• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improving the process forming limit considering forming defects in the transitional region in local loading forming of Ti-alloy rib-web components

    2017-11-20 01:56:38PengfeiGAOXiaodiLIHeYANGXiaoguangFANZhenniLEI
    CHINESE JOURNAL OF AERONAUTICS 2017年3期

    Pengfei GAO,Xiaodi LI,He YANG,Xiaoguang FAN,Zhenni LEI

    State Key Laboratory of Solidification Processing,School of Materials Science and Engineering,Northwestern Polytechnical University,Xi’an 710072,China

    Improving the process forming limit considering forming defects in the transitional region in local loading forming of Ti-alloy rib-web components

    Pengfei GAO*,Xiaodi LI,He YANG*,Xiaoguang FAN,Zhenni LEI

    State Key Laboratory of Solidification Processing,School of Materials Science and Engineering,Northwestern Polytechnical University,Xi’an 710072,China

    Available online 21 December 2016

    *Corresponding authors.

    E-mail address:gaopengfei@nwpu.edu.cn(P.F.GAO).

    Peer review under responsibility of Editorial Committee of CJA.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.cja.2016.11.004

    1000-9361?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.

    This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    The isothermal local loading forming technology provides a feasible way to form Ti-alloy large-scale rib-web components in aerospace and aviation fields.However,the local loading process forming limit is restricted by forming defects in the transitional region.In this work,the feasibility of controlling forming defects and improving the process forming limit by adjusting die parameters is explored through finite element(FE)simulation.It is found that the common cavum and folding defects in the transitional region are significantly influenced by the fillet radii of left rib and middle rib,respectively.The cavum and folding defects can be effectively controlled by increasing the fillet radii of left rib and middle rib,respectively.The process forming limits considering forming defects in the transitional region are determined by the stepwise searching method under various die parameters.Moreover,the relationship between the process forming limit and die parameters is developed through the response surface methodology(RSM).The developed RSM models suggest that increasing the fillet radii of left and middle ribs is effective to improve the process forming limit during local loading forming of rib-web components.The results will provide technical basis for the design of die parameters and the reduction amount,which is of great importance to control forming defects and improve the process forming limit in local loading forming of Ti-alloy large-scale rib-web components.

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Defect;

    Large-scale

    rib-web component;

    Local loading forming;

    Process forming limit;

    Transitional region

    1.Introduction

    Ti-alloy large-scale complex components(such as bulkheads)are a kind of high-performance and lightweight structural component,which have been widely used in the aviation field.However,their complex shapes and the hard-to-deform property of titanium alloy makes it very difficult to form these components using the integral forging method.To overcome the challenge,Yang et al.1–5proposed an isothermal local loading forming technology,in which a component is formed by changing the loading region(Fig.1).It can reduce the forming load,enhance the formability of a material,and enlarge the size of a component,providing a highly attractive way of forming Ti-alloy large-scale complex components.However,during local loading forming,the transitional region undergoes large uneven deformation under the constraints of the loading and unloading regions,which may lead to some forming defects such as folding and cavum.A previous investigation6indicated that the amount of uneven deformation and forming defects can be suppressed by reducing the reduction amount.Nevertheless,this will increase the total required loading passes,and then prolong the production cycle and raise the cost.Moreover,too many isothermal loading passes may result in a bad microstructure and a poor performance,since the workpiece undergoes series of thermal cycles(heating,holding,deformation,and cooling).Therefore,it is very critical to maximize the reduction amount in each loading pass under the precondition of avoiding forming defects.Here,we call the allowablemaximum reduction amount without forming defects in the transitional region as process forming limit.

    To date,many works have been conducted on the formation and avoidance of forming defects during integral forging.For instance,Chan et al.7studied the dependence of the folding defect on tooling geometrical parameters in forging of asymmetrical f l anged components by finite element(FE)simulation.Zhang et al.8investigated the formation mechanisms of folding and underfilling during isothermal forging of aluminum-alloy ring seats through a combination of FE simulation and experiments.Petrov et al.9revealed the variation law of the folding length with die geometrical parameters and friction in closed-die forging of an aluminum part with an irregular shape.Then they obtained the optimal die parameters and friction to avoid the folding defect.Chen et al.10found that flow-through is a common defect in press forging of AZ31 magnesium-alloy sheets,which can be suppressed by increasing the sheet thickness.In addition,they determined the minimum sheet thickness without flow-through using the stepwise searching method.The research methodologies and results of the above works enlighten the investigation of forming defects during local loading forming.

    Some primary works have also been carried out on forming characteristics during local loading forming.Zhang et al.11,12and Gao et al.13studied the behavior of material flow in the transitional region by FE simulation,and quantitatively uncovered the mechanisms of transverse material flow from the loading region into the unloading region.On these bases,the formation mechanisms of forming defects(folding and cavum)in the transitional region and their dependences on local loading processing parameters were revealed.6It was found that both decreasing the spacer block thickness and increasing friction can suppress folding and cavum,while the deformation temperature and loading speed have few effects on forming defects.The effects of structural parameters of the transitional region on folding and cavum have also been studied.14Furthermore,Gao et al.15developed the prediction models of forming defects in the transitional region for local loading forming of rib-web components with various structural parameters.Then,they determined the process forming limit considering forming defects in the transitional region through the stepwise searching method combined with the prediction models of forming defects.However,it was found that the process forming limit locates in the range of 7.1–8.1 mm at various structural parameters,which is still not a satisfactory result to reduce the loading pass.Therefore,it is still needed to find feasible ways to control the forming defects in the transitional region and then improve the process forming limit of local loading forming.

    Up to now,there is no study on the method for improving the process forming limit of local loading forming.Zhang et al.16found that besides the processing condition and structural parameters,die parameters(fillet radius and draft angle)also play a great role in the material flow and deformation behavior during local loading forming of rib-web components.Therefore,it may be able to control forming defects and improve the process forming limit by adjusting die parameters.To this end,further investigations should be conducted on the effects of die parameters on forming defects in the transitional region and the process forming limit in isothermal local loading forming.

    In this work,the dependences of forming defects in the transitional region and the process forming limit on die parameters in local loading forming were studied systematically.By carrying out orthogonal FE simulation analyses,the key influencing factors and laws of die parameters on forming defects and the process forming limit were revealed.Then,the relationships between the process forming limit and die parameters were developed.On these bases,design strategies of die parameters for improving the process forming limit were proposed.

    The results will provide technological basis for optimizing die parameters in isothermal local loading forming of Ti-alloy large-scale rib-web components.

    2.Research methodology

    2.1.FE model of the transitional region

    A previously developed FE model of the transitional region in local loading forming of rib-web components was employed in this work,as shown in Fig.2.13,14The FE model is developed based on DEFORM-2D software,in which the deformation in the transitional region is simplified as a plane strain problem.For the die structure,the lower die is kept integral,while the top die is divided into two symmetrical parts:Top die 1 and Top die 2.Fig.2(a)shows the structural dimensions of dies,where the unit is mm.In Fig.2,Lis the reduction amount,ris the fillet radius,and γ is the draft angle.The billet is TA15 alloy with a height(H)of 30 mm.A typical local loading process has two loading steps conducted by adjusting the relative position of the two top dies using a spacer block.In the first loading step(Fig.2(a)),Top die 1 is protuberant by implanting the spacer block between the top die bed and Top die 1.In the second loading step(Fig.2(b)),Top dies 1 and 2 are at the same level by removing the spacer block.

    During FE modeling,the flow behavior of TA15 alloy is input into DEFORM software in the form of discrete points based on the experimental results in Fig.3.17(Trepresents the temperature).Meanwhile,the dies are modeled as rigid bodies.As isothermal local loading is performed under high temperature and low loading speed,the whole forming process is modeled in an isothermal condition without any thermal events.The shear friction model and von Mises yielding criteria are adopted.Besides,the automatic remeshing and local refined meshing techniques are applied to avoid the meshinginduced singularity.The FE model has been validated by physical experiments with a material of lead in previous works.13,14Table 1 lists the key parameters in the physical experiment and FE models.The good agreements on the flow line,shape,and feature sizes between the simulated and experimental samples(Fig.4 and Table 2)suggest that the FE model is reliable in studying forming defects in the transitional region during local loading forming.In Table 2,left rib,middle rib,and right rib represent the heights of three ribs respectively;Lfoldis the length of folding andLmis the distance between folding and middle rib;D1andD2represent the depths of cavum in left rib and middle rib,respectively.

    Thus,this FE model is applicable to study forming defects in the transitional region and the process forming limit in this work.To study the effects of die parameters,the fillet radii and draft angles of the three ribs are set changing from 3 to 9 mm and 1 to 3°,respectively.It should be noted that the fillet radii and draft angles are symmetrical for the three ribs.As far as the processing parameters are concerned,the deformation temperature,loading speed,and friction factor are set as 950°C,0.1 mm/s,and 0.5,respectively.Both the spacer block thickness and reduction amount are 13 mm.These processing parameters are all set as favorable values for suppressing forming defects in the transitional region according to the results of previous studies.6,14

    Quantities simulations show that the cavum at left rib and folding defects are still prone to emerge,while the cavum at middle rib would not occur in the above ranges of die parameters,as shown in Fig.5.In this work,the cavum defect at left rib is evaluated by its depth,noted asD,and the folding defect is evaluated by its length,noted asLfold(Fig.5).If no folding is generated,we defineLfoldas 0.According to the requirements of machining allowance and forming quality in precision forging15,18,the standards for qualif i ed workpiece are set as follows:no folding emerges and the cavum depth is less than 3 mm.

    2.2.Orthogonal experiment design and response surface methodology

    The orthogonal experiment design is a widely used sampling strategy,which can study the effects of many factors simultaneously in a single set of experiments with much fewer experiments.19,20Thematrix,an orthogonal array of seven factors and three levels,was used to study the effects of die parameters on forming defects and the process forming limit.The considered die parameters and their levels are given in Table 3,and the designed experiment schemes are shown in Table 4.FE simulations were conducted according to the experiment schemes,and then the simulated cavum depth and folding length were measured(Table 4).

    In this work,the range analysis was used to study the orthogonal experiment results.During range analysis,two key parameters,i.e.,KjiandRj,need to be calculated,whose detailed calculation processes can be found in Ref.19.is the average value of the indexes of all levels(i,i=1,2,3)in each factorjat the same leveli.The range between the maximum and minimum values ofis de fi ned as range value,Rj,which can be used to evaluate the significance of a factor,i.e.,the greaterRjis,the more significant a factor is.

    Table 1 Key parameters in the physical experiment and FE models.14

    Response surface methodology(RSM)is one of the most popular modeling techniques,which has been widely used to approximate the time-consuming FE simulation in various fi elds.21,22Thus,the RSM modeling method was employed to correlate the process forming limit and die parameters in this work.During RSM modeling,the quadratic polynomial without a quadratic term was used with the following formulation:

    whereyis the response(process forming limit),kis the number of input variables,xiandxjare the sets of model input variables(γ1,r1,γ2,r2,γ3,r3),and β0,βj,βijrepresent the regression coefficients.

    Table 2 Comparisons of feature sizes between the simulated and experimental results.14

    3.Results and discussion

    3.1.Effects of die parameters on forming defects

    Fig.6 shows the range analysis results on the cavum depth based on the data in Table 4.From the range values of different factors,it can be concluded thatr1is the only significant factor for the cavum depth.The cavum depth decreases monotonically with an increases ofr1,as shown in Fig.6(b).It has been reported that the cavum at left rib is produced in the second loading step due to a shift of the rib root,which is essentially caused by the leftward transverse flow of the web material.6Fig.7 compares the formation of the cavum defect between samples with differentr1.It can be found that the sample with a greaterr1(Fig.7(d))presents a smoother transition at the rib root,rather than a V-shaped cavum in the sample with a smallerr1(Fig.7(b)).This indicates that a smoother transition at the rib root could suppress the cavum greatly.As a result,with an increase ofr1,the cavum depth decreases gradually.

    The range analysis results on the folding defect are given in Fig.8.From Fig.8(a),we can find that there is only one significant factor,i.e.,r2,for folding,which is similar to the case of cavum.It can be found from Fig.8(b)that the folding length decreases with an increase ofr2,and folding disappears whenr2increases to 9 mm.Fig.9(a)shows a typical formation process of the folding defect in the second loading step.It includes three main steps:(1)a step is created under the effect of transverse material flow;(2)the step evolves to a V-shaped cavum;(3)the V-shaped cavum gets close gradually and becomes folding.It can be concluded that the creations of a step and a V-shaped cavum play a critical role in the formation of folding.From the comparison of samples with differentr2(Fig.9(b–e)),it can be found that a greaterr2can reduce the slope of the step(Fig.9(d))and suppress the generation of a V-shaped cavum(Fig.9(e)),then controlling the formation of folding.Thus,the folding length decreases with an increase ofr2.

    3.2.Dependence of process forming limit on die parameters

    The results in Section 3.1 suggest that die parameters,especiallyr1andr2,present great influences on forming defects in the transitional region.Increasingr1andr2can significantly suppress cavum and folding,respectively.Thus,it can be deduced that increasingr1andr2can improve the process forming limit constrained by forming defects in the transitional region.In this section,the dependence rule of the process forming limit on die parameters will be investigated in detail.

    Here,we define the process forming limit constrained by the cavum defect asLmax1,the process forming limit constrained by the folding defect asLmax2,and the limit considering both of the two defects asLmax.Naturally,for a certain group of die parameters,Lmax=min{Lmax1,Lmax2}.According to the requirements of a qualif i ed workpiece mentioned in Section 2.1,Lmax1andLmax2of samples in Table 4 are determined by thestepwise searching method based on FE simulation.Based on these results(Table 4),the range analysis is also conducted onLmax1(Fig.10)andLmax2(Fig.11).From Fig.10,it can be found thatr1plays a great role inLmax1.Whenr1increases from 3 to 9 mm,the averageLmax1increases from 12.8 to 16.1 mm.On the other hand,r2plays a great role inLmax2,as shown in Fig.11.Whenr2increases from 3 to 9 mm,the averageLmax2increases from 7.4 to 15.1 mm.This verifies that increasingr1andr2is an effective method to improve the process forming limit constrained by forming defects in the transitional region.

    Table 3 Factors and levels of orthogonal experiment design.

    Table 4 Orthogonal experiment schemes and simulated forming results.

    To develop the design criteria of die parameters and the reduction amount in local loading forming,it is still needed to establish the relationship between the process forming limit and die parameters.To this end,the RSM modeling method described in Section 2.2 is used.Using the stepwise regression method,the final regression models forLmax1andLmax2are obtained as follows:

    The ANOVA analysis for the two regression models are shown in Tables 5 and 6,respectively.It can be found that thep-values of the two models are both less than 0.01,suggesting that the regression models are both significant.Moreover,the adequacy measures ofR2and adjustedR2are in a reasonable agreement and are both close to 1 for the two models.These indicate that the regression models are both adequate and meaningful.

    To verify the accuracy of the developed RSM models,we design 6 additional random samples within the whole die parameters space(Section 2.1)by the general Latin Hypercube design.Table 7 gives the detailed scheme of random samples and the comparisons between the process forming limits(Lmax1andLmax2)obtained by RSM and FE simulation.It can be found that the predicted errors of the two models are both very small,which suggests that the developed RSM models are reliable to predictLmax1andLmax2at various die parameters.

    After getting both the process forming limit considering the cavum defect(Lmax1)and the process forming limit considering the folding defect(Lmax2),the final process forming limit considering both defects(Lmax)can be represented by:

    3.3.Coupling effects of die parameters

    In this section,the coupling effects of two key factors(r1andr2)on the process forming limits and the restriction laws ofLmax1andLmax2onLmaxare analyzed.Here,bothr1andr2range from 3 to 9 mm,while γ1,γ2,γ3,andr3are fixed as 2°,2°,2°,and 6 mm,respectively.Using Eqs.(2)and(3),Lmax1andLmax2are calculated at 32×32 uniform distributed points in the space ofr1×r2.Then,the variations ofLmax1andLmax2withr1andr2are shown in Fig.12(a)through a threedimensional diagram.It can be found that the surfaces ofLmax1andLmax2are both close to planes.Moreover,theLmax1andLmax2planes are roughly parallel tor2-axis andr1-axis,respectively,suggesting that the coupling effects ofr1andr2onLmax1andLmax2are small.This is to say,Lmax1andLmax2are mainly determined byr1andr2,respectively.On the other hand,it can be observed from Fig.12(a)that the surfaces ofLmax1andLmax2intersect in the space.Ther1-r2plane can be divided into Region A and Region B(Fig.12(a))by projecting the intersecting line of the two surfaces.In Region A,Lmax2is smaller thanLmax1,so the final process forming limitLmaxequals toLmax2.This means that the final process forming limitLmaxis essentially constrained by folding in Region A.Conversely,Lmax1is smaller thanLmax2in Region B,and thus the final process forming limitLmaxis essentially constrained by cavum and equals toLmax1in Region B.Fig.12(b)gives the process forming limit considering both defects(Lmax)at various die parameters.It can be found that the process forming limit(Lmax)can be improved from 7.6 mm to 15.4 mm,whenr1andr2both increase from 3 mm to 9 mm.

    Table 5 ANOVA analysis for the RSM model of Lmax1.

    Table 6 ANOVA analysis for the RSM model of Lmax2.

    Table 7 Comparisons between the predicted process forming limits obtained by RSM and FE simulation.

    3.4.Discussion

    The above analyses suggest that increasingr1andr2is an effective way to suppress cavum and folding defects in the transitional region,and then improve the process forming limit during local loading forming of rib-web components.Moreover,r1andr2are the only significant factors for the cavum and folding defects,respectively.There is little coupling effect ofr1andr2on forming defects and the process forming limit.These results are essentially determined by the formation mechanisms of defects and their dependences on die parameters.As described in Section 3.1,local geometrical parameters at the rib root greatly influence the material flow and determine forming defects.A greater fillet radius is more beneficial to avoid a V-shaped cavum at the rib root,which usually results in the cavum and folding defects.In addition,formations of cavum and folding defects both mainly depend on the local deformation behavior at the rib root.Thus,increasingr1andr2could control the cavum and folding defects,respectively,and little coupling effect exists.

    Using Eqs.(2–4),the process forming limit,i.e.,the allowable maximum reduction amount,at different die parameters can be determined,as shown in Fig.12(b).This will provide technical basis for the design of die parameters and the reduction amount,which is of great importance to control forming defects and improve the process forming limit in local loading forming of Ti-alloy large-scale rib-web components.Although the process forming limit models(Eq.(2–4))are developed for a specific component,the effect laws of die parameters on forming defects and the process forming limit in this work are still propagable for local loading forming of rib-web components.

    4.Conclusions

    In this paper,we have explored the effects of die parameters on forming defects in the transitional region and the process forming limit during local loading forming of rib-web components.The following conclusions can be drawn:

    (1)The common cavum and folding defects in the transitional region mainly depend on the fillet radii of left rib and middle rib,respectively.Increasing the fillet radii of left rib and middle rib can suppress the cavum and folding defects,respectively.

    (2)The process forming limit constrained by forming defects in the transitional region is determined by the stepwise searching method based on FE simulation,and correlated with die parameters by the response surface methodology.

    (3)Increasing the fillet radii of left and middle ribs is an effective way to improve the process forming limit during local loading forming of rib-web components.The process forming limit can be improved from 7.6 mm to 15.4 mm when the fillet radii of left and middle ribs both increase from 3 mm to 9 mm for the component in this work.

    Acknowledgements

    The authors would like to gratefully acknowledge the support of the National Natural Science Foundation of China(Nos.51605388,51675433),111 Project(B08040),the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)in China(Grant No.131-QP-2015),the Fundamental Research Funds for the Central Universities,and the Open Research Fund of State Key Laboratory of Materials Processing and Dieamp;Mold Technology at Huazhong University of Science and Technology.

    1.Yang H,Fan XG,Sun ZC,Guo LG,Zhan M.Recent developments in plastic forming technology of titanium alloys.Sci China Technol Sci2011;54(2):490–501.

    2.Fan XG,Yang H,Gao PF.Through-process macro-micro finite element modeling of local loading forming of large-scale complex titanium alloy component for microstructure prediction.J Mater Process Technol2014;214(2):253–66.

    3.Fan XG,Yang H,Sun ZC,Zhang DW.Effect of deformation inhomogeneity on the microstructure and mechanical properties of large-scale rib-web component of titanium alloy under local loading forming.Mater Sci Eng A2010;527(21–22):5391–9.

    4.Zhang DW,Yang H,Sun ZC.Analysis of local loading forming for titanium-alloy T-shaped components using slab method.J Mater Process Technol2010;210(2):258–66.

    5.Zhang DW,Yang H,Sun ZC,Fan XG.Deformation behavior of variable-thickness region of billet in rib-web component isothermal local loading process.Int J Adv Manuf Technol2012;63(1–4):1–12.

    6.Gao PF,Yang H,Fan XG,Lei PH.Forming defects control in transitional region during isothermal local loading of Ti-alloy ribweb component.Int J Adv Manuf Technol2014;76(5–8):857–68.

    7.Chan WL,Fu MW,Lu J,Chan LC.Simulation-enabled study of folding defect formation and avoidance in axisymmetrical f l anged components.J Mater Process Technol2009;209(11):5077–86.

    8.Zhang YQ,Jiang SY,Zhao YA,Shan DB.Isothermal precision forging of aluminum alloy ring seats with different preforms using FEM and experimental investigation.Int J Adv Manuf Technol2014;72(9):1693–703.

    9.Petrov P,Perf i lov V,Stebunov S.Prevention of lap formation in near net shape isothermal forging technology of part of irregular shape made of aluminum alloy A92618.J Mater Process Technol2006;177(1–3):218–23.

    10.Chen FK,Huang TB,Wang SJ.A study of flow-through phenomenon in the press forging of magnesium-alloy sheets.J Mater Process Technol2007;187–188:770–4.

    11.Zhang DW,Yang H,Sun ZC,Fan XG.Deformation behavior under die partitioning boundary during titanium alloy large-scale rib-web component forming by isothermal local loading.Proceedings of the 12th World Conference on Titanium.Beijing:Science Press;2011.p.328.

    12.Zhang DW,Yang H.Distribution of metal flowing into unloaded area in the local loading process of titanium alloy rib-web component.Rare Metal Mater Eng2014;43(2):296–300.

    13.Gao PF,Yang H,Fan XG.Quantitative analysis of the material flow in transitional region during isothermal local loading forming of Ti-alloy rib-web component.Int J Adv Manuf Technol2014;75(9–12):1339–47.

    14.Gao PF,Yang H,Fan XG,Lei PH.Quick prediction of the folding defect in transitional region during isothermal local loading forming of titanium alloy large-scale rib-web component based on folding index.J Mater Process Technol2015;219:101–11.

    15.Gao PF,Yang H,Fan XG,Lei PH.Forming limit of local loading forming of Ti-alloy large-scale rib-web components considering defects in the transitional region.Int J Adv Manuf Technol2015;80(5):1015–26.

    16.Zhang DW,Yang H,Sun ZC,Fan XG.Influences of fillet radius and draft angle on local loading process of titanium alloy T-shaped components.Trans Nonferrous Met Soc China2011;21(12):2693–704.

    17.Shen CW.Research on material constitution models of TA15 and TC11 titanium alloys in hot deformation process[Dissertation].Xi’an Northwestern Polytechnical University;2007.

    18.Shipley RJ.Precision forging,forging process,ASM Handbook.ASM International;1988.

    19.Shen Q,Zheng Y,Li S,Ding H,Xu Y,Zheng C,et al.Optimize process parameters of microwave-assisted EDTA method using orthogonal experiment for novel BaCoO3-δ perovskite.J Alloy Comp2016;658:125–31.

    20.Meng Y,Chen Y,Li S,Chen C,Xu K,Ma F,et al.Research on the orthogonal experiment of numeric simulation of macromolecule-cleaning element for sugarcane harvester.Mater Des2009;30(6):2250–8.

    21.Yang YH,Liu D,He ZY,Luo ZJ.Optimization of preform shapes by RSM and FEM to improve deformation homogeneity in aerospace forgings.Chin.J Aeronaut2010;23(2):260–7.

    22.Wang H,Li GY,Zhong ZH.Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method.J Mater Process Technol2008;197(1–3):77–88.

    25 June 2016;revised 21 September 2016;accepted 18 October 2016

    亚洲精品456在线播放app | 精品日产1卡2卡| 久久九九热精品免费| a级一级毛片免费在线观看| 欧美又色又爽又黄视频| 又黄又爽又刺激的免费视频.| 亚洲性久久影院| 日本爱情动作片www.在线观看 | 男人和女人高潮做爰伦理| 深夜a级毛片| 欧美区成人在线视频| 看十八女毛片水多多多| 特级一级黄色大片| 国产高清视频在线播放一区| 99热网站在线观看| 亚洲最大成人手机在线| 丰满乱子伦码专区| 国产精品一区二区性色av| 国产免费av片在线观看野外av| 成人国产麻豆网| 国产女主播在线喷水免费视频网站 | 日本成人三级电影网站| 欧美日韩瑟瑟在线播放| 女同久久另类99精品国产91| 亚洲精品亚洲一区二区| 少妇的逼水好多| 一个人看视频在线观看www免费| 非洲黑人性xxxx精品又粗又长| 毛片一级片免费看久久久久 | av.在线天堂| 色在线成人网| 一a级毛片在线观看| 午夜亚洲福利在线播放| 久久久国产成人精品二区| 久久久久久久精品吃奶| 日本三级黄在线观看| 成人亚洲精品av一区二区| 看免费成人av毛片| 午夜免费激情av| 国产乱人伦免费视频| a级毛片免费高清观看在线播放| 好男人在线观看高清免费视频| 国产高清激情床上av| 免费看a级黄色片| 99国产精品一区二区蜜桃av| 国产主播在线观看一区二区| 精品久久久久久久久久久久久| 亚洲成人免费电影在线观看| 国产熟女欧美一区二区| 在线天堂最新版资源| 能在线免费观看的黄片| a在线观看视频网站| 亚洲成a人片在线一区二区| 99在线人妻在线中文字幕| 午夜视频国产福利| 变态另类丝袜制服| 小说图片视频综合网站| 一边摸一边抽搐一进一小说| 亚洲性久久影院| 成人二区视频| 99久久精品一区二区三区| 国产三级在线视频| 久久精品国产亚洲网站| av在线天堂中文字幕| 久久人人精品亚洲av| 日本成人三级电影网站| 乱码一卡2卡4卡精品| 欧美性猛交黑人性爽| 一区二区三区激情视频| 亚洲成人久久爱视频| 天堂影院成人在线观看| 国产精品久久久久久亚洲av鲁大| 一个人观看的视频www高清免费观看| 国产蜜桃级精品一区二区三区| 亚洲专区中文字幕在线| av黄色大香蕉| 色吧在线观看| 身体一侧抽搐| 亚洲成a人片在线一区二区| 搡老熟女国产l中国老女人| 国产人妻一区二区三区在| 免费电影在线观看免费观看| 99久久久亚洲精品蜜臀av| 三级男女做爰猛烈吃奶摸视频| 亚洲最大成人中文| 国产黄色小视频在线观看| 丰满人妻一区二区三区视频av| 成年女人看的毛片在线观看| 99九九线精品视频在线观看视频| 99热只有精品国产| 岛国在线免费视频观看| 国产亚洲精品av在线| 国产在线男女| 久久亚洲真实| 国产极品精品免费视频能看的| 日韩大尺度精品在线看网址| 在线观看美女被高潮喷水网站| 久久精品国产亚洲av涩爱 | 国产精品嫩草影院av在线观看 | 中文字幕高清在线视频| 免费观看人在逋| 3wmmmm亚洲av在线观看| 最好的美女福利视频网| 国产在线精品亚洲第一网站| 亚洲国产色片| 综合色av麻豆| 精华霜和精华液先用哪个| 久久天躁狠狠躁夜夜2o2o| 欧美又色又爽又黄视频| 变态另类成人亚洲欧美熟女| 午夜免费男女啪啪视频观看 | 久久久色成人| 天堂√8在线中文| 又粗又爽又猛毛片免费看| 久久久精品大字幕| 少妇人妻精品综合一区二区 | 色哟哟·www| 最新在线观看一区二区三区| 性色avwww在线观看| 男人的好看免费观看在线视频| 99riav亚洲国产免费| 久久午夜亚洲精品久久| 九九热线精品视视频播放| 神马国产精品三级电影在线观看| 免费av不卡在线播放| 欧美国产日韩亚洲一区| avwww免费| 在线观看免费视频日本深夜| 成年免费大片在线观看| 禁无遮挡网站| 久9热在线精品视频| 丰满人妻一区二区三区视频av| 中国美白少妇内射xxxbb| 极品教师在线视频| 精品人妻熟女av久视频| 午夜亚洲福利在线播放| av在线蜜桃| 特级一级黄色大片| 亚洲av不卡在线观看| 久久婷婷人人爽人人干人人爱| 91麻豆av在线| 校园人妻丝袜中文字幕| 日韩强制内射视频| 五月伊人婷婷丁香| 日韩欧美 国产精品| 亚洲av二区三区四区| 啦啦啦啦在线视频资源| 春色校园在线视频观看| 久久久久九九精品影院| 2021天堂中文幕一二区在线观| 老师上课跳d突然被开到最大视频| 亚洲国产日韩欧美精品在线观看| 国产三级在线视频| 老熟妇乱子伦视频在线观看| 看片在线看免费视频| 男女那种视频在线观看| 国产一区二区在线av高清观看| 蜜桃久久精品国产亚洲av| 午夜爱爱视频在线播放| 精品国产三级普通话版| 国产真实伦视频高清在线观看 | 精品久久久久久久末码| 我要看日韩黄色一级片| 亚洲精品色激情综合| 午夜免费成人在线视频| 又粗又爽又猛毛片免费看| 日本黄色视频三级网站网址| bbb黄色大片| 午夜福利视频1000在线观看| 九九热线精品视视频播放| 一区二区三区四区激情视频 | 直男gayav资源| 久久久精品大字幕| av专区在线播放| 久久久久久久久久久丰满 | 中出人妻视频一区二区| 俄罗斯特黄特色一大片| 一进一出好大好爽视频| 亚洲成人免费电影在线观看| 动漫黄色视频在线观看| 精华霜和精华液先用哪个| 久久亚洲精品不卡| 色综合亚洲欧美另类图片| 亚洲av中文av极速乱 | avwww免费| 悠悠久久av| 久久热精品热| 国产一区二区在线观看日韩| 国产精品av视频在线免费观看| 精品人妻偷拍中文字幕| 尤物成人国产欧美一区二区三区| 久久精品国产亚洲av天美| 亚洲av电影不卡..在线观看| 成人亚洲精品av一区二区| 久久久久久国产a免费观看| 黄片wwwwww| 精品福利观看| 女同久久另类99精品国产91| 成年版毛片免费区| 亚洲人成网站在线播放欧美日韩| 国产极品精品免费视频能看的| 亚洲成人免费电影在线观看| 久久香蕉精品热| 亚洲经典国产精华液单| 91在线观看av| netflix在线观看网站| 久久久久久久亚洲中文字幕| 国产大屁股一区二区在线视频| av黄色大香蕉| 赤兔流量卡办理| 可以在线观看毛片的网站| 99热这里只有精品一区| 国产精品一区二区免费欧美| 美女被艹到高潮喷水动态| 伊人久久精品亚洲午夜| 大又大粗又爽又黄少妇毛片口| av黄色大香蕉| 老师上课跳d突然被开到最大视频| 久久国产精品人妻蜜桃| 日韩大尺度精品在线看网址| 天堂av国产一区二区熟女人妻| 国产v大片淫在线免费观看| 中文字幕精品亚洲无线码一区| 桃红色精品国产亚洲av| 中国美女看黄片| 人妻少妇偷人精品九色| 午夜爱爱视频在线播放| 蜜桃亚洲精品一区二区三区| 国产综合懂色| 日韩欧美在线二视频| 久久99热6这里只有精品| 欧美3d第一页| 亚洲天堂国产精品一区在线| 免费人成在线观看视频色| 韩国av一区二区三区四区| 特级一级黄色大片| 中文亚洲av片在线观看爽| a级一级毛片免费在线观看| 黄色欧美视频在线观看| 搞女人的毛片| 99久久九九国产精品国产免费| 动漫黄色视频在线观看| 欧美日本亚洲视频在线播放| 亚洲精品成人久久久久久| 欧美一区二区国产精品久久精品| 国产精品女同一区二区软件 | 色av中文字幕| 精品午夜福利视频在线观看一区| 直男gayav资源| 亚洲在线自拍视频| 精品久久久久久久人妻蜜臀av| 午夜日韩欧美国产| 伊人久久精品亚洲午夜| 国产高清视频在线播放一区| 午夜a级毛片| 亚洲av日韩精品久久久久久密| 亚洲精品国产成人久久av| 性色avwww在线观看| 国产精品伦人一区二区| 免费在线观看日本一区| 成人一区二区视频在线观看| 日日摸夜夜添夜夜添小说| 午夜日韩欧美国产| 免费无遮挡裸体视频| 国产乱人视频| 国产一区二区在线观看日韩| 久久久久久久久久黄片| 国产精品精品国产色婷婷| 欧美成人a在线观看| 嫩草影院入口| 亚洲成人久久爱视频| 99久久成人亚洲精品观看| 精品久久久久久久人妻蜜臀av| 亚洲色图av天堂| 欧美又色又爽又黄视频| 人妻夜夜爽99麻豆av| 夜夜看夜夜爽夜夜摸| 男女做爰动态图高潮gif福利片| 国产精品人妻久久久影院| 观看美女的网站| 在线观看午夜福利视频| 老司机午夜福利在线观看视频| 国产综合懂色| 国产成人一区二区在线| 国产精品一区二区性色av| 五月伊人婷婷丁香| 欧美性猛交黑人性爽| 久久九九热精品免费| 91精品国产九色| 在线观看舔阴道视频| 嫩草影视91久久| 国产一区二区在线观看日韩| 狂野欧美激情性xxxx在线观看| 亚洲国产精品成人综合色| 中文字幕精品亚洲无线码一区| 久久精品国产亚洲av天美| 国产伦一二天堂av在线观看| 亚洲av五月六月丁香网| 此物有八面人人有两片| 成人国产一区最新在线观看| 久久精品国产清高在天天线| 欧美zozozo另类| 无人区码免费观看不卡| 午夜精品一区二区三区免费看| 三级男女做爰猛烈吃奶摸视频| 久久欧美精品欧美久久欧美| 亚洲精品色激情综合| 最近最新免费中文字幕在线| 99精品久久久久人妻精品| 久久草成人影院| 赤兔流量卡办理| 国产高清不卡午夜福利| 一a级毛片在线观看| 欧美精品国产亚洲| 男女视频在线观看网站免费| 久99久视频精品免费| 欧美丝袜亚洲另类 | 免费看光身美女| 男女啪啪激烈高潮av片| 国国产精品蜜臀av免费| 美女cb高潮喷水在线观看| 久久草成人影院| 国产伦在线观看视频一区| 日本-黄色视频高清免费观看| 91av网一区二区| 亚洲熟妇熟女久久| 一边摸一边抽搐一进一小说| 午夜激情欧美在线| 又黄又爽又刺激的免费视频.| 亚洲,欧美,日韩| 神马国产精品三级电影在线观看| 欧美精品国产亚洲| 日韩欧美精品免费久久| 国产淫片久久久久久久久| 国产精品一区二区免费欧美| 欧美日韩综合久久久久久 | avwww免费| 狂野欧美激情性xxxx在线观看| 国产人妻一区二区三区在| 亚洲不卡免费看| 婷婷亚洲欧美| 国产高潮美女av| 在线免费观看的www视频| 日日干狠狠操夜夜爽| 美女大奶头视频| 国产一区二区亚洲精品在线观看| 亚洲四区av| 亚洲久久久久久中文字幕| 国产亚洲精品av在线| av中文乱码字幕在线| 黄色视频,在线免费观看| 热99re8久久精品国产| 国产精品野战在线观看| 变态另类成人亚洲欧美熟女| 亚洲自拍偷在线| 亚洲最大成人av| 亚洲欧美日韩高清专用| 亚洲久久久久久中文字幕| 小说图片视频综合网站| av国产免费在线观看| 狂野欧美激情性xxxx在线观看| 久久国内精品自在自线图片| 又爽又黄a免费视频| 免费av不卡在线播放| 高清日韩中文字幕在线| 亚洲va在线va天堂va国产| av在线老鸭窝| 成年女人看的毛片在线观看| 哪里可以看免费的av片| 麻豆国产av国片精品| 国产精品久久电影中文字幕| 国产精品乱码一区二三区的特点| 国产午夜精品久久久久久一区二区三区 | 国产av不卡久久| 亚洲av一区综合| 日韩高清综合在线| 欧美成人免费av一区二区三区| 欧美不卡视频在线免费观看| 精品国产三级普通话版| 99久久无色码亚洲精品果冻| 久久久久精品国产欧美久久久| av.在线天堂| 天堂√8在线中文| 午夜爱爱视频在线播放| 啦啦啦韩国在线观看视频| 免费在线观看影片大全网站| 免费高清视频大片| 亚洲人与动物交配视频| 国产欧美日韩精品一区二区| 欧美日韩黄片免| 亚洲国产欧美人成| 国产69精品久久久久777片| 又黄又爽又免费观看的视频| 自拍偷自拍亚洲精品老妇| 精品久久国产蜜桃| x7x7x7水蜜桃| 中文字幕高清在线视频| 国产三级中文精品| 国产一区二区激情短视频| 国产69精品久久久久777片| 黄色一级大片看看| 99久久中文字幕三级久久日本| 99在线视频只有这里精品首页| 看片在线看免费视频| 午夜福利在线在线| 少妇的逼好多水| 简卡轻食公司| 亚洲精华国产精华液的使用体验 | 午夜老司机福利剧场| 成人美女网站在线观看视频| 精品一区二区三区人妻视频| 国产成年人精品一区二区| 男插女下体视频免费在线播放| 免费在线观看日本一区| av在线蜜桃| 免费高清视频大片| 一级av片app| 少妇高潮的动态图| 免费电影在线观看免费观看| 人妻少妇偷人精品九色| 欧美+日韩+精品| 美女大奶头视频| 亚洲av第一区精品v没综合| 直男gayav资源| 99视频精品全部免费 在线| 国产精品人妻久久久影院| 国产真实乱freesex| 中文字幕av在线有码专区| 搡老岳熟女国产| 天天躁日日操中文字幕| 九色国产91popny在线| 亚洲电影在线观看av| 在线观看一区二区三区| 国产伦人伦偷精品视频| 日本撒尿小便嘘嘘汇集6| 亚洲中文日韩欧美视频| 五月伊人婷婷丁香| videossex国产| 久久久精品大字幕| 成人国产一区最新在线观看| 制服丝袜大香蕉在线| 亚洲精品456在线播放app | 国产精品国产三级国产av玫瑰| 精品欧美国产一区二区三| 精品久久久久久久久久免费视频| 国内精品美女久久久久久| 淫秽高清视频在线观看| 国产日本99.免费观看| 色综合色国产| 国产精品人妻久久久影院| 两人在一起打扑克的视频| 女同久久另类99精品国产91| 国产精品日韩av在线免费观看| 在线观看一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲va在线va天堂va国产| 精品国内亚洲2022精品成人| 亚洲真实伦在线观看| 男插女下体视频免费在线播放| 一个人看视频在线观看www免费| 亚洲av免费在线观看| 又爽又黄无遮挡网站| 亚洲电影在线观看av| 国产伦人伦偷精品视频| 欧美国产日韩亚洲一区| 99久久久亚洲精品蜜臀av| 久久久久久久午夜电影| 日本黄色片子视频| 国内精品一区二区在线观看| 99久久中文字幕三级久久日本| 熟女人妻精品中文字幕| 最近最新中文字幕大全电影3| 91午夜精品亚洲一区二区三区 | 国产精品永久免费网站| 亚洲美女搞黄在线观看 | 观看免费一级毛片| 亚洲一区二区三区色噜噜| 久久久精品欧美日韩精品| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美 国产精品| 观看美女的网站| 国产又黄又爽又无遮挡在线| 97碰自拍视频| 狠狠狠狠99中文字幕| 日本一本二区三区精品| 无遮挡黄片免费观看| 美女 人体艺术 gogo| 国产极品精品免费视频能看的| 嫩草影院新地址| 啦啦啦观看免费观看视频高清| 婷婷六月久久综合丁香| 男人狂女人下面高潮的视频| 国产免费一级a男人的天堂| 男女之事视频高清在线观看| 99精品在免费线老司机午夜| 久久这里只有精品中国| 很黄的视频免费| 夜夜看夜夜爽夜夜摸| 中亚洲国语对白在线视频| 真实男女啪啪啪动态图| 人人妻,人人澡人人爽秒播| 给我免费播放毛片高清在线观看| 在线播放无遮挡| 免费不卡的大黄色大毛片视频在线观看 | 99久国产av精品| av.在线天堂| 一个人免费在线观看电影| 精品久久久噜噜| 午夜a级毛片| 久久精品国产亚洲网站| 日韩中文字幕欧美一区二区| 色播亚洲综合网| 国产伦在线观看视频一区| 亚洲熟妇熟女久久| 九九爱精品视频在线观看| 欧美日本亚洲视频在线播放| 久久午夜亚洲精品久久| 欧美不卡视频在线免费观看| 亚洲精品粉嫩美女一区| 欧美极品一区二区三区四区| 老熟妇仑乱视频hdxx| 亚洲性夜色夜夜综合| 国产高清三级在线| 精品久久久久久,| 成年人黄色毛片网站| 啦啦啦韩国在线观看视频| 三级国产精品欧美在线观看| 99九九线精品视频在线观看视频| x7x7x7水蜜桃| 亚洲经典国产精华液单| 日本爱情动作片www.在线观看 | 日韩欧美在线二视频| 国产精品福利在线免费观看| 精品人妻熟女av久视频| 成人特级黄色片久久久久久久| 免费搜索国产男女视频| 久久精品国产亚洲av涩爱 | 一级黄片播放器| av福利片在线观看| 校园人妻丝袜中文字幕| 免费一级毛片在线播放高清视频| 一a级毛片在线观看| 免费在线观看成人毛片| 日本-黄色视频高清免费观看| 欧美zozozo另类| 熟妇人妻久久中文字幕3abv| 国产精品日韩av在线免费观看| 九色国产91popny在线| 精品一区二区免费观看| 91精品国产九色| 日日啪夜夜撸| 午夜爱爱视频在线播放| 亚洲成人免费电影在线观看| 中国美女看黄片| 国内精品一区二区在线观看| 亚洲七黄色美女视频| 国产精品国产高清国产av| 欧美成人性av电影在线观看| 国产精品99久久久久久久久| 中文字幕熟女人妻在线| 小蜜桃在线观看免费完整版高清| 国产亚洲91精品色在线| 国产aⅴ精品一区二区三区波| 久久这里只有精品中国| 中出人妻视频一区二区| 最好的美女福利视频网| 可以在线观看的亚洲视频| 日本黄色视频三级网站网址| 欧美成人a在线观看| 老司机深夜福利视频在线观看| 亚洲无线在线观看| 联通29元200g的流量卡| www.色视频.com| 国产久久久一区二区三区| 久久人人精品亚洲av| 最新在线观看一区二区三区| 亚洲成人精品中文字幕电影| 午夜激情欧美在线| 婷婷精品国产亚洲av在线| x7x7x7水蜜桃| av天堂在线播放| xxxwww97欧美| 自拍偷自拍亚洲精品老妇| 亚洲成a人片在线一区二区| 久久热精品热| 午夜精品在线福利| 国产老妇女一区| 啪啪无遮挡十八禁网站| 亚洲色图av天堂| 亚洲国产精品成人综合色| 欧美不卡视频在线免费观看| 狠狠狠狠99中文字幕| 亚洲最大成人中文| 久久6这里有精品| 国内精品一区二区在线观看| 一夜夜www| 久久久久国产精品人妻aⅴ院| 两个人视频免费观看高清| 熟妇人妻久久中文字幕3abv| 制服丝袜大香蕉在线| 色综合站精品国产| 看黄色毛片网站| 淫秽高清视频在线观看| 国产精品亚洲美女久久久| 欧美在线一区亚洲| av.在线天堂| 1024手机看黄色片| 22中文网久久字幕| 很黄的视频免费| 2021天堂中文幕一二区在线观| 国产亚洲欧美98| 午夜福利欧美成人| 亚洲天堂国产精品一区在线| 国产精品国产三级国产av玫瑰| 级片在线观看|