and yaw directions.Beampointing coordinate systems on theyb-axis andzb-axis are considered real-time rotation axes.The beam control model causes the beam-pointing center(oxb)to rotate at an angular rate(,)proportional to the actual detector dislocation angle(,).Given that LOS motion is a slow variable and beam scanning motion is a fast variable,the detector dislocation angle can be eventually eliminated by closed-loop tracking.Thus,fast tracking of the target is realized.

    The rotation angular rate of the beam-pointing axis relative to the inertial space can be expressed as follows:

    Beam motion in the inertial space is composed of two parts.One is the motion of the beam-pointing axis relative to the missile body,whereas the other is the motion of the missile body relative to the inertial space.Thus,the mathematical expression is as follows:

    where ω is the rotation angular rate vector;the subscripts denote the coordinate system transformational relation,and the superscript denotes the vector projection coordinate system.For example,denotes the rotation angular rate projection of the beam-pointing axis relative to the inertial space in the beam-pointing coordinate system.

    According to Eq.(24),the following is obtained by multiplying both sides by the coordinate transformational matrix(Cib):

    whereCibdenotes the transformational matrix fromSitoSb.The equation can be rewritten as follows:

    [ωx,ωy,ωz]Tdenotes the rotation angular rate projection of the missile body relative to the inertial space in the missile body coordinate system,which can be measured by the gyroscope rate on the body.In Eq.(17),

    PARS only outputs the LOS rate in the pitch and yaw directions.Eq.(28)is equivalent to the following:

    The beam rotation angular rate of the beam-pointing axis relative to the missile body can be calculated by Eq.(29):

    On the basis of the integral operation,we can obtain the beam control instructions θBCyand θBCzin the pitch and yaw directions,respectively.

    Fig.13 shows the LOS rate extraction model for the two channels by BPE compensation.The model includes the detector dislocation angle calculation model,beam angle margin calculation model,and discrete beam control model.Each parameter has been given in the previous model building.

    4.Simulation analysis

    In this section,the tracking performance of PARS is verified through various simulations.First,we considered the discrete beam control model(Fig.4)to test the results of BPT compensation at different disturbance frequencies of the missile.The actual bit of the digital phase shifter is set asb=5,the phantom bit is set asm=4,and the ratio of the element spacing to the radar wavelength isd/λ=0.5.The real detector dislocation angle can be calculated according to the model given in Appendix B.

    The missile motion and LOS angle input are modeled with a sinusoidal signal:

    Four processing conditions are used to simulate the LOS rate extraction performance of PARS when the disturbance frequency of the missile is set asfm=2 Hz,which are shown in Figs.14–17.The forward path detector gain is set ask=10.The actual LOS rate input is projected to the beampointing coordinate system,and the LOS rate outputs from the LOS rate extraction model for the two channels are compared.Thereafter,the decoupling effect is analyzed.In the simulation,the decoupling effect can be expressed with the decoupling coefficients(η)as follows:

    Processing condition 1:Without considering noise input

    Fig.14(a)and(b)show the LOS rate comparison diagram in the pitch and yaw directions by only considering the beampointing error.

    Processing condition 2:Considering noise input

    Based on Condition 1,the variance is 0.012 by adding the zero mean WGN noise at the beam-pointing angle output point.Fig.15(a)and(b)show the LOS rate comparison diagram in the pitch and yaw directions by considering the noise input.

    Processing condition 3:Adopting a low-pass filter

    A low-pass filter is added at the LOS rate extraction point.Fig.16(a)and(b)show that the LOS rate comparison diagram in the pitch and yaw directions adopts the low-pass filter.Processing condition 4:Use of beam-pointing angle error compensation

    Table 2 Maximum error estimation value of LOS rate and decoupling factor for four conditions.

    Fig.17(a)and(b)show the LOS rate comparison diagram in the pitch and yaw directions with beam-pointing angle error compensation.

    Fig.14 illustrates that the LOS rate extraction value presents a fluctuation phenomenon because of the beampointing error in the beam control process.It can be found from Fig.15 that discrete beam scanning results in beampointing angle error and causes a PARS disturbance rejection rate parasitical effect,which leads to severe noise amplification and severe LOS rate output fluctuations.Although the LOS rate performance is improved when the low-pass filter process is adopted(Fig.16),fluctuations still exist.From Fig.17,the LOS rate performance is significantly improved with the beam-pointing angle error compensation method.The estimated LOS rate follows the actual LOS rate input value smoothly and accurately.Table 2 shows the maximum error estimation value of the LOS rate and the decoupling factor for the four conditions at different disturbance frequencies of the missile;they-axis andz-axis express the pitch and yaw directions,respectively,the maximum error estimation value of the LOS rate in Condition 4 is lower than that in Conditions 1,2,and 3,and the decoupling factor is small in Condition 4.The beam-pointing error compensation can effectively isolate the body motion and accurately extract the LOS rate.At the same time,the larger the disturbance frequency of the missile is,the larger the decoupling factor is.

    The effects of PBT on the LOS rate and LOS angle outputs are shown in Table 3;the phantom bitmis set to 2,3,4 and 5,and the forward path gaink=10.From the simulation results,we can easily see that the largermis,the larger the LOS angle tracking error and LOS rate estimation error are.

    Table 3 Error change situation with different values of m.

    Table 4 Error change situation with different values of k.

    Second,we use the beam control model(Fig.14)to simulate the effects of the forward path detector gain(k)on the LOS rate and LOS angle outputs.The forward path gainkandRiare set to 20 and 0,respectively.The simulation results of Figs.18 and 19 show that the LOS angle tracking errors are close to 0.15°and 0.1°in the yaw and pitch directions,respectively.The LOS rate estimation error reaches 0.063(°)/s and 0.85(°)/s in the yaw and pitch directions,respectively.From Table 4,we can note that the largerkis,the smaller the error is.One reason is that the largerkcan reduce the delay time,increasing the tracking loop rapidly.

    5.Conclusions

    (1)The difference between the theoretical phase shift value and virtual phase shift value with PBT will lead to beampointing error,which is related to the number of phantom bits.The greatermis,the greater the beampointing error envelope is.The beam-pointing error increases with the beam scan angle and then causes BPES.As a result,body movements are coupled to the LOS rate output,which affects the accuracy of the LOS rate and stability margin of the guidance system.

    (2)A two-channel decoupling algorithm and an LOS rate extraction model with the BPE compensation method for PARS are proposed.The beam angle margin in the pitch and yaw directions was calculated to reduce the effect of the missile body disturbance and to improve LOS rate extraction precision by compensating for the detector dislocation angle.The simulation results show that the LOS rate maximum error estimation value in Condition 4 is considerably lower than that in Conditions 1,2 and 3.The decoupling factor is considerably smaller in Condition 4.BPE compensation could effectively isolate the body motion,and the LOS rate could be extracted accurately.

    (3)The larger the phantom bit(m)is,the larger the LOS angle tracking error and LOS rate estimation error are.At the same time,the forward path detector gain(k)also affects the tracking performance of PARS;the larger k is,the smaller the error is.In summary,use of the proposed BPE compensation method could improve the LOS rate extraction precision,thereby enhancing the missile guidance precision.

    Appendix A

    The coordinate systems used in this study are defined as follows:

    (1)Inertial coordinate system(Si)Oxiyizi

    Thexi-axis points to random direction,and theyi-axis points along the vertical direction.Thezi-axis direction can be obtained by the right-hand rule.

    (2)Missile body coordinate system(Sm)Oxmymzm

    Thexm-axis coincides with the lengthwise axis of the missile and points to the front of the missile.Theym-axis is located within the missile longitudinal symmetry plane and is perpendicular to thexm-axis.Thezm-axis direction can be obtained by the right-hand rule.

    (3)LOS coordinate system(Sl)Oxlylzl

    Thexl-axis points to the target.Theyl-axis is located within the vertical plane that contains thexl-axis and is perpendicular to thexl-axis.Thezl-axis direction can be obtained by the right-hand rule.

    (4)Beam-pointing coordinate system(Sb)Oxbybzb

    Thexb-axis points to the beam center axis.Theyb-axis is located within the plane that contains thexb-axis and is perpendicular toOxmzmplane.Theymaxis is perpendicular toxm.Thezb-axis direction can be obtained by the right-hand rule.

    (5)Virtual beam-pointing coordinate system(S^b)Ox^by^bz^b

    Thex^b-axis points to the direction defined by beam angle instruction.They^b-axis is located within the plane that contains thex^b-axis and is perpendicular to theOxmzmplane.They^b-axis is perpendicular tox^b.z^b-axis direction can be obtained with the right-hand rule.

    (6)Measurement coordinate system(Sc)Oxcyczc

    Thexc-axis points to the target.Theyc-axis is located within the plane that contains thexc-axis and is also perpendicular to theOxbzbplane.yc-axis is perpendicular toxc.Thezcaxis direction can be obtained by the right-hand rule.

    According to the definition of coordinates,Fig.A1 shows the coordinate transform relationship.

    In Fig.A1,ψ,? and γ denote the missile body yaw angle,pitch angle and roll angle,respectively,withSias a benchmark;qsyandqszare the LOS angles in the yaw and pitch directions,respectively,withSias a benchmark;θBCyand θBCzare the beam-pointing angles in the yaw and pitch directions,respectively,withSbas a benchmark;εsyand εszare the seeker detector dislocation angles in the yaw and pitch directions,respectively,withSbas a benchmark;Δθyand Δθzare the angle deviations fromSbtoS^bin the yaw and pitch directions,respectively,withS^bas a benchmark;^εyand^εzare the angle deviations fromSltoS^bin the yaw and pitch directions,respectively,withS^bas a benchmark.

    Appendix B

    Fig.B1 shows the geometric relationship for practical detector dislocation angle calculation.The unit vector is supposedlya^b= [1,0,0]Tin the LOS coordinate system,which can be projected toS^band is denoted as [xsb,ysb,zsb]T.

    The detector dislocation angle calculation formula is expressed as follows:

    The PARS output is obtained by the beam-pointing angle error compensation,which can be expressed as follows:

    1.Fan HT,Yang J,Zhu XP.Research on beam stabilization technology of phased array radar seeker.Acta Aeronaut Astronaut Sinica2013;34(2):387–92[Chinese].

    2.Janice CR,James HM,Joel PB,Hudson T.The past,present,and future of electronically-steerable phased arrays in defense applications.Proceedings of aerospace conference;2008 Mar 1–8;2008.p.1–7.

    3.Mailloux RJ.Phased array antenna handbook.2nd ed.Boston:Artech House;2005.

    4.Garrod A.Digital modules for phased array radar.IEEE international symposium on phased array systems and technology;1996 Oct 15–18;1996.p.81–6.

    5.Hord WE,Boyd CR,Diaz D.A new type of fast switching dualmode ferrite phase shifter.IEEE Trans Microwave Theory Tech1988;35(12):985–8.

    6.Davis ME.Integrated diode phase-shifter elements for an X-band phased-array antenna.IEEE Trans Microwave Theory Tech1975;23(12):1080–4.

    7.Jang SA,Ryoo CK,Choi K,Tahk MJ.Guidance algorithms for tactical missiles with strapdown seeker.SICE annual conference;2008 Aug 20–22;2008.p.2616–9.

    8.Savage PG.Strapdown sculling algorithm design for sensor dynamic amplitude and phase-shift error.J Guid Control Dyn2012;35(6):1718–29.

    9.Lu TY,Wen QQ,Yin J.The effect of phantom-bit technology on the performance of phased array seeker detection in the case of the initial beam angle.Optik-Int J Light Electron Opt2016;127(20):9996–10003.

    10.Zarchan P.Tacticalandstrategicmissileguidance. 6th ed.Reston:American Institute of Aeronauticsamp;Astronautics;1990.p.555.

    11.Du X,Xia QL.The research of guidance performance of the phased array seeker with platform for air-to-air missile.Optik-Int J Light Electron Opt2016;127(22):10322–34.

    12.Song J,Wang J,Peng K,Pan C,Yang Z.Quantization error reduction for the phased array with 2-bit phase shifter.Wirel Personal Commun2010;52(1):29–41.

    13.Smith MS,Guo YC.A comparison of methods for randomizing phase quantization errors in phased arrays.IEEE Trans Anten Propag1983;31(6):821–8.

    14.Guan BR,Chen XH.A phased-array antenna for terrestrial satellite communication based on vitual phase shifting.J Microwaves2011;27(4):45–8[Chinese].

    15.Nesline FW,Zarchan P.Radome induced miss distance in aerodynamically controlled homing missiles.17th fluid dynamics,plasma dynamics,and lasers conference;1984.p.99–115.

    16.Du YL,Xia QL,Cai CT.Study on miss-distance of radar seeker guided missile due to radome slope error.J Project Rock Missiles Guidance2010;30(5):79–82[Chinese].

    17.Song T,Lin DF,Wang J.Influence of seeker disturbance rejection rate on missile guidance system.J Harbin Eng Univ2013;34(10):1234–41[Chinese].

    18.Li FG,Xia QL,Qi ZK,Sun J.Effect of parasitic loop on strapdown seeker and compensated with identification method.Syst Eng Electron2013;35(8):1717–22[Chinese].

    19.Peterson D,Otto J,Douglas K.Radome boresight error and compensation techniques for electronically scanned arrays.Annual interceptor technology conference;1993.

    29 June 2016;revised 8 October 2016;accepted 21 December 2016

    成人特级黄色片久久久久久久| 18禁裸乳无遮挡免费网站照片| 日韩精品有码人妻一区| 搡老熟女国产l中国老女人| 人妻久久中文字幕网| 欧美xxxx黑人xx丫x性爽| 国产精品国产三级国产av玫瑰| 午夜福利高清视频| 亚洲中文日韩欧美视频| 午夜精品国产一区二区电影 | 亚洲精品456在线播放app| 69人妻影院| 18禁在线播放成人免费| 久久久久久大精品| 露出奶头的视频| 校园人妻丝袜中文字幕| 久久久精品94久久精品| 丰满乱子伦码专区| 精品99又大又爽又粗少妇毛片| 男插女下体视频免费在线播放| 一个人观看的视频www高清免费观看| 91久久精品国产一区二区三区| 97超视频在线观看视频| 精品国产三级普通话版| 一级a爱片免费观看的视频| 老熟妇仑乱视频hdxx| 人妻制服诱惑在线中文字幕| 国产欧美日韩精品一区二区| 久久久精品大字幕| 成年女人毛片免费观看观看9| 免费观看的影片在线观看| 69人妻影院| 我要搜黄色片| 免费不卡的大黄色大毛片视频在线观看 | 18禁黄网站禁片免费观看直播| 久久久久国产精品人妻aⅴ院| 日韩欧美在线乱码| 尤物成人国产欧美一区二区三区| 亚洲精品456在线播放app| 精品欧美国产一区二区三| 91在线精品国自产拍蜜月| 国产私拍福利视频在线观看| 亚洲精品在线观看二区| 免费无遮挡裸体视频| 成人美女网站在线观看视频| 人妻久久中文字幕网| 夜夜夜夜夜久久久久| 中文字幕精品亚洲无线码一区| 最后的刺客免费高清国语| 男插女下体视频免费在线播放| 国产精品嫩草影院av在线观看| 日本欧美国产在线视频| 亚洲精品国产av成人精品 | 久久精品国产99精品国产亚洲性色| 成人无遮挡网站| 免费大片18禁| 久久久久久久久久黄片| 精品人妻视频免费看| 亚洲精品亚洲一区二区| 亚洲中文字幕日韩| 国产午夜精品论理片| 精品久久久久久久久久免费视频| 男人狂女人下面高潮的视频| 亚洲成人久久爱视频| 插阴视频在线观看视频| 亚洲欧美日韩卡通动漫| 国产一区二区三区在线臀色熟女| 色吧在线观看| 亚洲成人中文字幕在线播放| 国产高潮美女av| 亚洲专区国产一区二区| 久久鲁丝午夜福利片| 成人精品一区二区免费| 成人美女网站在线观看视频| 成熟少妇高潮喷水视频| aaaaa片日本免费| 亚洲国产精品成人久久小说 | 国产精品三级大全| 久久99热这里只有精品18| 91av网一区二区| 欧美+亚洲+日韩+国产| 国产白丝娇喘喷水9色精品| 国产69精品久久久久777片| 麻豆国产av国片精品| 亚洲av熟女| 毛片一级片免费看久久久久| 最近中文字幕高清免费大全6| 亚洲自偷自拍三级| 亚洲精品日韩av片在线观看| 小说图片视频综合网站| 直男gayav资源| 国产真实伦视频高清在线观看| 一个人观看的视频www高清免费观看| 久久久久久伊人网av| 一级a爱片免费观看的视频| 成人av一区二区三区在线看| 国产精品国产高清国产av| 亚洲中文日韩欧美视频| 国产探花在线观看一区二区| 成人欧美大片| 久久久久久久亚洲中文字幕| 国产aⅴ精品一区二区三区波| 天堂影院成人在线观看| 一本精品99久久精品77| 精品人妻一区二区三区麻豆 | 我要搜黄色片| 我要搜黄色片| 狠狠狠狠99中文字幕| 最近中文字幕高清免费大全6| 午夜亚洲福利在线播放| 国产精品日韩av在线免费观看| 国国产精品蜜臀av免费| 露出奶头的视频| 亚洲性夜色夜夜综合| 中国国产av一级| 亚洲av一区综合| 99九九线精品视频在线观看视频| 日日撸夜夜添| 变态另类成人亚洲欧美熟女| 成年版毛片免费区| 婷婷亚洲欧美| 婷婷精品国产亚洲av| 亚洲中文日韩欧美视频| 久久亚洲国产成人精品v| 久久亚洲国产成人精品v| 伊人久久精品亚洲午夜| 日韩精品中文字幕看吧| 黄色一级大片看看| 少妇熟女aⅴ在线视频| 亚洲av五月六月丁香网| 亚洲av五月六月丁香网| 国产精品1区2区在线观看.| 人人妻人人澡人人爽人人夜夜 | 观看免费一级毛片| av在线老鸭窝| 精品久久久久久久久久免费视频| 人人妻人人看人人澡| 91狼人影院| 特级一级黄色大片| 三级经典国产精品| 人人妻人人澡人人爽人人夜夜 | 成人综合一区亚洲| 联通29元200g的流量卡| 日韩大尺度精品在线看网址| 国产激情偷乱视频一区二区| 久久亚洲国产成人精品v| 欧美人与善性xxx| 国产成人freesex在线 | 亚洲精品影视一区二区三区av| 成人无遮挡网站| 精品欧美国产一区二区三| 别揉我奶头~嗯~啊~动态视频| 简卡轻食公司| 在线免费观看不下载黄p国产| 特大巨黑吊av在线直播| 国产又黄又爽又无遮挡在线| 男女那种视频在线观看| 真实男女啪啪啪动态图| 美女被艹到高潮喷水动态| 日韩在线高清观看一区二区三区| 亚洲欧美成人精品一区二区| 国产亚洲精品综合一区在线观看| 国产亚洲精品综合一区在线观看| 白带黄色成豆腐渣| 亚洲国产高清在线一区二区三| 亚洲中文字幕一区二区三区有码在线看| 免费在线观看影片大全网站| 免费在线观看影片大全网站| 午夜影院日韩av| 亚洲欧美成人综合另类久久久 | 国产在线男女| 国产毛片a区久久久久| 亚洲国产精品合色在线| 国产高清不卡午夜福利| 身体一侧抽搐| 久久久午夜欧美精品| 少妇人妻一区二区三区视频| 成人国产麻豆网| 国产精品人妻久久久影院| av在线天堂中文字幕| 亚洲高清免费不卡视频| 老司机影院成人| 免费在线观看成人毛片| 高清毛片免费看| 国产精品久久久久久久久免| 亚洲第一电影网av| 亚洲欧美日韩高清在线视频| 欧美日本视频| 在线观看66精品国产| 日韩一本色道免费dvd| 成人三级黄色视频| АⅤ资源中文在线天堂| 亚洲精品久久国产高清桃花| 99久国产av精品| 亚洲,欧美,日韩| 日本五十路高清| 精品久久久久久久久av| 精品欧美国产一区二区三| 久久精品国产鲁丝片午夜精品| 国产午夜精品论理片| 国产爱豆传媒在线观看| 国产精品免费一区二区三区在线| 欧美zozozo另类| 麻豆乱淫一区二区| 精品国内亚洲2022精品成人| 在线观看免费视频日本深夜| avwww免费| 精品免费久久久久久久清纯| 热99re8久久精品国产| 午夜久久久久精精品| 欧美激情久久久久久爽电影| 国内少妇人妻偷人精品xxx网站| 亚洲精品色激情综合| 一边摸一边抽搐一进一小说| 别揉我奶头 嗯啊视频| 一个人看视频在线观看www免费| 国产av在哪里看| 精品久久久久久久久av| 国产亚洲精品久久久com| 国产aⅴ精品一区二区三区波| 午夜老司机福利剧场| 国产精品美女特级片免费视频播放器| 亚洲久久久久久中文字幕| 久久久久国产网址| 91av网一区二区| 我要搜黄色片| 亚洲一区高清亚洲精品| 人妻丰满熟妇av一区二区三区| 变态另类成人亚洲欧美熟女| 久久精品久久久久久噜噜老黄 | 黄色配什么色好看| 国产午夜精品久久久久久一区二区三区 | 亚洲一区高清亚洲精品| 看片在线看免费视频| 免费在线观看影片大全网站| 亚洲一级一片aⅴ在线观看| 亚洲婷婷狠狠爱综合网| 啦啦啦啦在线视频资源| 欧美日本视频| 97碰自拍视频| 变态另类丝袜制服| 一边摸一边抽搐一进一小说| 精品人妻一区二区三区麻豆 | 午夜福利18| 九九热线精品视视频播放| 亚洲欧美中文字幕日韩二区| 99热精品在线国产| 亚洲国产高清在线一区二区三| 菩萨蛮人人尽说江南好唐韦庄 | 赤兔流量卡办理| ponron亚洲| 色综合站精品国产| 精品人妻熟女av久视频| 久久久久久久亚洲中文字幕| 成人亚洲欧美一区二区av| 99久久精品热视频| 免费人成视频x8x8入口观看| 中文字幕免费在线视频6| 伊人久久精品亚洲午夜| eeuss影院久久| 成人无遮挡网站| 午夜久久久久精精品| 欧美区成人在线视频| 国产精品一及| 免费搜索国产男女视频| 亚洲精品乱码久久久v下载方式| 黄色配什么色好看| 国产伦精品一区二区三区视频9| 丝袜美腿在线中文| 久久草成人影院| 伊人久久精品亚洲午夜| 久久国产乱子免费精品| 免费搜索国产男女视频| 别揉我奶头 嗯啊视频| 网址你懂的国产日韩在线| 色在线成人网| 成人特级av手机在线观看| 麻豆精品久久久久久蜜桃| 欧美日韩国产亚洲二区| 久久国产乱子免费精品| 日本a在线网址| 色av中文字幕| 免费av不卡在线播放| 国产伦精品一区二区三区视频9| 一区二区三区免费毛片| 晚上一个人看的免费电影| 女同久久另类99精品国产91| 久久精品国产清高在天天线| 久久天躁狠狠躁夜夜2o2o| 国产乱人偷精品视频| 成年女人看的毛片在线观看| АⅤ资源中文在线天堂| 给我免费播放毛片高清在线观看| 国产欧美日韩精品一区二区| 波多野结衣高清无吗| 天美传媒精品一区二区| 中出人妻视频一区二区| 国产成人freesex在线 | 成年女人毛片免费观看观看9| 天天一区二区日本电影三级| 亚洲欧美成人综合另类久久久 | 亚洲精品日韩在线中文字幕 | 亚洲美女黄片视频| 亚洲国产精品成人综合色| 又爽又黄a免费视频| 三级国产精品欧美在线观看| 91久久精品国产一区二区三区| 狂野欧美白嫩少妇大欣赏| 久久久久免费精品人妻一区二区| 深夜a级毛片| 亚洲精品影视一区二区三区av| 精品一区二区三区av网在线观看| 国产精品久久久久久久电影| 色吧在线观看| 亚洲欧美中文字幕日韩二区| 欧美日本视频| 一区福利在线观看| 日韩高清综合在线| 十八禁国产超污无遮挡网站| 悠悠久久av| 久久综合国产亚洲精品| 国产v大片淫在线免费观看| 国产精品一区二区三区四区免费观看 | 噜噜噜噜噜久久久久久91| 亚洲欧美精品综合久久99| 免费av不卡在线播放| 哪里可以看免费的av片| 亚洲成a人片在线一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 精华霜和精华液先用哪个| 亚洲婷婷狠狠爱综合网| 真人做人爱边吃奶动态| 美女免费视频网站| 毛片女人毛片| 欧美高清成人免费视频www| 国产不卡一卡二| 日韩欧美精品免费久久| 亚洲av中文字字幕乱码综合| 亚洲成人精品中文字幕电影| 18禁在线无遮挡免费观看视频 | 热99在线观看视频| 性色avwww在线观看| 你懂的网址亚洲精品在线观看 | 搡老熟女国产l中国老女人| 五月伊人婷婷丁香| 久久国内精品自在自线图片| 亚洲国产日韩欧美精品在线观看| 久久精品夜夜夜夜夜久久蜜豆| 老司机影院成人| 亚洲,欧美,日韩| 美女黄网站色视频| 日本黄色片子视频| 网址你懂的国产日韩在线| 国产精品一区二区三区四区久久| 最近2019中文字幕mv第一页| 特级一级黄色大片| 91麻豆精品激情在线观看国产| 亚洲国产精品成人久久小说 | 大香蕉久久网| 亚洲av.av天堂| 在线免费观看不下载黄p国产| 三级经典国产精品| 久久精品影院6| 欧美极品一区二区三区四区| 精品不卡国产一区二区三区| 亚洲最大成人av| 99热这里只有精品一区| 久久精品91蜜桃| 欧美性感艳星| 国产在视频线在精品| 欧美又色又爽又黄视频| 国产精品久久久久久av不卡| 欧美最黄视频在线播放免费| 日本五十路高清| 欧美在线一区亚洲| 成人美女网站在线观看视频| 亚洲自拍偷在线| 亚洲四区av| 熟妇人妻久久中文字幕3abv| 一进一出好大好爽视频| 能在线免费观看的黄片| 成人永久免费在线观看视频| 国产精品免费一区二区三区在线| a级毛色黄片| 成人特级黄色片久久久久久久| 偷拍熟女少妇极品色| 天堂影院成人在线观看| 2021天堂中文幕一二区在线观| 18禁裸乳无遮挡免费网站照片| 看黄色毛片网站| 男女做爰动态图高潮gif福利片| 欧美xxxx性猛交bbbb| 插逼视频在线观看| 亚洲精品国产成人久久av| 国产精品久久电影中文字幕| 久久久久久九九精品二区国产| 夜夜爽天天搞| 精品久久久久久久人妻蜜臀av| 日本 av在线| 久久精品国产亚洲网站| 久久精品91蜜桃| 午夜亚洲福利在线播放| 国产色婷婷99| 国产不卡一卡二| 狂野欧美白嫩少妇大欣赏| 又黄又爽又免费观看的视频| 国产精品国产三级国产av玫瑰| 久久人人爽人人片av| 小说图片视频综合网站| 中国国产av一级| 乱码一卡2卡4卡精品| 男女啪啪激烈高潮av片| 卡戴珊不雅视频在线播放| 在线播放无遮挡| 亚洲综合色惰| 免费看av在线观看网站| 亚洲av二区三区四区| 国产男人的电影天堂91| 校园春色视频在线观看| 久久久久久九九精品二区国产| 中国美女看黄片| 亚洲中文日韩欧美视频| 亚洲综合色惰| 又爽又黄无遮挡网站| 久久精品91蜜桃| 亚洲av第一区精品v没综合| 黄色欧美视频在线观看| 色噜噜av男人的天堂激情| 成人性生交大片免费视频hd| 大香蕉久久网| 成人特级av手机在线观看| 久久人妻av系列| 精品久久久久久久久亚洲| 秋霞在线观看毛片| 老熟妇仑乱视频hdxx| 插阴视频在线观看视频| 欧美人与善性xxx| 亚洲熟妇熟女久久| 日本三级黄在线观看| 国产三级在线视频| 亚洲最大成人手机在线| 欧美日韩综合久久久久久| h日本视频在线播放| 天堂动漫精品| 国产精品久久电影中文字幕| 日本五十路高清| 午夜精品在线福利| 人妻制服诱惑在线中文字幕| 亚洲18禁久久av| 精品99又大又爽又粗少妇毛片| 中文字幕av成人在线电影| 日本一二三区视频观看| 少妇熟女aⅴ在线视频| 成年女人永久免费观看视频| 级片在线观看| 日韩中字成人| 女人被狂操c到高潮| av在线蜜桃| 亚洲五月天丁香| 国产精品国产高清国产av| 狂野欧美激情性xxxx在线观看| 别揉我奶头 嗯啊视频| 精华霜和精华液先用哪个| 99热6这里只有精品| 亚洲第一区二区三区不卡| 亚洲五月天丁香| 熟妇人妻久久中文字幕3abv| 97在线视频观看| 国产色爽女视频免费观看| 久久精品夜夜夜夜夜久久蜜豆| 美女高潮的动态| 国产三级中文精品| 国产真实乱freesex| 全区人妻精品视频| 亚洲国产精品sss在线观看| 在线免费十八禁| 国产精品一区二区三区四区免费观看 | 97热精品久久久久久| 伦精品一区二区三区| 一级毛片电影观看 | 3wmmmm亚洲av在线观看| 国产精品一二三区在线看| 国产乱人视频| 亚洲四区av| 熟女电影av网| 18禁在线无遮挡免费观看视频 | 中文字幕熟女人妻在线| 成人一区二区视频在线观看| 香蕉av资源在线| 级片在线观看| 国产伦精品一区二区三区视频9| 久久久国产成人精品二区| av在线蜜桃| 午夜福利视频1000在线观看| 波野结衣二区三区在线| 日韩欧美免费精品| 尾随美女入室| 97在线视频观看| 亚洲丝袜综合中文字幕| 久久中文看片网| 尤物成人国产欧美一区二区三区| eeuss影院久久| 欧美3d第一页| 国产av在哪里看| 少妇人妻精品综合一区二区 | 国产精品不卡视频一区二区| 国产成人福利小说| 亚洲三级黄色毛片| 亚洲av免费在线观看| 精品久久久久久久久久久久久| 搡老岳熟女国产| 99热这里只有是精品在线观看| 日本免费一区二区三区高清不卡| 欧美xxxx黑人xx丫x性爽| h日本视频在线播放| 男女视频在线观看网站免费| 国产毛片a区久久久久| 校园人妻丝袜中文字幕| 日韩国内少妇激情av| 午夜亚洲福利在线播放| 国产精品乱码一区二三区的特点| 天美传媒精品一区二区| 伊人久久精品亚洲午夜| 日日干狠狠操夜夜爽| 少妇高潮的动态图| 欧美激情在线99| 亚洲色图av天堂| 一个人观看的视频www高清免费观看| 精品少妇黑人巨大在线播放 | 亚洲电影在线观看av| 18禁在线无遮挡免费观看视频 | 欧美成人一区二区免费高清观看| 在线观看66精品国产| 久久天躁狠狠躁夜夜2o2o| av福利片在线观看| 日韩欧美精品免费久久| 女同久久另类99精品国产91| 在线观看午夜福利视频| 国产熟女欧美一区二区| 美女cb高潮喷水在线观看| 国产精品亚洲一级av第二区| 久久久久九九精品影院| 免费观看在线日韩| 俺也久久电影网| 日本黄色视频三级网站网址| 久久天躁狠狠躁夜夜2o2o| 亚洲精品一卡2卡三卡4卡5卡| 亚洲婷婷狠狠爱综合网| 黄色日韩在线| 一个人观看的视频www高清免费观看| 又黄又爽又免费观看的视频| 日日摸夜夜添夜夜爱| 大香蕉久久网| 精品久久久久久久末码| 欧美日韩综合久久久久久| 最近手机中文字幕大全| 国产精品久久久久久久电影| 俺也久久电影网| 夜夜看夜夜爽夜夜摸| 国产亚洲av嫩草精品影院| 国产女主播在线喷水免费视频网站 | 久久综合国产亚洲精品| 国产激情偷乱视频一区二区| or卡值多少钱| 欧美日本视频| av在线播放精品| 伦理电影大哥的女人| 中国美女看黄片| 小说图片视频综合网站| 在现免费观看毛片| 不卡一级毛片| 国产黄色视频一区二区在线观看 | 干丝袜人妻中文字幕| 18禁黄网站禁片免费观看直播| 极品教师在线视频| 亚洲国产精品sss在线观看| 精品日产1卡2卡| 亚洲综合色惰| 大又大粗又爽又黄少妇毛片口| 国产成人福利小说| 久久久久久久久久成人| 卡戴珊不雅视频在线播放| 亚洲av二区三区四区| 亚洲欧美清纯卡通| 91久久精品电影网| 三级毛片av免费| 22中文网久久字幕| 久久人人爽人人片av| 一进一出抽搐gif免费好疼| 美女高潮的动态| 久久精品久久久久久噜噜老黄 | 亚洲自拍偷在线| 亚洲av不卡在线观看| 国产精品av视频在线免费观看| 中文在线观看免费www的网站| 国产一区二区在线av高清观看| 久久亚洲国产成人精品v| 亚洲欧美日韩卡通动漫| 九九在线视频观看精品| 成人性生交大片免费视频hd| 人人妻人人澡欧美一区二区| 中出人妻视频一区二区| 国产精品久久久久久精品电影| 啦啦啦观看免费观看视频高清| 成人特级av手机在线观看| 看免费成人av毛片| 午夜亚洲福利在线播放| 国产高清不卡午夜福利| 乱系列少妇在线播放| 深夜a级毛片| 亚洲国产精品国产精品| 丰满人妻一区二区三区视频av| 看片在线看免费视频| 精品免费久久久久久久清纯| 国产视频一区二区在线看|